--------------------
- Chemical-Physical Characterization of a Binary Mixture of a Twist Bend Nematic Liquid Crystal with a Smectogen doi link

Auteur(s): Aouini A., Nobili M., Chauveau E., Dieudonne-George P., Dameme Gauthier, Stoenescu Daniel, Dozov I., Blanc C.

(Article) Publié: Crystals, vol. 10 p.1110 (2020)
Texte intégral en Openaccess : openaccess


Ref HAL: hal-03113887_v1
DOI: 10.3390/cryst10121110
WoS: WOS:000601985600001
Exporter : BibTex | endNote
Résumé:

Nematic twist-bend phases (N-TB) are new types of nematic liquid crystalline phases with attractive properties for future electro-optic applications. However, most of these states are monotropic or are stable only in a narrow high temperature range. They are often destabilized under moderate cooling, and only a few single compounds have shown to give room temperature N-TB phases. Mixtures of twist-bend nematic liquid crystals with simple nematogens have shown to strongly lower the nematic to N-TB phase transition temperature. Here, we examined the behaviour of new types of mixtures with the dimeric liquid crystal [4 ',4 '-(heptane-1,7-diyl)bis(([1 ',1 ''-biphenyl]4 ''-carbo-nitrile))] (CB7CB). This now well-known twist-bend nematic liquid crystal presents a nematic twist-bend phase below T approximate to 104 degrees C. Mixtures with other monomeric alkyl or alkoxy -biphenylcarbonitriles liquid crystals that display a smectic A (SmA) phase also strongly reduce this temperature. The most interesting smectogen is 4 '-Octyl-4-biphenylcarbonitrile (8CB), for which a long-term metastable N-TB phase is found at room and lower temperatures. This paper presents the complete phase diagram of the corresponding binary system and a detailed investigation of its thermal, optical, dielectric, and elastic properties.