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Preface

There is nothing radically new about the techniques we use in modern molecular

modelling. Classical mechanics hasn’t changed since the time of Newton, Hamilton

and Lagrange, the great ideas of statistical mechanics and thermodynamics were

discovered by Ludwig Boltzmann and J. Willard Gibbs amongst others and the

basic concepts of quantum mechanics appeared in the 1920s, by which time J. C.

Maxwell’s famous electromagnetic equations had long since been published.

The chemically inspired idea that molecules can profitably be treated as a collec-

tion of balls joined together with springs can be traced back to the work of D. H.

Andrews in 1930. The first serious molecular Monte Carlo simulation appeared in

1953, closely followed by B. J. Alder and T. E. Wainwright’s classic molecular

dynamics study of hard disks in 1957.

The Hartrees’ 1927 work on atomic structure is the concrete reality of our

everyday concept of atomic orbitals, whilst C. C. J. Roothaan’s 1951 formulation

of the HF–LCAO model arguably gave us the basis for much of modern molecular

quantum theory.

If we move on a little, most of my colleagues would agree that the two recent

major advances in molecular quantum theory have been density functional theory,

and the elegant treatment of solvents using ONIOM. Ancient civilizations believed in

the cyclical nature of time and they might have had a point for, as usual, nothing is

new. Workers in solid-state physics and biology actually proposed these models many

years ago. It took the chemists a while to catch up.

Scientists and engineers first got their hands on computers in the late 1960s. We

have passed the point on the computer history curve where every 10 years gave us an

order of magnitude increase in computer power, but it is no coincidence that the

growth in our understanding and application of molecular modelling has run in

parallel with growth in computer power. Perhaps the two greatest driving forces in

recent years have been the PC and the graphical user interface. I am humbled by the

fact that my lowly 1.2GHz AMD Athlon office PC is far more powerful than the

world-beating mainframes that I used as a graduate student all those years ago, and

that I can build a molecule on screen and run a B3LYP/6-311þþG(3d, 2p) calcula-

tion before my eyes (of which more in Chapter 20).

We have also reached a stage where tremendously powerful molecular modelling

computer packages are commercially available, and the subject is routinely taught as

part of undergraduate science degrees. I have made use of several such packages to



produce the screenshots; obviously they look better in colour than the greyscale of

this text.

There are a number of classic (and hard) texts in the field; if I’m stuck with a basic

molecular quantum mechanics problem, I usually reach for Eyring, Walter and

Kimball’s Quantum Chemistry, but the going is rarely easy. I make frequent mention

of this volume throughout the book.

Equally, there are a number of beautifully produced elementary texts and software

reference manuals that can apparently transform you into an expert overnight. It’s a

two-edged sword, and we are victims of our own success. One often meets self-

appointed experts in the field who have picked up much of the jargon with little of

the deep understanding. It’s no use (in my humble opinion) trying to hold a con-

versation about gradients, hessians and density functional theory with a colleague

who has just run a molecule through one package or another but hasn’t the slightest

clue what the phrases or the output mean.

It therefore seemed to me (and to the Reviewers who read my New Book Proposal)

that the time was right for a middle course. I assume that you are a ‘Beginner’ in the

sense of Chambers Dictionary–‘someone who begins; a person who is in the early

stages of learning or doing anything . . .’ – and I want to tell you how we go about

modern molecular modelling, why we do it, and most important of all, explain much

of the basic theory behind the mouse clicks. This involves mathematics and physics,

and the book neither pulls punches nor aims at instant enlightenment. Many of the

concepts and ideas are difficult ones, and you will have to think long and hard about

them; if it’s any consolation, so did the pioneers in our subject. I have given many of

the derivations in full, and tried to avoid the dreaded phrase ‘it can be shown that’.

There are various strands to our studies, all of which eventually intertwine. We start

off with molecular mechanics, a classical treatment widely used to predict molecular

geometries. In Chapter 8 I give a quick guide to statistical thermodynamics (if such a

thing is possible), because we need to make use of the concepts when trying to model

arrays of particles at non-zero temperatures. Armed with this knowledge, we are

ready for an assault on Monte Carlo and Molecular Dynamics.

Just as we have to bite the bullet of statistical mechanics, so we have to bite the

equally difficult one of quantum mechanics, which occupies Chapters 11 and 12. We

then turn to the quantum treatment of atoms, where many of the sums can be done on

a postcard if armed with knowledge of angular momentum.

The Hartree–Fock and HF–LCAO models dominate much of the next few chap-

ters, as they should. The Hartree–Fock model is great for predicting many molecular

properties, but it can’t usually cope with bond-breaking and bond-making. Chapter 19

treats electron correlation and Chapter 20 deals with the very topical density func-

tional theory (DFT). You won’t be taken seriously if you have not done a DFT

calculation on your molecule.

Quantum mechanics, statistical mechanics and electromagnetism all have a certain

well-deserved reputation amongst science students; they are hard subjects. Unfortu-

nately all three feature in this new text. In electromagnetism it is mostly a matter

of getting to grips with the mathematical notation (although I have spared you

xiv PREFACEPREFACE



Maxwell’s equations), whilst in the other two subjects it is more a question of mast-

ering hard concepts. In the case of quantum mechanics, the concepts are often in direct

contradiction to everyday experience and common sense. I expect from you a certain

level of mathematical competence; I have made extensive use of vectors and matrices

not because I am perverse, but because such mathematical notation brings out the

inherent simplicity and beauty of many of the equations. I have tried to help by giving

a mathematical Appendix, which should also make the text self-contained.

I have tried to put the text into historical perspective, and in particular I have

quoted directly from a number of what I call keynote papers. It is interesting to read

at first hand how the pioneers put their ideas across, and in any case they do it far

better than me. For example, I am not the only author to quote Paul Dirac’s famous

statement

The underlying Physical Laws necessary for the mathematical theory of a large

part of physics and the whole of chemistry are thus completely known, and the

difficulty is only that exact application of these laws leads to equations much

too complicated to be soluble.

I hope you have a profitable time in your studies, and at the very least begin to

appreciate what all those options mean next time you run a modelling package!

Alan Hinchliffe

alan.hinchliffe@umist.ac.uk

Manchester 2003
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1 Introduction

1.1 Chemical Drawing

A vast number of organic molecules are known. In order to distinguish one from

another, chemists give them names. There are two kinds of names: trivial and system-

atic. Trivial names are often brand names (such as aspirin, and the amino acid pheny-

lanine shown in Figure 1.1). Trivial names don’t give any real clue as to the structure of

a molecule, unless you are the recipient of divine inspiration. The IUPAC systematic

name for phenylanine is 2-amino-3-phenyl-propionic acid. Any professional scien-

tist with a training in chemistry would be able to translate the systematic name into

Figure 1.1 or write down the systematic name, given Figure 1.1. When chemists

meet to talk about their work, they draw structures. If I wanted to discuss the structure

and reactivity of phenylaninewith you over a cup of coffee, I would draw a sketch, such

as those shown in Figure 1.1, on a piece of paper. There are various conventions that we

can follow when drawing chemical structures, but the conventions are well understood

amongst professionals. First of all, I haven’t shown the hydrogen atoms attached to the

benzene ring (or indeed the carbon atoms within), and I have taken for granted that you

understand that the normal valence of carbon is four. Everyone understands that hydro-

gens are present, and so we needn’t clutter up an already complicated drawing.

The right-hand sketch is completely equivalent to the left-hand one; it’s just that I

have been less explicit with the CH2 and the CH groups. Again, everyone knows what

the symbols mean.

I have drawn the benzene ring as alternate single and double bonds, yet we under-

stand that the C��C bonds in benzene are all the same. This may not be the case in the

molecule shown; some of the bonds may well have more double bond character than

others and so have different lengths, but once again it is a well-understood conven-

tion. Sometimes a benzene ring is given its own symbol Ph or f. Then again, I have

drawn the NH2 and the OH groups as ‘composites’ rather than showing the individual

O��H and N��H bonds, and so on. I have followed to some extent the convention that

all atoms are carbon atoms unless otherwise stated.

Much of this is personal preference, but the important point is that no one with a

professional qualification in chemistry would mistake my drawing for another mole-

cule. Equally, given the systematic name, no one could possibly write down an incor-

rect molecule.



You might like to know that phenylanine is not just another dull amino acid. A

search through the Internet reveals that it is a molecule of great commercial and

(alleged) pharmacological importance. One particular World Wide Web (www) site

gives the following information.

Phenylanine

� Relates to the action of the central nervous system

� Can elevate mood, decrease pain, aid in memory and learning, and suppress appetite

� Can be used to treat schizophrenia, Parkinson’s disease, obesity, migraines,

menstrual cramps, depression

and you can order a pack of tablets in exchange for your credit card number.

The aim of Chapter 1 is to tell you that chemistry is a well-structured science, with a

vast literature. There are a number of important databases that contain information

about syntheses, crystal structures, physical properties and so on. Many databases use

a molecular structure drawing as the key to their information, rather than the sys-

tematic name. Structure drawing is therefore a key chemical skill.

1.2 Three-Dimensional Effects

Chemical drawings are inherently two-dimensional objects; they give information

about what is bonded to what. Occasionally, the lengths of the lines joining the atoms

are scaled to reflect accurate bond lengths.

Molecules are three-dimensional entities, and that’s where the fun and excitement

of chemistry begins. In order to indicate three-dimensional effects on a piece of

paper, I might draw the molecule CBrClFH (which is roughly tetrahedral) as in

Figure 1.2. The top left-hand drawing is a two-dimensional one, with no great attempt

to show the arrangement of atoms in space. The next three versions of the same

molecule show the use of ‘up’, ‘down’ and ‘either’ arrows to show the relative

Figure 1.1 Two-dimensional drawings of phenylanine
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dispositions of the bonds in space more explicitly. The bottom two drawings are two-

dimensional attempts at the three-dimensional structure of the molecule and its mirror

image. Note that the molecule cannot be superimposed on its mirror image. The

central carbon atom is a chiral centre, and the two structures are enantiomers.

This chirality may be important in certain contexts, and it is often necessary to be

aware of the correct spatial arrangement of atoms around each chiral centre in a

molecule. Such information has to be obtained experimentally. A given molecule

might have a number of chiral centres, not just one. Except in situations where there

is opposed chirality on adjacent carbon atoms, chiral molecules exhibit the property

of optical activity, considered below.

