Accueil >
Production scientifique
Matière Molle
(414) Articles dans des revues
|
|
Chemical-Physical Characterization of a Binary Mixture of a Twist Bend Nematic Liquid Crystal with a Smectogen
Auteur(s): Aouini A., Nobili M., Chauveau E., Dieudonne-George P., Dameme Gauthier, Stoenescu Daniel, Dozov I., Blanc C.
(Article) Publié:
Crystals, vol. 10 p.1110 (2020)
Texte intégral en Openaccess :
Ref HAL: hal-03113887_v1
DOI: 10.3390/cryst10121110
WoS: WOS:000601985600001
Exporter : BibTex | endNote
Résumé: Nematic twist-bend phases (N-TB) are new types of nematic liquid crystalline phases with attractive properties for future electro-optic applications. However, most of these states are monotropic or are stable only in a narrow high temperature range. They are often destabilized under moderate cooling, and only a few single compounds have shown to give room temperature N-TB phases. Mixtures of twist-bend nematic liquid crystals with simple nematogens have shown to strongly lower the nematic to N-TB phase transition temperature. Here, we examined the behaviour of new types of mixtures with the dimeric liquid crystal [4 ',4 '-(heptane-1,7-diyl)bis(([1 ',1 ''-biphenyl]4 ''-carbo-nitrile))] (CB7CB). This now well-known twist-bend nematic liquid crystal presents a nematic twist-bend phase below T approximate to 104 degrees C. Mixtures with other monomeric alkyl or alkoxy -biphenylcarbonitriles liquid crystals that display a smectic A (SmA) phase also strongly reduce this temperature. The most interesting smectogen is 4 '-Octyl-4-biphenylcarbonitrile (8CB), for which a long-term metastable N-TB phase is found at room and lower temperatures. This paper presents the complete phase diagram of the corresponding binary system and a detailed investigation of its thermal, optical, dielectric, and elastic properties.
|
|
|
Pollution des océans par les plastiques et les microplastiques Pollution of oceans by plastics and microplastics
Auteur(s): Francois Galgani, Stéphane Bruzaud, Guillaume Duflos, Fabre P., Emmanuelle Casdaldi, Jeff Ghiglione, Régis Grimaud, George M., Arnaud Huvet, Fabienne Lagarde, Ika Paul-Pont, Alexandra Halle
(Article) Publié:
Techniques De L'ingenieur, vol. p. (2020)
|
|
|
Microstructure Characterization of Oceanic Polyethylene Debris
Auteur(s): Rowenczyk Laura, Dazzi Alexandre, Deniset-Besseau Ariane, Beltran Victoria, Goudounèche Dominique, Wong-Wah-Chung Pascal, Boyron Olivier, George M., Fabre P., Roux C., Mingotaud Anne-Françoise, ter Halle Alexandra
(Article) Publié:
Environmental Science And Technology, vol. 54 p.4102-4109 (2020)
Texte intégral en Openaccess :
Ref HAL: hal-02990067_v1
DOI: 10.1021/acs.est.9b07061
Exporter : BibTex | endNote
Résumé: Plastic pollution has become a worldwide concern. It was demonstrated that plastic breaks down to nanoscale particles in the environment, forming so-called nanoplastics. It is important to understand their ecological impact, but their structure is not elucidated. In this original work, we characterize the microstructure of oceanic polyethylene debris and compare them to the nonweathered objects. Cross-sections are analysed by several emergent mapping techniques. We highlight deep modifications of the debris within a layer a few hundred microns thick. The most 2 intense modifications are macromolecule oxidation and a considerable decrease in the molecular weight. The adsorption of organic pollutants and trace metals is also confined to this outer layer. Fragmentation of the oxidized layer of the plastic debris is the most likely source of nanoplastics. Consequently nanoplastic chemical nature differ greatly from plastics.
|
|
|
Texturing edible oil with crystals of phenolic compounds: Platelets versus rods
Auteur(s): Pommella A., Mathonnat M., In M.
(Article) Publié:
Journal Of Food Engineering, vol. 283 p.110039 (2020)
Ref HAL: hal-03049250_v1
DOI: 10.1016/j.jfoodeng.2020.110039
Exporter : BibTex | endNote
Résumé: Cinnamic acid and acetosyringone recrystallize in vegetable oil as platelets and rods respectively. After dissolution at high temperature(100°C) and upon cooling down to room temperature, their crystallites aggregate into a tenuous network which spans the entire volume of the system even at low mass fraction such as 1%. The whole system behaves as a soft solid characterized by an elastic modulus reaching 1MPa for mass fraction below 10% in the linear regime. The elastic modulus of cinnamic acid based oleogels varies with mass fraction as (-0) 2. For acetosyringone based oleogels, the elastic modulus varies non monotonically with concentration. This has been correlated to a morphological crossover from jammed spherulites at low mass fraction to entangled rods at higher mass fraction. Spherulite formation is related to the presence of branching points along the rods that result from secondary nucleation events. A new empirical parameter is defined from rheological data which reflects how far from equilibrium the solidification proceeds in nonisothermal conditions. This parameter accounts for the different concentration regimes of morphology and rheological properties that have been observed experimentally for acetosyringone.
|
|
|
Rejuvenating the structure and rheological properties of silica nanocomposites based on natural rubber
Auteur(s): Boonsomwong Kanyarat, Genix A.-C., Chauveau E., Fromental J.-M., Dieudonne-George P., Sirisinha Chakrit, Oberdisse J.
