--------------------
- Micro- et nanostructures biologiques tubulaires : Mécanismes physiques de l'auto-assemblage et du fonctionnement hal link

Auteur(s): Golushko I.

(Thèses) , 2018
Texte intégral en Openaccess : fichier pdf


Ref HAL: tel-02176889_v1
Exporter : BibTex | endNote
Résumé:

Les méthodes classiques de physique de l'état solide telles que la diffraction des rayons X et la microscopie électronique ont permis la compréhension de la structure des membranes cellulaires. Aujourd'hui, leur composition et structure étant bien connues, les recherches se concentrent sur les processus actifs des membranes. Des processus tels que l'endocytose impliquent des modifications substantielles de la forme des membranes lipidiques, réalisées par des protéines induisant la courbure membranaire. L'une des méthodes expérimentales parmi les plus populaires est dite « TLM-pulling », où la membrane lipidique tubulaire (TLM) est formée à partir de la vésicule en tirant par une force externe. Des structures similaires relient les vésicules endocytiques aux compartiments du donneur et servent de canaux pour le transfert de matière dans la cellule et entre les cellules adjacentes, établissant ainsi une voie de communication intercellulaire. De tels systèmes formés in vitro en raison de leur simplicité et grande homogénéité peuvent être décrits avec précision par la physique théorique.Dans la première partie de la thèse, nous développons un modèle théorique de TLM, basé sur la mécanique classique et la thermodynamique, et l'appliquons aux expériences de « TLM-pulling » avec adsorption de protéines induisant la courbure. Le modèle tient compte de l'asymétrie de la bicouche lipidique, de la tension superficielle, de la force longitudinale appliquée au TLM et de la différence de pression dans le système. Nous modélisons l'action que les protéines exercent sur la TLM via des ensembles de forces normales à la surface de la membrane à l'équilibre mécanique. Cette nouvelle approche multipolaire permet de modéliser les interactions anisotropes, entre les protéines adsorbées à la membrane, qui sont induites par sa déformation. Notre théorie décrit les premiers stades de la formation des échafaudages protéiques, c-à-d la disposition caractéristique des protéines et leur grande affinité avec les extrémités de la TLM. Le comportement collectif des protéines induisant la courbure est extrêmement important pour effectuer des déformations à grande échelle des membranes au cours de processus tels que l'endo et l'exocytose, l'entrée du virus dans la cellule hôte ainsi que la formation et la sortie des virions. L'étude de ce dernier processus pourrait conduire au développement de nouvelles méthodes de traitement en virologie.La deuxième partie de la thèse est consacrée à l'étude de l'aorte dorsale (DA) de l'embryon de poisson Danio-Rerio. On étudie l'évolution de la forme du DA pendant la transition endothélio-hématopoïétique (EHT). Le processus EHT conduit à l'extrusion des cellules souches/hématopoïétiques qui coloniseront en suite la moelle osseuse permettant l'hématopoïèse tout au long de la vie. Ce processus semble être universel et devrait s'appliquer aussi bien aux mammifères qu'aux oiseaux, ce qui fait de son étude un problème fondamental de l'embryologie.Le DA a une géométrie cylindrique et semblable aux TLM, mais en même temps, il est beaucoup plus gros que les tubes lipidiques, a un module de cisaillement non nul et est incorporé dans la matrice des tissus environnants : un système beaucoup plus complexe du point de vue mécanique. Nous relions les changements globaux de forme de l'aorte pendant l'EHT aux principes génériques de la mécanique et montrons que les instabilités mécaniques conduisant à l'évolution de la forme de l'aorte sont invoquées par des stress résultant des inhomogénéités de croissance et de l'interaction avec les tissus environnants. Sur la base de l'analyse théorique et des données en microscopie confocale 4D, nous proposons un schéma détaillé du processus et postulons que les instabilités mécaniques préparent l'ensemble du processus EHT avant son contrôle génétique spécifique, suggérant un mécanisme universel et auto-organisé du processus de réorganisation collective des tissus dans les organismes en croissance.