1.3 Optical Activity

Perhaps at this stage I should remind you about the two ways that chemists label

optically active molecules.

The first method is ‘operational’, and relates to how a beam of polarized light is

rotated as it passes through a solution of the molecule. If the plane of polarization is

rotated to the right (i.e. clockwise when viewed against the light), then the molecule

is said to be dextrorotatory, and given a symbol D (or þ). If the plane of polarization

is rotated to the left, then the molecule is said to be laevorotatory and is given the

symbol L (or �).

Note that this method gives no information about the actual spatial arrangement of

atoms around a chiral centre, nor about the number of chiral centres. The only way to

be certain of the configuration of a compound is by deducing the molecular structure

from, for example, X-ray and neutron diffraction studies, which brings me to the

second way to label optically active compounds.

Once the correct structure is known, the chiral centre is labelled according to a

standard IUPAC method, often referred to as the Cahn–Ingold–Prelog system

(named after its originators). Atoms around a chiral centre are given a priority in

order of decreasing atomic number. When two or more atoms connected to the

asymmetric carbon are the same, the highest atomic number for the group second

Figure 1.2 Two-dimensional drawings
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outer atoms determines the order, and so on. The molecule is then oriented so that the

atom of lowest priority is towards the rear. The centre is then R (from the latin rectus,

right) or S (from the latin sinister, left) according to the rotation from highest to

lowest priority group; the rotation is clockwise for R and anticlockwise for S.

There is no connection between the D and L, and the R and S nomenclatures. A

molecule labelled D could be either R or S, and a molecule labelled L could also be R

or S.

I’m going to use phenylanine to exemplify many of the molecular modelling

procedures we will meet throughout this text. The molecule has a single chiral centre,

labelled * in Figure 1.3, and it is found that solutions of the naturally occurring form

rotate the plane of polarized light to the left (and so it is the L-form). There are two

possibilities for the absolute molecular structure (see Figure 1.3) and it turns out that

the L form has the stereochemistry shown on the left-hand side of Figure 1.3. It is

therefore S in the Cahn–Ingold–Prelog system.

1.4 Computer Packages

Over the years, several chemical drawing computer packages have appeared in the

marketplace. They are all very professional and all perform much the same function.

Which one you choose is a matter of personal preference; I am going to use MDL

ISIS=Draw for my chemical drawing illustrations. At the time of writing, it is pos-

sible to obtain a free download from the Internet. Set your web browser to locate

ISIS=Draw ðhttp:==www.mdli.com=Þ and follow the instructions; be sure to

download the Help file, and any other add-ins that are on offer.

To make sure you have correctly followed instructions, use your copy to reproduce

the screen shown in Figure 1.4. As the name suggests, ‘AutoNom Name’ is a facility

to translate the structure into the IUPAC name.

1.5 Modelling

The title of this and many other texts includes the word ‘modelling’, which begs the

question as to the meaning of the word ‘model’. My 1977 edition of Chambers

Figure 1.3 R and S forms of phenylanine
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Dictionary gives the following definition:

model, mod’l, n. plan, design (obs): a preliminary solid representation,

generally small, or in plastic material, to be followed in construction: something

to be copied: a pattern: an imitation of something on a smaller scale: a person or

thing closely resembling another: . . .

This definition captures the status of modelling in the 1970s, and Figure 1.5 shows a

photograph of a plastic model of L-phenylanine. Such plastic models were fine in

their day, but they took a considerable time to build, they tended to be unstable and,

Figure 1.4 ISIS=Draw screen grab for phenylanine

Figure 1.5 Plastic model of L-phenylanine
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more importantly, you had to know the molecular structure before you could actually

build one. Not only that, they gave no sense of temperature in that they didn’t vibrate

or show the possibility of internal rotation about single bonds, and they referred only

to isolated molecules at infinite separation in the gas phase.

As we will shortly see, a given molecule may well have very many plausible stable

conformations. Plastic models gave clues as to which conformations were unlikely on

the grounds of steric repulsions, but by and large they didn’t help us identify the

‘true’ molecular geometry.

We have come a long way since then. Computer simulation has long taken over

from mechanical model building, and by the end of this book you should at the very

least know how to construct both quantum mechanical and classical computer models

of a molecular system, how to predict the molecular geometry, how to simulate the

temperature and how to allow for solvent effects.

1.6 Molecular Structure Databases

Molecular geometries can be determined for gas-phasemolecules bymicrowave spectro-

scopy and by electron diffraction. In the solid state, the field of structure determination is

dominated by X-ray and neutron diffraction and very many crystal structures are known.

Nuclear magnetic resonance (NMR) also has a role to play, especially for proteins. All of

these topics are well discussed in every university-level general chemistry text.

Over the years, a vast number of molecular structures have been determined and

there are several well-known structural databases. One is the Cambridge Struc-

tural Database (CSD) (http:==ccdc.cam.ac.uk=), which is supported by the

Cambridge Crystallographic Data Centre (CCDC). The CCDC was established in

1965 to undertake the compilation of a computerized database containing compre-

hensive data for organic and metal–organic compounds studied by X-ray and neutron

diffraction. It was originally funded as part of the UK contribution to international

data compilation. According to its mission statement, the CCDC serves the scientific

community through the acquisition, evaluation, dissemination and use of the world’s

output of small molecule crystal structures. At the time of writing, there are some

272 000 structures in the database.

For each entry in the CSD, three types of information are stored. First, the bibliog-

raphic information: who reported the crystal structure, where they reported it and so

on. Next comes the connectivity data; this is a list showing which atom is bonded to

which in the molecule. Finally, the molecular geometry and the crystal structure. The

molecular geometry consists of cartesian coordinates. The database can be easily

reached through the Internet, but individual records can only be accessed on a fee-

paying basis.

The Brookhaven Protein Data Bank (PDB) is the single worldwide repository for

the processing and distribution of three-dimensional biological macromolecular
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structural data. It is operated by the Research Collaboratory for Structural Bioinfor-

matics. At the time of writing, there were 19 749 structures in the databank, relating

to proteins, nucleic acids, protein–nucleic acid complexes and viruses. The data-

bank is available free of charge to anyone who can navigate to their site

http:==www.rcsb.org=. Information can be retrieved from the main website. A

four-character alphanumeric identifier, such as 1PCN, represents each structure. The

PDB database can be searched using a number of techniques, all of which are

described in detail at the homepage.

1.7 File Formats

The Brookhaven PDB (.pdb) file format is widely used to report and distribute

molecular structure data. A typical .pdb file for phenylanine would start with bibliog-

raphic data, then move on to the cartesian coordinates (expressed in ångstroms and

relative to an arbitrary reference frame) and connectivity data as shown below. The

only parts that need concern us are the atom numbers and symbols, the geometry and

the connectivity.

HETATM 1 N PHE 1 � 0.177 1.144 0.013
HETATM 2 H PHE 1 0.820 1.162 � 0.078
HETATM 3 CA PHE 1 � 0.618 1.924 1.149
HETATM 4 HA PHE 1 � 1.742 1.814 1.211
HETATM 5 C PHE 1 � 0.290 3.407 0.988
HETATM 6 O PHE 1 0.802 3.927 0.741
HETATM 7 CB PHE 1 0.019 1.429 2.459
HETATM 8 1HB PHE 1 0.025 0.302 2.442
HETATM 9 2HB PHE 1 1.092 1.769 2.487
HETATM 10 CG PHE 1 � 0.656 1.857 3.714
HETATM 11 CD1 PHE 1 � 0.068 1.448 4.923
HETATM 12 HD1 PHE 1 0.860 0.857 4.900
HETATM 13 CD2 PHE 1 � 1.829 2.615 3.757
HETATM 14 HD2 PHE 1 � 2.301 2.975 2.829
HETATM 15 CE1 PHE 1 � 0.647 1.783 6.142
HETATM 16 HE1 PHE 1 � 0.176 1.457 7.081
HETATM 17 CE2 PHE 1 � 2.411 2.946 4.982
HETATM 18 HE2 PHE 1 � 3.338 3.538 4.999
HETATM 19 CZ PHE 1 � 1.826 2.531 6.175
HETATM 20 HZ PHE 1 � 2.287 2.792 7.139
HETATM 21 O PHE 1 � 1.363 4.237 1.089
HETATM 22 H 22 � 0.601 1.472 � 0.831
HETATM 23 H 23 � 1.077 5.160 0.993
CONECT 1 2 3 22
CONECT 2 1
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CONECT 3 1 4 5 7
CONECT 4 3
CONECT 5 3 6 21
CONECT 6 5
CONECT 7 3 10 8 9
CONECT 8 7
CONECT 9 7
CONECT 10 7 11 13
CONECT 11 10 15 12
CONECT 12 11
CONECT 13 10 17 14
CONECT 14 13
CONECT 15 11 19 16
CONECT 16 15
CONECT 17 13 19 18
CONECT 18 17
CONECT 19 15 17 20
CONECT 20 19
CONECT 21 5 23
CONECT 22 1
CONECT 23 21
END

Records 1–23 identify the atoms so for example, atom 1 is a nitrogen with cartesian

coordinates x¼ � 0.177 Å, y¼ 1.144 Å and z¼ 0.013 Å. The PHE identifies the

aminoacid residue, of which there is just one in this simple case. The record

CONECT 1 2 3 22

tells us that atom 1 (N) is joined to atoms 2, 3 and 22.

1.8 Three-Dimensional Displays

We are going to need to display three-dimensional structures as we progress through

the text. There are many suitable packages and I am going to use WebLabViewer

throughout this chapter. The ‘Lite’ version of this package can be downloaded free

from the publisher’s Internet site http:==www.accelrys.com=. It displays mole-

cular structures; there is also a ‘Pro’ version, which will additionally perform limited

molecular modelling. (The packages have recently been renamed Discovery Studio

ViewerPro and Discovery Studio ViewerLite.)

There are several different ways to represent a molecular model; these are often

referred to as the rendering. First, we have the line representation of phenylanine,
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Figure 1.6 Line representation

Figure 1.7 Stick representation

Figure 1.8 Ball-and-stick representation
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Figure 1.6. Line models are drawn using thin lines. Each representation has a number

of options. In this case, I set the option to perceive aromaticity so the benzene ring is

shown as an aromatic entity rather than single and double bonds. The groups can be

coloured, although this doesn’t show in the figure. The molecule can be rotated and

otherwise manipulated. Next is the stick representation, Figure 1.7. Once again, I

selected the option to perceive aromaticity. Another representation is the ball-

and-stick representation, Figure 1.8.

