- H bond spring behaviour in hybrid silica under pressure hal link

Auteur(s): Le Parc R., Freitas Vânia, Creff G., Wong Chi Man M., Cattoën Xavier, Hermet P., Ferreira Rute A. S., Carlos Luis D., Bartlett John R., Bantignies J.-L.

Conference: Horizons in Hydrogen Bond Research (Jyväskylä, FI, 2017-09-10)

Ref HAL: hal-01909459_v1
Exporter : BibTex | endNote

Bridged silsesquioxane nanomaterials exhibit original mechanical properties thanks to the association of non-covalent and covalent interactions. Thanks to in situ high pressure spectroscopic studies, achieved in diamond anvil cells, the mechanical behavior of these materials was followed as a function of pressure. Vibrational studies coupled to ab-initio simulations show that mechanical constrains are absorbed by the modulation of H bond interactions. We thus show that the rigidity yielded by the inorganic polymerization is counterbalanced by the presence of the intermolecular H bond network. In a large range of pressures, these hybrid materials have a reversible behavior, and thus behave as molecular springs. In a second time, we demonstrate that the pressure behavior of these molecular spring is sensitive to the conformation of H bonds (cyclic versus linear) and to the constraints imposed the covalent inorganic network.