(Article) Publié:
Polymer, vol. 189 p.122168 (2020)
Texte intégral en Openaccess :
Ref HAL: hal-03004917_v1
Ref Arxiv: 2011.07820
DOI: 10.1016/j.polymer.2020.122168
WoS: WOS:000513011400007
Ref. & Cit.: NASA ADS
Exporter : BibTex | endNote
Résumé: The antagonistic effect of processing and thermal annealing on both the filler structure and the polymer matrix is explored in polymer nanocomposites based on natural rubber with precipitated silica incorporated by coagulation from aqueous suspension followed by roll-milling. Their structure and linear and non-linear rheology have been studied, with a particular emphasis on the effect of high temperature thermal treatment and the number of milling passes. Small-angle X-ray scattering intensities show that the silica is organized in small, unbreakable aggregates containing ca. 50 primary nanoparticles, which are reorganized on a larger scale in filler networks percolating at the highest silica contents. As expected, the filler network structure is found to be sensitive to milling, more milling inducing rupture, as evidenced by the decreasing Payne effect. After thermal treatment, the nanocomposite structure is found to be rejuvenated, erasing the effect of the previous milling on the low-strain modulus. In parallel, the dynamics of the samples described by the rheology or the calorimetric glass-transition temperature remain unchanged, whereas the natural latex polymer network structure is modified by milling towards a more fluid-like rheology, and cannot be recovered.
|
|
|
Tailoring the viscoelasticity of polymer gels of gluten proteins through solvent quality
Auteur(s): Costanzo S., Banc A., Louhichi A., Chauveau E., Wu Baohu, Morel Marie-Hélène, Ramos L.
(Article) Publié:
Macromolecules, vol. 53 p.9470-9479 (2020)
Texte intégral en Openaccess :
Ref HAL: hal-03003151_v1
Ref Arxiv: 2010.10317
DOI: 10.1021/acs.macromol.0c01466
Ref. & Cit.: NASA ADS
Exporter : BibTex | endNote
Résumé: We investigate the linear viscoelasticity of polymer gels produced by the dispersion of gluten proteins in water:ethanol binary mixtures with various ethanol contents, from pure water to 60% v/v ethanol. We show that the complex viscoelasticity of the gels exhibits a time/solvent composition superposition principle, demonstrating the self-similarity of the gels produced in different binary solvents. All gels can be regarded as near critical gels with characteristic rheological parameters, elastic plateau and characteristic relaxation time, which are related one to another, as a consequence of self-similarity, and span several orders of magnitude when changing the solvent composition. Thanks to calorimetry and neutron scattering experiments, we evidencea co-solvency effect with a better solvation of the complex polymer-like chains of the gluten proteins as the amount of ethanol increases. Overall the gel viscoelasticity can be accounted for by a unique characteristic length characterizing the crosslink density of the supramolecular network, which is solvent composition-dependent. On a molecular level, these findings could be interpreted as a transition of the supramolecular interactions, mainly H-bonds, from intra- to interchains, which would be facilitated by the disruption of hydrophobic interactions by ethanol molecules. This work provides new insight for tailoring the gelation process of complex polymer gels.
|
|
|
Motion of micro- and nano- particles interacting with a fluid interface
Auteur(s): Villa S., Boniello G., Stocco A., Nobili M.
(Article) Publié:
Advances In Colloid And Interface Science, vol. 284 p.102262 (2020)
Ref HAL: hal-02978590_v1
DOI: 10.1016/j.cis.2020.102262
Exporter : BibTex | endNote
Résumé: In this article, we review both theoretical models and experimental results on the motion of micro-and nano-particles that are close to a fluid interface or move in between two fluids. Viscous drags together with dissipations due to fluctuations of the fluid interface and its physicochemical properties affect strongly the translational and rotational drags of colloidal particles, which are subjected to Brownian motion in thermal equilibrium. Even if many theoretical and experimental investigations have been carried out, additional scientific efforts in hydrodynamics, statistical physics, wetting and colloid science are still needed to explain unexpected experimental results and to measure particle motion in time and space scales, which are not accessible so far.
|