There are other representations, based on space filling. For example, the CPK

(Corey–Pauling–Koltun) rendering shown in Figure 1.9 refers to a popular set of

atomic radii used for depicting space-filling pictures or building plastic models.

1.9 Proteins

Figure 1.10 shows procolipase, as extracted from the Brookhaven PDB. The PDB

serial number is 1PCN, and the molecule contains some 700 atoms.

Hydrogen atoms were not determined in the experimental studies, but most

packages have an option to add hydrogen atoms. Protein structures can be complex

and difficult to interpret. For that reason, workers in the field have developed alter-

native methods of rendering these molecules. The idea is to identify the structural

backbone of the molecule. To do this, we identify the backbone of each amino acid,

and these are linked together as Figure 1.11 shows.

This particular rendering is the tube representation. Again, the use of colour makes

for easier visualization, although this is lost in the monochrome illustrations given

here.

Figure 1.9 CPK space-filling rendering
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Figure 1.10 Procolipase

Figure 1.11 Procolipase tube representation
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2 Electric Charges

and Their Properties

As far as we can tell, there are four fundamental types of interactions between

physical objects. There is the weak nuclear interaction that governs the decay of

beta particles, and the strong nuclear interaction that is responsible for binding

together the particles in a nucleus. The familiar gravitational interaction holds the

earth very firmly in its orbit round the sun, and finally we know that there is an

electromagnetic interaction that is responsible for binding atomic electrons to nuclei

and for holding atoms together when they combine to form molecules.

Of the four, the gravitational interaction is the only one we would normally come

across in our everyday world. This is because gravitational interactions between

bodies always add. The gravitational interaction between two atoms is negligible,

but when large numbers of fundamental particles such as atoms are aggregated

together, the gravitational interaction becomes significant.

You may think it bizarre that there are four types of interaction, yet on the other

hand you might wonder why there should be just four. Why not one, three or five?

Should there not be a unifying theory to explain why there are four, and whether they

are related? As I write, there is no such unifying theory despite tremendous research

activity.

2.1 Point Charges

In this chapter I am going to concentrate on electric charges and their properties. It

turns out that there are two types of electric charge in nature, which we might choose

to call type X and type Y (or Red and Blue for that matter, but X and Y will do for

now). Experimental evidence shows the existence of an electrostatic force between

electric charges; the force between two X-type charges is always repulsive, as is the

force between two Y-type charges. The force between an X and a Y-type is always

attractive. For this reason, the early experimenters decided to classify charges as

positive or negative, because a positive quantity times a positive quantity gives a

positive quantity, a negative quantity times a negative quantity gives a positive quan-

tity, whilst a negative quantity times a positive quantity gives a negative quantity.



I’m sure you know that the best known fundamental particles responsible for these

charges are electrons and protons, and you are probably expecting me to tell you that

the electrons are the negatively charged particles whilst protons are positively

charged. It’s actually just a convention that we take, we could just as well have called

electrons positive.

Whilst on the subject, it is fascinating to note that the charge on the electron is

exactly equal and opposite of that on a proton. Atoms and molecules generally

contain exactly the same number of electrons and protons, and so the net charge

on a molecule is almost always zero. Ions certainly exist in solutions of electrolytes,

but the number of Naþ ions in a solution of sodium chloride is exactly equal to

the number of Cl� ions and once again we are rarely aware of any imbalance of

charge.

A thunderstorm results when nature separates out positive and negative charges on

a macroscopic scale. It is thought that friction between moving masses of air and

water vapour detaches electrons from some molecules and attaches them to others.

This results in parts of clouds being left with an excess of charge, often with specta-

cular results. It was investigations into such atmospheric phenomena that gave the

first clues about the nature of the electrostatic force.

We normally start any study of charges at rest (electrostatics) by considering the

force between two point charges, as shown in Figure 2.1.

The term ‘point charge’ is a mathematical abstraction; obviously electrons and

protons have a finite size. Just bear with me for a few pages, and accept that a point

charge is one whose dimensions are small compared with the distance between them.

An electron is large if you happen to be a nearby electron, but can normally be treated

as a point charge if you happen to be a human being a metre away.

The concept of a point charge may strike you as an odd one, but once we have

established the magnitude of the force between two such charges, we can deduce the

force between any arbitrary charge distributions on the grounds that they are com-

posed of a large number of point charges.

Figure 2.1 Point charges
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In Figure 2.1 we have point charge QA at position vector RA and QB at point RB.

From the laws of vector analysis, the vector

RAB ¼ RB � RA

joins QA to QB, and points from QA to QB as shown. I have indicated the direction of

the vectors with arrows.

2.2 Coulomb’s Law

In 1785, Charles Augustin de Coulomb became the first person to give a mathema-

tical form to the force between point charges. He measured the force directly between

two very small charged bodies, and was able to show that the force exerted by QA on

QB was

� proportional to the inverse square of the distance between QA and QB when both

charges were fixed;

� proportional to QA when QB and RAB were fixed; and

� proportional to QB when QA and RAB were fixed.

He also noticed that the force acted along the line joining the centres of the two

charges, and that the force was either attractive or repulsive depending on whether the

charges were different or of the same type. The sign of the product of the charges

therefore determines the direction of the force.

A mathematical result of these observations can be written in scalar form as

FA on B / QAQB

R2
AB

ð2:1Þ

Forces are vector quantities, and Equation (2.1) is better written in vector form as

FA on B / QAQB

R3
AB

RAB

When Coulomb first established his law, he had no way to quantify charge and so

could not identify the proportionality constant. He took it to be unity, and thereby

defined charge in terms of the force between charges. Modern practice is to regard

charge and force as independent quantities and because of this a dimensioned pro-

portionality constant is necessary. For a reason that need not concern us, this is taken

as 1=ð4�E0Þ, where the permittivity of free space E0 is an experimentally determined
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quantity with the approximate value E0¼ 8.854� 10�12 C2N�1m�2. Coulomb’s law

is therefore

FA on B ¼ 1

4�E0

QAQB

R3
AB

RAB ð2:2Þ

and it applies to measurements done in free space. If we repeat Coulomb’s experi-

ments with the charges immersed in different media, then we find that the law still

holds but with a different proportionality constant. We modify the proportionality

constant using a quantity Er called the relative permittivity. In older texts, Er is called
the dielectric constant. Our final statement of Coulomb’s law is therefore

FA on B ¼ 1

4�ErE0

QAQB

R3
AB

RAB ð2:3Þ

According to Newton’s Third Law, we know that if QA exerts a force FA on B on QB,

then QB should exert an equal and opposite force on QA. Coulomb’s law satisfies this

requirement, since

FB on A ¼ 1

4�ErE0

QAQB

R3
BA

RBA

(the vector RBA points in the opposite direction to RAB and so one force is exactly the

negative of the other, as it should be).

2.3 Pairwise Additivity

Suppose we now add a third point charge QC with position vector RC, as shown in

Figure 2.2. Since QA and QB are point charges, the addition of QC cannot alter the

force between QA and QB.

Figure 2.2 Third charge added
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The total force on QB now comprises two terms, namely the force due to point

charge QA and the force due to point charge QC. This total force is given by

FB ¼ QB

4�E0

�
QA

RAB

R3
AB

þ QC

RCB

R3
CB

�
ð2:4Þ

This may seem at first sight to be a trivial statement; surely all forces act this way.

Not necessarily, for I have assumed that the addition of QC did not have any effect on

QA and QB (and so did not influence the force between them).

The generic term pairwise additive describes things such as forces that add as

above. Forces between point electric charges are certainly pairwise additive, and so

you might imagine that forces between atoms and molecules must therefore be

pairwise additive, because atoms and molecules consist of (essentially) point charges.

I’m afraid that nature is not so kind, and we will shortly meet situations where forces

between the composites of electrons and protons that go to make up atoms and

molecules are far from being pairwise additive.

2.4 The Electric Field

Suppose now we have a point charge Q at the coordinate origin, and we place another

point charge q at point P that has position vector r (Figure 2.3). The force exerted by

Q on q is

F ¼ 1

4�E0

Qq

r3
r

which I can rewrite trivially as

F ¼
�

1

4�E0

Q

r3
r

�
q

Figure 2.3 Field concept
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The point is that the term in brackets is to do with Q and the vector r, and contains no

mention of q. If we want to find the force on any arbitrary q at r, then we calculate the

quantity in brackets once and then multiply by q. One way of thinking about this is to

imagine that the charge Q creates a certain field at point r, which determines the force

on any other q when placed at position r.

This property is called the electric field E at that point. It is a vector quantity, like

force, and the relationship is that

Fðon q at rÞ ¼ qEðat rÞ
Comparison with Coulomb’s law, Equation (2.3), shows that the electric field at point

r due to a point charge Q at the coordinate origin is

E ¼ 1

4�E0

Qr

r3
ð2:5Þ

E is sometimes written E(r) to emphasize that the electric field depends on the

position vector r.

Electric fields are vector fields and they are often visualized as field lines. These are

drawn such that their spacing is inversely proportional to the strength of the field, and

their tangent is in the direction of the field. They start at positive charges and end at

negative charges, and two simple examples are shown in Figure 2.4. Here the choice

of eight lines is quite arbitrary. Electric fields that don’t vary with time are called

electrostatic fields.

2.5 Work

Look again at Figure 2.3, and suppose we move point charge q whilst keeping Q fixed

in position. When a force acts to make something move, energy is transferred. There

is a useful word in physical science that is to do with the energy transferred, and it is

work. Work measures the energy transferred in any change, and can be calculated

from the change in energy of a body when it moves through a distance under the

influence of a force.

Figure 2.4 Field lines for point charges
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We have to be careful to take account of the energy balance. If a body gains energy,

then this energy has to come from somewhere, and that somewhere must lose energy.

What we do is to divide the universe into two parts: the bits we are interested in called

the system and the rest of the universe that we call the surroundings.

Some texts focus on the work done by the system, and some concern themselves

with the work done on the system. According to the Law of Conservation of Energy,

one is exactly the equal and opposite of the other, but we have to be clear which is

being discussed. I am going to write won for the work done on our system. If the

system gains energy, then won will be positive. If the system loses energy, then won

will negative.

We also have to be careful about the phrase ‘through a distance’. The phrase

means ‘through a distance that is the projection of the force vector on the displacement

vector’, and you should instantly recognize a vector scalar product (see the Appendix).

A useful formula that relates to the energy gained by a system (i.e. won) when a

constant force F moves its point of application through l is

won ¼ �F l ð2:6Þ

In the case where the force is not constant, we have to divide up the motion into

differential elements dl, as illustrated in Figure 2.5. The energy transferred is then

given by the sum of all the corresponding differential elements dwon. The corre-

sponding formulae are

dwon ¼ �F dl

won ¼ �
Z

F dl ð2:7Þ

We now move q by an infinitesimal vector displacement dl as shown, so that it ends

up at point rþ dl. The work done on the system in that differential change is

dwon ¼ �F dl

�

�
�

�

Figure 2.5 Electrostatic work
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If the angle between the vectors rI and dl is �, then we have

dwon ¼ �Fdl cos �

and examination of Figure 2.6 shows that dl cos � is the radial distance moved by

charge q, which we will write as dr. Hence

dwon ¼ � 1

4�E0

Qq

r2
dr

The total work done moving from position I to position II is therefore found by

integrating

won ¼ � 1

4�E0

Z II

I

Qq

r2
dr

¼ 1

4�E0
Qq

�
1
rII

� 1
rI

�
ð2:8Þ

The work done depends only on the initial and final positions of the charge q; it is

independent of the way we make the change.

Another way to think about the problem is as follows. The force is radial, and we

can divide the movement from position I to position II into infinitesimal steps, some

of which are parallel to F and some of which are perpendicular to F. The perpendi-

cular steps count zero towards won, the parallel steps only depend on the change in the

(scalar) radial distance.

2.6 Charge Distributions

So far I have concentrated on point charges, and carefully skirted round the question

as to how we deal with continuous distributions of charge. Figure 2.7 shows a charge

Figure 2.6 Relationship between vectors
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distribution QA. The density of charge need not be constant through space, and we

normally write �(r) for the density at the point whose position vector is r. The charge

contained within the volume element d� at r is therefore �(r) d� and the relationship

between �(r) and QA is discussed in the Appendix. It is

QA ¼
Z

�ðrÞ d� ð2:9Þ

In order to find the force between the charge distribution and the point charge QB we

simply extend our ideas about the force between two point charges; one of the point

charges being �(r) d� and the other QB.

The total force is given by the sum of all possible contributions from the elements

of the continuous charge distribution QAwith point charge QB. The practical calcula-

tion of such a force can be a nightmare, even for simple charge distributions. One of

the reasons for the nightmare is that forces are vector quantities; we need to know

about both their magnitude and their direction.

In the next section I am going to tell you about a very useful scalar field called the

mutual potential energy U. This field has the great advantage that it is a scalar field,

and so we don’t need to worry about direction in our calculations.

2.7 The Mutual Potential Energy U

Suppose now we start with charge q at infinity, and move it up to a point with vector

position r, as shown in Figure 2.3. The work done is

won ¼ 1

4�E0

Qq

r
ð2:10Þ

Figure 2.7 Charge distribution
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and this represents the energy change on building up the charge distribution, with the

charges initially at infinite separation. It turns out that this energy change is an

important property, and we give it a special name (the mutual potential energy)

and a special symbol U (occasionally F).
Comparison of the equations for force, work and mutual potential energy given

above suggests that there might be a link between the force and the mutual potential

energy; at first sight, one expression looks like the derivative of the other. I am going

to derive a relationship between force and mutual potential energy. The relationship is

perfectly general; it applies to all forces provided that they are constant in time.

2.8 Relationship Between Force and Mutual

Potential Energy

Consider a body of mass m that moves in (say) the x-direction under the influence of a

constant force. Suppose that at some instant its speed is v. The kinetic energy is 1
2
mv2.

You are probably aware of the law of conservation of energy, and know that when I

add the potential energy U to the kinetic energy, I will get a constant energy "

" ¼ 1
2
mv2 þ U ð2:11Þ

I want to show you how to relate U to the force F. If the energy " is constant in time,

then d"=dt ¼ 0. Differentiation of Equation (2.11) with respect to time gives

d"

dt
¼ mv

dv

dt
þ dU

dt

and so, by the chain rule

d"

dt
¼ mv

dv

dt
þ dU

dx

dx

dt

If the energy " is constant, then its first differential with respect to time is zero, and v

is just dx=dt. Likewise, dv=dt is the acceleration and so

0 ¼
�
m
d2x

dt2
þ dU

dx

�
dx

dt
ð2:12Þ

Equation (2.12) is true if the speed is zero, or if the term in brackets is zero. Accord-

ing to Newton’s second law of motion, mass times acceleration is force and so

F ¼ � dU

dx
ð2:13Þ

which gives us the link between force and mutual potential energy.
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When working in three dimensions, we have to be careful to distinguish between

vectors and scalars. We treat a body of mass m whose position vector is r. The

velocity is v ¼ dr=dt and the kinetic energy is 1
2
m(dr=dt) (dr=dt). Analysis along

the lines given above shows that the force F and U are related by

F ¼ �gradU ð2:14Þ

where the gradient of U is discussed in the Appendix and is given in Cartesian

coordinates by

gradU ¼ @U

@x
ex þ @U

@y
ey þ @U

@z
ez ð2:15Þ

Here ex, ey and ez are unit vectors pointing along the Cartesian axes.

2.9 Electric Multipoles

We can define exactly an array of point charges by listing the magnitudes of the

charges, together with their position vectors. If we then wish to calculate (say) the

force between one array of charges and another, we simply apply Coulomb’s law

[Equation (2.3)] repeatedly to each pair of charges. Equation (2.3) is exact, and can

be easily extended to cover the case of continuous charge distributions.

For many purposes it proves more profitable to describe a charge distribution in

terms of certain quantities called the electric moments. We can then discuss the

interaction of one charge distribution with another in terms of the interactions be-

tween the electric moments.

Consider first a pair of equal and opposite point charges, þQ and �Q, separated

by distance R (Figure 2.8). This pair of charges usually is said to form an electric

dipole of magnitude QR. In fact, electric dipoles are vector quantities and a more

rigorous definition is

pe ¼ QR ð2:16Þ

where the vector R points from the negative charge to the positive charge.

We sometimes have to concern ourselves with a more general definition, one

relating to an arbitrary array of charges such as that shown in Figure 2.9. Here we

have four point charges: Q1 whose position vector is R1, Q2 whose position vector is

R2, Q3 whose position vector is R3, and Q4 whose position vector is R4. We define the

electric dipole moment pe of these four charges as

pe ¼
X4
i¼1

QiRi

�
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It is a vector quantity with x, y and z Cartesian components
X4
i¼1

QiXi,
X4
i¼1

QiYi

and
X4
i¼1

QiZi. This is consistent with the elementary definition given above; in the case

of two equal and opposite charges, þQ and �Q, a distance d apart, the electric dipole

moment has magnitude Qd and points from the negative charge to the positive. The

generalization to n charges is obvious; we substitute n for 4 in the above definition.

There are several general rules about electric moments of charge distributions, and we

can learn a couple of the ones that apply to dipole moments by considering the simple

arrays shown in Figure 2.10 and keeping the definitions in mind.

I have joined up the chargeswith lines in order to focus attention on the charge systems

involved; there is no implication of a ‘bond’. We don’t normally discuss the electric

dipole due to a point charge (1). Examination of the charge distributions (2)–(6) and

calculation of their electric dipole moment for different coordinate origins suggests the

general result; neutral arrays of point charges have a unique electric dipole moment that

does not depend on where we take the coordinate origin. Otherwise, we have to state the

coordinate origin when we discuss the electric dipole moment.

I can prove this from Equation (2.16), generalized to n point charges

pe ¼
Xn
i¼1

QiRi ð2:17Þ

Figure 2.8 Simple electric dipole

Figure 2.9 Generalized electric dipole
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Suppose that we move the coordinate origin so that each point charge Qi has a

position vector R0
i, where

Ri ¼ R0
i þ�

with � a constant vector. From the definition of the electric dipole moment we have

pe ¼
Xn
i¼1

QiRi

and so, with respect to the new coordinate origin

p0e ¼
Xn
i¼1

QiR
0
i

¼
Xn
i¼1

QiðRi ��Þ

¼ pe ��
Xn
i¼1

Qi

Figure 2.10 Simple arrays of point charges
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The two definitions only give the same vector if the sum of charges is zero. We often

use the phrase gauge invariant to describe quantities that don’t depend on the choice

of coordinate origin.

Arrays (5) and (6) each have a centre of symmetry. There is a general result that

any charge distribution having no overall charge but a centre of symmetry must have

a zero dipole moment, and similar results follow for other highly symmetrical arrays

of charges.

2.9.1 Continuous charge distributions

In order to extend the definition of an electric dipole to a continuous charge distribu-

tion, such as that shown in Figure 2.7, we first divide the region of space into

differential elements d� . If �(r) is the charge density then the change in volume

element d� is �(r)d� . We then treat each of these volume elements as point charges

and add (i.e. integrate). The electric dipole moment becomes

pe ¼
Z

r�ðrÞ d� ð2:18Þ

2.9.2 The electric second moment

The electric dipole moment of an array of point charges is defined by the following

three sums

Xn
i¼1

QiXi;
Xn
i¼1

QiYi and
Xn
i¼1

QiZi

and we can collect them into a column vector in an obvious way

pe ¼

Xn
i¼1

QiXi

Xn
i¼1

QiYi

Xn
i¼1

QiZi

0
BBBBBBBB@

1
CCCCCCCCA

ð2:19Þ

The six independent quantities
Xn
i¼1

QiX
2
i ,
Xn
i¼1

QiXiYi,
Xn
i¼1

QiXiZi; . . . ;
Xn
i¼1

QiZ
2
i

are said to define the electric second moment of the charge distribution.
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We usually collect them into a real symmetric 3� 3 matrix qe

qe ¼

Xn
i¼1

QiX
2
i

Xn
i¼1

QiXiYi
Xn
i¼1

QiXiZi

Xn
i¼1

QiYiXi

Xn
i¼1

QiY
2
i

Xn
i¼1

QiYiZi

Xn
i¼1

QiZiXi

Xn
i¼1

QiZiYi
Xn
i¼1

QiZ
2
i

0
BBBBBBBB@

1
CCCCCCCCA

ð2:20Þ

The matrix is symmetric because of the obvious equalities of the off-diagonal sums

such as

Xn
i¼1

QiXiYi and
Xn
i¼1

QiYiXi

There are, unfortunately, many different definitions related to the second (and higher)

moments in the literature. There is little uniformity of usage, and it is necessary to

be crystal clear about the definition and choice of origin when dealing with these

quantities.

Most authors prefer to work with a quantity called the electric quadrupole moment

rather than the second moment, but even then there are several different conventions.

A common choice is to use the symbol Qe and the definition

Qe ¼ 1

2

Xn
i¼1

Qið3X2
i � R2

i Þ 3
Xn
i¼1

QiXiYi 3
Xn
i¼1

QiXiZi

3
Xn
i¼1

QiYiXi

Xn
i¼1

Qið3Y2
i � R2

i Þ 3
Xn
i¼1

QiYiZi

3
Xn
i¼1

QiZiXi 3
Xn
i¼1

QiZiYi
Xn
i¼1

Qið3Z2
i � R2

i Þ

0
BBBBBBBB@

1
CCCCCCCCA

ð2:21Þ

Note that the diagonal elements of this matrix sum to zero and so the matrix has zero

trace (the trace being the sum of the diagonal elements, see the Appendix). Some

authors don’t use a factor of 1
2
in their definition. Quadrupole moments are gauge

invariant provided the electric dipole moment and the charge are both zero.

Figure 2.11 shows an octahedrally symmetrical array of point charges. Each point

charge has magnitude Q, apart from the central charge that has magnitude �6Q in

order to make the system neutral. The distance between each axial point charge and

the central one is a.

If I choose to direct the Cartesian axes along the symmetry axes, then the second

moment matrix is

qe ¼ Qa2
2 0 0

0 2 0

0 0 2

0
@

1
A

whilst the quadrupole moment matrix is zero.
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If I now reduce the symmetry of the charge distribution by placing charges 2Q along

the vertical axis (taken for the sake of argument as the x-axis) and �8Q at the centre (to

keep the electrical balance), the second moment matrix becomes

qe ¼ Qa2
4 0 0

0 2 0

0 0 2

0
@

1
A

whilst the quadrupole moment matrix is now

Qe ¼ Qa2
2 0 0

0 �1 0

0 0 �1

0
@

1
A

The electric quadrupole moment measures deviations from spherical symmetry. It is

zero when the charge distribution has spherical symmetry. It always has zero trace

(because of the definition), but it isn’t always diagonal. Nevertheless, it can always be

made diagonal by a rotation of the coordinate axes.

Finally, consider a linear array formed by the top (þQ), central (þ2Q) and lower

charges (�3Q). We find

qe ¼ Qa2
�2 0 0

0 0 0

0 0 0

0
@

1
A; Qe ¼ Qa2

�2 0 0

0 1 0

0 0 1

0
@

1
A

In cases where the symmetry of the problem determines that the second moment

tensor only has one non-zero component, we speak colloquially of the second mo-

ment (which in this case is �2Qa2).

Figure 2.11 Octahedral charge distribution
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2.9.3 Higher electric moments

The set of 10 independent quantities
Xn
i¼1

QiX
3
i ,
Xn
i¼1

QiX
2
i Yi through

Xn
i¼1

QiZ
3
i defines

the electric third moment of the charge distribution, and so on. We rarely encounter

such higher moments of electric charge in chemistry.

2.10 The Electrostatic Potential

Electrostatic forces are vector quantities, and we have to worry about their magnitude

and direction. I explained earlier that it is more usual to work with the mutual

potential energy U rather than the force F, if only because U is a scalar quantity.

In any case we can recover one from the other by the formula

F ¼ �gradU

Similar considerations apply when dealing with electrostatic fields. They are vector

fields with all the inherent problems of having to deal with both a magnitude and a

direction. It is usual to work with a scalar field called the electrostatic potential �.

This is related to the electrostatic field E in the same way that U is related to F

E ¼ �grad�

We will hear more about the electrostatic potential in later sections. In the meantime,

I will tell you that the electrostatic potential at field point r due to a point charge Q at

the coordinate origin is

�ðrÞ ¼ Q

4�E0

1

r
ð2:22Þ

The electric field and the electrostatic potential due to an electric dipole, quadrupole and

higher electric moments are discussed in all elementary electromagnetism texts. The

expressions can bewritten exactly in terms of the various distances and charges involved.

For many applications, including our own, it is worthwhile examining the mathematical

form of these fields for points in space that are far away from the charge distribution. We

then refer to (for example) the ‘small’ electric dipole and so on.

The electrostatic potential at field point r due to a small electric dipole pe at the

coordinate origin turns out to be

�ðrÞ ¼ 1

4�E0

pe r

r3
ð2:23Þ

which falls off as 1=r2. It falls off faster with r than the potential due to a point charge
because of the cancellation due to plus and minus charges. This is in fact a general

�
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rule, the electrostatic potential for a small electric multipole of order l falls off as

r�(lþ1) so dipole moment potentials fall off faster than those due to point charges, and

so on.

2.11 Polarization and Polarizability

In electrical circuits, charges are stored in capacitors, which at their simplest consist

of a pair of conductors carrying equal and opposite charges. Michael Faraday (1837)

made a great discovery when he observed that filling the space between the plates of a

parallel plate capacitor with substances such as mica increased their ability to store

charge. The multiplicative factor is called the relative permittivity and is given a

symbol Er, as discussed above. I also told you that the older name is the dielectric

constant.

Materials such as glass and mica differ from substances such as copper wire in that

they have few conduction electrons and so make poor conductors of electric current.

We call materials such as glass and mica dielectrics, to distinguish them from me-

tallic conductors.

Figure 2.12 shows a two-dimensional picture of a dielectric material, illustrated as

positively charged nuclei each surrounded by a localized electron cloud. We now

apply an electrostatic field, directed from left to right. There is a force on each charge,

and the positive charges are displaced to the right whilst the negative charges move a

corresponding distance to the left, as shown in Figure 2.13.

The macroscopic theory of this phenomenon is referred to as dielectric polariza-

tion, and we focus on the induced dipole moment dpe per differential volume d� .
Because it is a macroscopic theory, no attention is paid to atomic details; we assume

that there are a large number of atoms or molecules within the volume element d� (or

that the effects caused by the discrete particles has somehow been averaged out).

Figure 2.12 Dielectric slab
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We relate the induced electric dipole to the volume of a differential element by

dpe ¼ Pd� ð2:24Þ

where the dielectric polarization P is an experimentally determined quantity. P can

depend on the applied field in all manner of complicated ways, but for very simple

media and for low field strengths, it turns out that P is directly proportional to E. We

write

P ¼ ðEr � 1ÞE0 E ð2:25Þ

where Er is the relative permittivity of the dielectric. The polarization acts so as to

reduce the field inside a dielectric.

2.12 Dipole Polarizability

At the microscopic level, we concern ourselves with the various electric moments that

are induced in each atom or molecule. Consider the simple case shown in Figure 2.14,

where we apply a weak electric field E in a direction parallel to a molecule’s electric

dipole moment. This causes charge redistribution and we can write

peðinducedÞ ¼ peðpermanentÞ þ �E ð2:26Þ

I have distinguished between the permanent electric dipole, the one a molecule has in

free space with no fields present, from the induced dipole. I have also used the symbol

� for the dipole polarizability.

Figure 2.13 Dielectric with applied field
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In the general case, the field need not be weak and the induced dipole need not be

in the same direction as either the applied field or the permanent dipole moment. This

is shown in Figure 2.15. � cannot be a scalar, since the directions of the applied field

and the induced dipole need not be the same.

The dipole polarizability a is a special type of physical property called a tensor,

just like the electric second moment. We can represent a as a 3� 3 real symmetric

matrix

a ¼
�xx �xy �xz

�yx �yy �yz

�zx �zy �zz

0
@

1
A ð2:27Þ

and I will write the more general expression as

peðinducedÞ ¼ peðpermanentÞ þ a Eþ higher order terms ð2:28Þ

The higher order terms are the hyperpolarizabilities; they feature in advanced texts

of this kind. We are not going to meet them again. We interpret Equation (2.28) as a

matrix equation; the ps are column vectors.

�

Figure 2.14 Induced molecular dipole

Figure 2.15 The more general case
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2.12.1 Properties of polarizabilities

The matrix a can always be written in diagonal form by a suitable rotation of the

cartesian axes to give

a ¼
�aa 0 0

0 �bb 0

0 0 �cc

0
@

1
A

The quantities �aa, �bb and �cc are called the principal values of the polarizability

tensor. For molecules with symmetry, the principal axes of polarizability correspond

to the molecular symmetry axes. For a linear molecule the components that refer to

perpendicular axes are equal and usually different from the parallel component, and

the matrix is usually written

a ¼
�aa 0 0

0 �bb 0

0 0 �bb

0
@

1
A

2.13 Many-Body Forces

It is instructive to calculate the work done in building up an array of charges such as

that shown in Figure 2.9. We will assume that all the charges are point charges and so

cannot be polarized. We start with all the charges (n in total) at infinity, and move

them in turn from infinity to their position as shown.

Moving Q1 from infinity to position vector R1 takes no energy, because no other

charges are present. Moving Q2 from infinity to position vector R2 involves an energy

change,

U12 ¼ 1

4�E0

Q1Q2

R12

where R12 is the length of the vector joining the charges. We now move Q3 from

infinity to position vector R3. This charge moves in the field due to Q1 and Q2,

involving an energy cost

U13 þ U23 ¼ 1

4�E0

Q1Q3

R13

þ 1

4�E0

Q2Q3

R23

The total work done Utot is seen to be

Utot ¼
Xn�1

i¼1

Xn
j¼iþ1

Uij ð2:29Þ
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This expression holds because of the pairwise additivity of the forces between point

charges. The expression would not necessarily hold if the charges were themselves

charge distributions because the addition of further charges could polarize the exist-

ing ones and so alter the forces already calculated.

Whatever the case, Utot will depend on the coordinates of all the charges present

Utot ¼ UtotðR1;R2; . . . ;RnÞ ð2:30Þ

and it is always possible to write a formal expansion

UtotðR1;R2; . . . ;RnÞ ¼
X
pairs

Uð2ÞðRi;RjÞ

þ
X
triples

Uð3ÞðRi;Rj;RkÞ þ � � � þ UðnÞðR1;R2; . . . ;RnÞ ð2:31Þ

involving distinct pairs, triples, etc. of particles. The U(2) terms are referred to as the

pair contributions, the U(3)s are the three body terms and so on. Terms higher than the

second are identically zero for the interaction between point charges.
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3 The Forces Between

Molecules

When molecules are near enough to influence one another, we need to concern

ourselves with the balance between the forces of attraction and repulsion. We know

that such forces exist, for otherwise there would be nothing to bring molecules

together into the solid and liquid states, and all matter would be gaseous. A study

of the forces between atomic or molecular species constitutes the subject of inter-

molecular forces.

People have speculated about the nature of intermolecular forces ever since the

ideas of atoms and molecules first existed. Our present ideas, that molecules attract at

long range but repel strongly at short range, began to emerge in the nineteenth

century due to the experimental work of Rudolf J. E. Clausius and Thomas Andrews.

It was not until the early twentieth century, when the principles of quantum me-

chanics became established, that we could truly say that we understood the detailed

mechanism of intermolecular forces.

Although we talk about intermolecular forces, it is more usual and convenient to

focus on the mutual potential energy, discussed in Chapter 2. If we start with two

argon atoms at infinite separation, then their mutual potential energy at separation R

tells us the energy change on bringing the atoms together to that distance from

infinity.

Even for the simplest pair of molecules, the intermolecular mutual potential energy

will depend on their relative orientations in addition to their separation. Perhaps you

can now see why the study of intermolecular forces has taken so much effort by so

many brilliant scientists, over very many years.

3.1 The Pair Potential

So, to start with, we concern ourselves with two atomic or molecular species, A and

B, and ask how they interact. No chemical reaction is implied, and I should say

straightaway that I am not going to be concerned with bond making and bond break-

ing in this chapter. That is the subject of valence theory. In the (unusual) case that the



two species A and B concerned are ions, you may think that the problem is more or

less solved. We simply calculate their mutual Coulomb potential energy as discussed

in Chapter 2

UAB ¼ 1

4��0

QAQB

RAB

ð3:1Þ

You would certainly be on the right lines in this approach except that ions aren’t

point charges and they can be polarized just like any other continuous charge dis-

tribution. But, as I explained in Chapter 2, we rarely have to concern ourselves with

ions and to get started we will consider the very simple case of a pair of like atoms

(such as two argon atoms). We know from experiment that the general form of their

mutual potential energy must be that shown in Figure 3.1.

This curve is meant to be schematic, and I have been careful not to quantify the

axes. It has all the right features but we have yet to discover its precise form. We very

often speak about the pair potential, and write it U(R), where R is the separation

between the two atoms. The zero of U(R), denoted by the horizontal line, is com-

monly taken to refer to the two atoms at infinity. We often characterize the curve in

terms of a small number of parameters; for example, the collision diameter s being

the distance at which U(R)¼ 0, the minimum Rmin, and minus the value of U(R) at

Rmin (often written ", and as defined is a positive quantity).

We now need to investigate more closely the precise form of this pair potential.

The potential comprises a repulsive part (important for small R) and an attractive part

�

Figure 3.1 Schematic Ar–Ar interaction
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(important for large R). It turns out that there are three major contributions to the

attractive part, as we will see below.

3.2 The Multipole Expansion

Suppose that we have two molecules with centres a distance R apart (Figure 3.2). The

distance R is taken to be large compared with a molecular dimension. Each molecule

consists of a number of charged particles, and in principle we can write down an

expression for the mutual potential energy of these two molecules in terms of the pair

potentials between the various point charges. The basic physical idea of the multipole

expansion is to make use of the fact that several of these particles go to form

molecule A, and the remainder to form molecule B, each of which has a distinct

chemical identity. We therefore seek to write the mutual potential energy of A and

B in terms of the properties of the two molecular charge distributions and their

separation.

3.3 The Charge–Dipole Interaction

I can illustrate the ideas by considering an elementary textbook problem, namely the

mutual potential energy of a simple small electric dipole and a point charge. Suppose

that we have a simple dipole consisting of a pair of charges, QA and QB, aligned

along the horizontal axis and equally separated from the coordinate origin by distance

d. We introduce a third charge Q as shown in Figure 3.3, with the scalar distance R

Figure 3.2 Two interacting molecules
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from the origin. This point charge makes an angle � with the electric dipole, as

shown. The two point charges QA and QB have a mutual potential energy of

1

4��0

QAQB

2d
ð3:2Þ

but we are going to investigate what happens to the mutual potential energy of the

system as we change the position vector of Q, and so we ignore this term since it

remains constant.

The mutual potential energy U(charge–dipole) of the point charge and the electric

dipole is given exactly by

Uðcharge�dipoleÞ ¼ 1

4��0
Q

�
QA

RA

þ QB

RB

�
ð3:3Þ

This can also be written in terms of R and � as

Uðcharge�dipoleÞ ¼ 1

4��0
Q

�
QAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðR2 þ d2 þ 2dR cos �Þp þ QBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðR2 þ d2 � 2dR cos �Þp

�

ð3:4Þ

and once again, this is an exact expression.

In the case where the point charge Q gets progressively far away from the coordi-

nate origin, we can usefully expand the two denominators using the binomial theorem

to give

Uðcharge�dipoleÞ ¼ 1

4��0
Q

� ðQA þ QBÞ
R

þ ðQB � QAÞd
R2

cos �

þ ðQA þ QBÞd2
2R3

ð3 cos 2�� 1Þ þ � � �
�

ð3:5Þ

Figure 3.3 Charge–dipole interaction
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The first term on the right-hand side contains the sum of the two charges making up

the dipole. Very often, we deal with simple dipoles that carry no overall charge, and

this term is zero because QA¼ �QB. The second term on the right-hand side ob-

viously involves the electric dipole moment, whose magnitude is (QB�QA)d. The

third term involves the electric second moment whose magnitude is (QBþQA)d
2 and

so on. The mutual potential energy is therefore seen to be a sum of terms; each is a

product of a moment of the electric charge, and a function of the inverse distance.

Hopefully, as R increases, the magnitude of the successive terms will become less and

eventually the mutual potential energy will be dominated by the first few terms in the

expansion.

In the more general case where we replace QA and QB with an arbitrary array of

point charges Q1, Q2, . . . ,Qn, whose position vectors are R1,R2, . . . ,Rn (or for that

matter a continuous charge distribution), it turns out that we can always write the

mutual interaction potential with Q as

U ¼ Q

4��0

��Xn
i¼1

Qi

�
1

R
�
�Xn

i¼1

QiRi

�
grad

�
1

R

�
þ higher order terms

�
ð3:6Þ

The first summation on the right-hand side gives the overall charge of the charge

distribution. The second term involves the electric dipole moment; the third term

involves the electric quadrupole moment and so on.

3.4 The Dipole–Dipole Interaction

Consider now a slightly more realistic model for the interaction of two simple (di-

atomic) molecules, Figure 3.4. Molecule A consists of two point charges, Q1A and

�

Figure 3.4 Multipole expansion for a pair of diatomics
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Q2A, and molecule B consists of two point charges, Q1B and Q2B. The overall charge

on molecule A is therefore QA ¼ Q1A þ Q2A with a similar expression for molecule

B. The electric dipole moments of A and B are written pA and pB in an obvious

notation, and their scalar magnitudes are written pA and pB. The second moments of

the two molecules are each determined by a scalar value qA and qB, simply because

they are linear.

Molecule A is centred at the origin, whilst molecule B has its centre a distance R

away along the horizontal axis. The inclinations to the axis are �A and �B, and � gives

the relative orientation of the two molecules. The sizes of the two molecules are

much less than their separation, so we can make the same approximations as for the

small dipole. After some standard analysis we find that the mutual potential energy of

A and B is

ð4��0ÞUAB ¼ QAQB

R
þ 1

R2
ðQBpA cos �A � QApB cos �BÞ

� pApB

R3
ð2 cos �A cos �B � sin �A sin �B cos�Þ

þ 1

2R3
ðQAqBð3 cos 2�B � 1Þ þ QBqAð3 cos 2�A � 1ÞÞ

þ � � � ð3:7Þ

The physical interpretation is as follows. The first term on the right-hand side gives

the mutual potential energy of the two charged molecules A and B. The second term

gives a contribution due to each charged molecule with the other dipole. The third

term is a dipole–dipole contribution and so on.

If A and B correspond to uncharged molecules, then the leading term is seen to be

the dipole–dipole interaction

ð4��0ÞUAB;dip�dip ¼ � pApB

R3
ð2 cos �A cos �B � sin �A sin �B cos�Þ ð3:8Þ

The sign and magnitude of this term depends critically on the relative orientation

of the two molecules. Table 3.1 shows three possible examples, all of which have

�¼ 0.

Table 3.1 Representative dipole–dipole terms for two diatomics

�A �B Relative orientations Expression for dipole–dipole U

0 0 Parallel �2pApB=4��0R
3

0 � Antiparallel þ2pApB=4��0R
3

0 �=2 Perpendicular 0
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3.5 Taking Account of the Temperature

We now imagine that the two molecules undergo thermal motion; we keep their

separation R constant but allow the angles to vary. The aim is to calculate the average

dipole–dipole interaction. Some orientations of the two dipoles will be more ener-

getically favoured than others and we allow for this by including a Boltzmann factor

exp (�U=kBT ), where kB is the Boltzmann constant and T the thermodynamic tem-

perature. It is conventional to denote mean values by ‘carets’ h� � �i and the mean value

of the dipole–dipole interaction is given formally by

hUABidip�dip ¼
R
UAB expð� UAB

kBT
Þd�R

expð� UAB

kBT
Þd� ð3:9Þ

The integral has to be done over all possible values of the angles, keeping R fixed.

After some standard integration, we find

hUABidip�dip ¼ � 2p2Ap
2
B

3kBTð4��0Þ2
1

R6
ð3:10Þ

The overall value is therefore negative, and the term is inversely dependent on the

temperature. It also falls off as 1=R6.

3.6 The Induction Energy

The next step is the case of two interacting molecules, one of which has a permanent

dipole moment and one of which is polarizable but does not have a permanent electric

dipole moment.

Figure 3.5 shows molecule Awith a permanent dipole moment pA. I have indicated

the direction of pA in the diagram, and an arbitrary point P in molecule B. The dipole

pA is a distance R from point P, and makes an angle � as shown. The molecules are

sufficiently far apart for the precise location of the point P inside the second molecule

to be irrelevant.

The basic physical idea is that the electric dipole pA induces a dipole in molecule

B, since B is polarizable. We evaluate the potential energy involved and finally

average over all possible geometrical arrangements, for a fixed value of the inter-

molecular separation. The steps involved are as follows. The electrostatic potential

due to the small dipole pA is

�AðRÞ ¼ 1

4��0

pA R

R3

�
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This is related to the electrostatic field by the general formula

EðRÞ ¼ �grad�ðRÞ

and direct differentiation gives the following formula

EAðRÞ ¼ � 1

4��0

�
pA
R3

� 3
pA R

R5
R

�
ð3:11Þ

Molecule A therefore generates an electrostatic field in the region of molecule B,

according to the above vector equation. The modulus of this vector at point P is

EA ¼ 1

4��0

pA

R3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 3 cos 2�Þ

p
ð3:12Þ

This electrostatic field induces a dipole in molecule B. For the sake of argument, I

will assume that the induced dipole is in the direction of the applied field (and so we

need not worry about the fact that the polarizability is a tensor property). Calculation

of the resulting mutual potential energy UAB gives

UAB ¼ � 1

ð4��0Þ2
�Bp

2
A

R6

1

2
ð3 cos 2�þ 1Þ ð3:13Þ

Polarizabilities are positive quantities and so UAB is negative for all values of � at a

given intermolecular separation This is quite different to the dipole–dipole interac-

tion, where some alignments of the dipoles gave a positive contribution to the mutual

potential energy and some gave a negative one.

Finally, we have to average over all possible alignments keeping the inter-

nuclear separation fixed. This averaging again has to be done using the Boltzmann

�

Figure 3.5 Dipole-induced dipole
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weightings, and we find eventually an expression for the induction contribution to the

mutual potential energy of A and B

hUABiind ¼ � 1

ð4��0Þ2
p2A�B

R6
ð3:14Þ

Note that the interaction falls off as 1=R6 just as for the dipole–dipole interaction, but

this time there is no temperature dependence. For two identical A molecules each

with permanent electric dipole pA and polarizability aA the expression becomes

hUAAiind ¼ � 2

ð4��0Þ2
p2A�A

R6
ð3:15Þ

This of course has to be added to the dipole–dipole expression of the previous section.

3.7 Dispersion Energy

It is an experimental fact that inert gases can be liquefied. Atoms don’t have perma-

nent electric moments, so the dipole–dipole and induction contributions to the mutual

potential energy of an array of inert gas atoms must both be zero. There is clearly a

third interaction mechanism (referred to as dispersion), and this was first identified by

Fritz W. London in 1930.

The two contributions to the mutual potential energy discussed in previous sections

can be described by classical electromagnetism. There is no need to invoke the

concepts of quantum mechanics. Dispersion interactions can only be correctly de-

scribed using the language of quantum mechanics. Nevertheless, the following qual-

itative discussion is to be found in all elementary texts.

The electrons in an atom or molecule are in continual motion, even in the

ground state. So, although on average the dipole moment of a spherically-

symmetrical system is zero, at any instant a temporary dipole moment can

occur. This temporary dipole can induce a further temporary dipole in a

neighbouring atom or molecule and, as in the case of the inductive interaction;

the net effect will be attractive.

Paul K. L. Drude gave a simple quantum mechanical description of the effect, and

his theory suggests that the dispersion contribution can be written

hUidisp ¼ �
�
D6

R6
þ D8

R8
þ D10

R10
þ � � �

�
ð3:16Þ

The first term (which I have written D6) is to be identified with the instantaneous

dipole-induced dipole mechanism. The higher terms are caused by instantaneous
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quadrupole-induced quadrupoles, etc. According to Drude’s theory

D6 ¼ � 3�2"1

4ð4��0Þ2
ð3:17Þ

In this expression, "1 is the first excitation energy of the atomic or molecular species

concerned. The dispersion energy is again seen to be attractive and to fall off as 1=R6.

3.8 Repulsive Contributions

When two molecular species approach so closely that their electron clouds overlap,

the positively charged nuclei become less well shielded by the negative electrons and

so the two species repel each other. The repulsive term is sometimes written

Urep ¼ A expð�BRÞ ð3:18Þ

where A and B are specific to the particular molecular pair and have to be determined

from experiment. The precise form of the repulsive term is not well understood; all

that is certain is that it must fall off quickly with distance, and the exponential

function is therefore a possible suitable candidate.

The total interaction is U ¼ Urep þ Udip�dip þ Uind þ Udisp, which we can write

U ¼ A expð�BRÞ � C

R6
ð3:19Þ

since all the attractive forces fall off as 1=R6. This is known as the exp-6 potential. In the

Lennard-Jones (L-J)12–6potential,we take a repulsive termproportional to1=R12 and so

UL-J ¼ C12

R12
� C6

R6
ð3:20Þ

Once again the coefficients C12 and C6 have to be determined from experiments on

the species under study. The L-J potential usually is written in terms of the well depth

" and the distance of closest approach � as follows

UL-J ¼ 4"

��
�

R

�12

�
�
�

R

�6�
ð3:21Þ

The two L-J parameters � and " have been deduced for a range of atoms. The quantity

"=kB (which has dimensions of temperature) is usually recorded in the literature

rather than ". Sample atomic parameters are shown in Table 3.2.
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Over the years, people have extended these ideas to the interaction of simple mole-

cules. Some caution is needed: the interaction between two molecules will generally

depend on the precise details of their orientation, and the values given in Table 3.3 must

be interpreted as some kind of geometrical average. These values were taken from the

Table 3.2 Representative L-J atomic parameters

("=kB)=K �=pm

He 10.22 258

Ne 35.7 279

Ar 124 342

Xe 229 406

Table 3.3 L-J parameters for simple molecules

("=kB)=K �=pm

H2 33.3 297

O2 113 343

N2 91.5 368

Cl2 357 412

Br2 520 427

CO2 190 400

CH4 137 382

CCl4 327 588

C2H4 205 423

C6H6 440 527

Figure 3.6 Lennard-Jones 12–6 potential for argon–argon
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classic text Molecular Theory of Gases and Liquids [1]. Figure 3.6 shows a L-J 12–6

plot for argon–argon.

3.9 Combination Rules

A large number of L-J parameters have been deduced over the years, but they relate

to pairs of like atoms. Rather than try to deduce corresponding parameters for unlike

pairs, it is usual to use so-called combination rules, which enable us to relate the C12

and the C6 parameters for an unlike-atom pair A–B to those of A–A and B–B. The

use of such combination rules is common in subjects such as chemical engineering,

and is widely applied to many physical properties.

There are three common combination rules in the literature, as follows

C12;ij ¼
�
R�
i

2
þ R�

j

2

�12 ffiffiffiffiffiffiffi
"i"j

p

C6;ij ¼ 2

�
R�
i

2
þ R�

j

2

�6 ffiffiffiffiffiffiffi
"i"j

p
ð3:22Þ

where R�
i is the minimum energy separation for two atoms of type i and "i the well

depth;

C12;ij ¼ 4ð�i�jÞ6 ffiffiffiffiffiffiffi
"i"j

p

C6;ij ¼ 4ð�i�jÞ3 ffiffiffiffiffiffiffi
"i"j

p ð3:23Þ

and finally

C6;ij ¼ C
�i�jffiffiffiffi

�i

Ni

q
þ

ffiffiffiffi
�j

Nj

q

C12;ij ¼ 1
2
C6;ijðRi þ RjÞ6

ð3:24Þ

where �i is the dipole polarizability of atom i, Ni the number of valence electrons and

Ri the van der Waals radius.

3.10 Comparison with Experiment

You will have got the idea by now that we have to determine the parameters in any

pair potential by appeal to experiment. There are two kinds of experiment to consider.

First, there are those that are essentially in the gas phase, where pairs of atoms

genuinely interact with each other unencumbered by other species. This means

that the total mutual potential energy is given by the sum of the interacting pairs.
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Second, there are experiments that essentially relate to condensed phases, where the

interacting particles are sufficiently close to raise doubts about the credibility of the

pairwise additivity assumption.

3.10.1 Gas imperfections

The deviation of gases from perfect behaviour can be expressed in the form of a virial

equation of state

pV

nRT
¼ 1þ nBðTÞ

V
þ n2CðTÞ

V2
þ � � � ð3:25Þ

where the virial coefficients B(T),C(T), . . . depend on the temperature and on the

characteristics of the species under study. Here, n is the amount of substance, p the

pressure, V the volume, R the gas constant and T the thermodynamic temperature.

B(T) is called the second virial coefficient whilst C(T) is called the third virial

coefficient and so on. They have to be determined experimentally by fitting the

pVT data of the gas under study.

The virial equation of state has a special significance in that the virial coefficients

can be related directly to the molecular properties. B(T) depends on the pair potential

U(R) in the following way

BðTÞ ¼ 2�

Z 1

0

�
1� exp

�
�UðRÞ

kBT

��
R2 dR ð3:26Þ

3.10.2 Molecular beams

In a molecular beam experiment, a beam of mono-energetic molecules is produced and

allowed to collide either with other molecules in a scattering chamber, or with a similar

beam travelling at right angles to the original beam. Measurements of the amount by

which the incident beam is reduced in intensity, or the number of molecules scattered in

a particular direction, allow determination of the parameters in the pair potential.

3.11 Improved Pair Potentials

The L-J 12–6 potential for a pair of interacting atoms

UL-JðRÞ ¼ C12

R12
� C6

R6

¼ 4"

��
�

R

�12

�
�
�

R

�6�
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contains two parameters (" and �, or C12 and C6,) that have to be determined by

experimental observation. The exp-6 model

UðRÞ ¼ A expð�BRÞ � C

R6

contains three parameters, which allows for a little more flexibility.

The Born–Mayer–Huggins potential

UðRÞ ¼ A exp ð�BRÞ � C

R6
� D

R8
ð3:27Þ

contains four parameters.

More recent investigations have concentrated on pair potentials having many more

disposable parameters, for example

UðrÞ ¼ exp

�
A

�
1� R

�

��Xn
i¼0

Bi

�
R

�
� 1

�i

þ C6�
Dþ ðR�Þ6

�þ C8�
Dþ ðR�Þ8

�þ C10�
Dþ ðR�Þ10

� ð3:28Þ

There is no obvious relationship between the various parameters in these different

models; they all have to be determined by fitting experimental data. Roughly speak-

ing, the more parameters the better.

3.12 Site–Site Potentials

The L-J potential plays an important role in the history of molecular modelling. Early

work focused on atoms, but as I explained there were many ambitious attempts to

model simple molecules as if they were in some way L-J atoms, and the parameters

have to be interpreted as applying to some kind of average over molecular rotations

(and presumably vibrations).

Suppose now that we want to try to understand the interaction between two dini-

trogen molecules in more depth. In view of our discussion above, the instantaneous

interaction energy clearly will depend on the separation of the two diatoms, together

with their mutual angular arrangement in space.

Figure 3.7 shows two such dinitrogens, oriented arbitrarily in space with respect to

each other. Nitrogen A and nitrogen B make up a stable diatom, as do atoms C and D.

We ignore the fact that the molecules have vibrational energy, and the two diatoms

are taken to be rigid. As a first approximation, the mutual potential energy of the pair

of diatoms could be calculated by adding together the appropriate L-J parameters.
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If I write as shorthand the L-J interaction between atoms A and C as

UL-JðA;CÞ ¼ 4"

��
�

RAC

�12

�
�

�

RAC

�6�

then the total interaction between the two diatomics is taken as

UL-J ¼ UL-JðA;CÞ þ UL-JðA;DÞ þ UL-JðB;CÞ þ UL-JðB;DÞ ð3:29Þ

Such a potential is called a site–site potential. We will meet such potentials later in

the book.

Figure 3.7 Two dinitrogen molecules, arbitrarily oriented
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4 Balls on Springs

The theory of intermolecular forces relates to atomic and=or molecular species that

are some distance apart (say, a few bond lengths). We saw in Chapter 3 that progress

can be made in such a theory without normally invoking the concepts of quantum

mechanics. If we truly want to understand why two atoms combine to give a chemical

bond, and how bonds get broken and reformed in chemical reactions, then we enter

the realms of valence theory. Quantum mechanics plays a dominant part in such

discussions.

These are simple-minded comments and my arbitrary division of molecular inter-

actions is subjective. At first sight, the stability of an NaCl ion pair can be explained

in terms of elementary electrostatics, and we can usefully model argon liquid without

recourse to quantum mechanics (apart from the London dispersion potential, which is

a ‘pure’ quantum mechanical effect). A C��C bond in ethane is at first sight a

quantum mechanical animal, and we will certainly have to invoke quantum mechan-

ical ideas to explain the reaction of ethene with dichlorine. But there are grey areas

that I can bring to your attention by considering the phenomenon of hydrogen bond-

ing. The hydrogen bond is an attractive interaction between a proton donor X��H and

a proton acceptor Y in the same or a different molecule

X��H � � �Y

The bond usually is symbolized by three dots, as shown above, in order to reconcile

the existence of compounds such as

NH3 � � �HCl

with the trivalence of nitrogen, the divalence of oxygen in oxonium salts and other

compounds that apparently break the classical valence rules. Hydrogen bonds

typically have strengths of 10–100 kJmol�1. The lone pairs of oxygen and nitrogen

and the partially charged character of the proton were eventually recognized as

the sources of this bond. The first reference to this ‘weak bond’ were made by

W. M. Latimer and W. H. Rodebush in 1920 [2].

The individual monomers X��H and Y retain their chemical identity to a large

extent on hydrogen bond formation. In other words, no new covalent bond gets made.

A great deal of evidence suggests that simple electrostatic models of the H bond give



perfectly acceptable quantitative descriptions of the structure, vibrations and electric

dipole moments of such hydrogen-bonded species. The hydrogen-bonded species

FHF�

is well known and has been well studied, but it cannot be written

F��H � � � F�

because the proton is equally shared between the two fluorine atoms. Such a species

is best thought of as covalently bound, and has to be treated by the methods of

molecular quantum theory.

Having warned about bond breaking and bond making, I should tell you that a

great deal of molecular modelling is concerned with the prediction and rationalization

of molecular bond lengths and bond angles. Here we usually deal with isolated

molecules in the gas phase and the theoretical treatments often refer to 0K. A

surprising amount of progress can be made by treating molecules as structureless

balls (atoms) held together with springs (bonds). The array of balls and springs is then

treated according to the laws of classical mechanics. Such calculations are remark-

ably accurate, and are taken very seriously.

4.1 Vibrational Motion

To get started, consider a particle of mass m lying on a frictionless horizontal table,

and attached to the wall by a spring, as shown in Figure 4.1. The particle is initially at

rest, when the length of the spring is Re (where the subscript ‘e’ stands for equilib-

rium). If we stretch the spring, it exerts a restoring force on the particle, whilst if we

compress the spring there is also a force that acts to restore the particle to its

equilibrium position. If R denotes the length of the spring, then the extension is

Figure 4.1 Ball attached to the wall by a spring
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R� Re, and if Fs is the restoring force due to the spring, then it is often observed

experimentally that the force is directly proportional to the extension

Fs ¼ �ksðR� ReÞ ð4:1Þ

The constant of proportionality ks is called the force constant and it tells us the

strength of the spring. This law is known as Hooke’s Law and it applies to very many

springs made from many different materials. It invariably fails for large values of the

extension, but is good for small deviations from equilibrium.

Suppose that we now set the particle in motion, so that it oscillates about Re.

According to Newton’s second law we have

m
d2R

dt2
¼ �ksðR� ReÞ ð4:2Þ

This second-order differential equation has the general solution

R ¼ Re þ A sin

� ffiffiffiffi
ks

m

r
t

�
þ B cos

� ffiffiffiffi
ks

m

r
t

�
ð4:3Þ

where A and B are constants of integration. These constants have to be fixed by taking

account of the boundary conditions. For example, if the particle starts its motion at

time t¼ 0 from R¼ Re, then we have

Re ¼ Re þ A sin

� ffiffiffiffi
ks

m

r
0

�
þ B cos

� ffiffiffiffi
ks

m

r
0

�

from which we deduce that B¼ 0 for this particular case. Normally we have to find A

and B by a similar procedure.

The trigonometric functions sine and cosine repeat every 2� and a little manipula-

tion shows that the general solution of Equation (4.3) can also be written

R ¼ Re þ A sin

� ffiffiffiffi
ks

m

r �
t þ 2�

ffiffiffiffi
m

ks

r ��
þ B cos

� ffiffiffiffi
ks

m

r �
t þ 2�

ffiffiffiffi
m

ks

r ��

The quantity
ffiffiffiffiffiffiffiffiffiffi
ks=m

p
has the dimension of inverse time and obviously it is an im-

portant quantity. We therefore give it a special symbol (!) and name (the angular

vibration frequency). We often write the general solution as

R ¼ Re þ A sin ð!tÞ þ B cos ð!tÞ ð4:4Þ

A typical solution is shown as Figure 4.2 (for which I took A¼ 1m, B¼ 0, m¼ 1 kg

and ks¼ 1Nm�1). Such motions are called simple harmonic. At any given time, the

displacement of the particle from its equilibrium position may be non-zero, but it

should be clear from Figure 4.2 that the average value of the displacement R� Re is
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zero. As noted in Chapter 3, it is usual to denote average values by h� � �i and so we

write

hR� Rei ¼ 0

It should also be clear from Figure 4.3 that the average value of (R� Re)
2 is not zero.

A direct calculation using hsin 2ð!tÞi ¼ 1
2
gives

hðR� ReÞ2i ¼ 1
2
ðA2 þ B2Þ ð4:5Þ

Figure 4.2 Simple harmonic motion

Figure 4.3 Variation of (R� Re)
2 with time
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4.2 The Force Law

If we use the general one-dimensional result that links force and mutual potential

energy

UðxÞ ¼ �
Z

FðxÞdx

we find

UðRÞ ¼ UðReÞ þ 1
2
ksðR� ReÞ2 ð4:6Þ

where U(Re) is the value of U(R) at the equilibrium position. As mentioned earlier,

we often set this constant of integration arbitrarily to zero and so

UðRÞ ¼ 1
2
ksðR� ReÞ2 ð4:7Þ

Because the motion is simple harmonic, we refer to this potential as a harmonic

potential. The potential energy varies over each cycle, in the same way as shown

in Figure 4.3. The average value of the potential energy over a cycle is

hUðRÞi ¼ 1
2
kshðR� ReÞ2i

¼ 1
4
ðA2 þ B2Þ

Finally, the kinetic energy T is given by

TðRÞ ¼ 1
2
m

�
dR

dt

�2

The average value is

hTðRÞi ¼ 1
4
m!2ðA2 þ B2Þ

¼ 1
4
ksðA2 þ B2Þ

The kinetic and potential energies vary with time, but the total energy U(R)þ T(R) is

constant; it does not vary with time. The average value of the kinetic energy over a

cycle is equal to the average value of the potential energy, each of which is one half of

the total energy. I am going to use the symbol " for energy when referring to a single

atom or molecule, throughout the text. The total energy " can take any value with no

restrictions.
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4.3 A Simple Diatomic

Consider next the Hooke’s Law model of a diatomic molecule, Figure 4.4. The atoms

have masses m1 and m2, and the spring has a harmonic force constant of ks. I am

going to consider the motion along the horizontal axis, which I will refer to as the x-

axis. The x coordinates of the two atoms are x1 and x2 relative to an arbitrary axis, the

equilibrium length of the spring is Re and the length of the extended spring at some

given time is

R ¼ x2 � x1

The spring extension is therefore

x2 � x1 � Re

Considering atom 1, the spring exerts a force of ks(x2� x1� Re) and so, according to

Newton’s second law

m1

d2x1

dt2
¼ ksðx2 � x1 � ReÞ
¼ ksðR� ReÞ ð4:8Þ

As far as atom 2 is concerned, the extended spring exerts a force of magnitude

ks(x2� x1� Re) in the direction of decreasing x2 and so

m2

d2x2

dt2
¼ �ksðx2 � x1 � ReÞ
¼ �ksðR� ReÞ ð4:9Þ

After a little rearrangement we find

d2R

dt2
¼ � ks

m2

ðR� ReÞ � ks

m1

ðR� ReÞ

¼ �ks

�
1
m1

þ 1
m2

�
ðR� ReÞ ð4:10Þ

Figure 4.4 Diatomic molecule
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We now define a quantity � called the reduced mass by

1

�
¼ 1

m1

þ 1

m2

and so we have

�
d2R

dt2
¼ �ksðR� ReÞ ð4:11Þ

which is identical to Equation (4.2) already derived for a single particle of mass � on

a spring. The general solution is therefore

R ¼ Re þ A sin

 ffiffiffiffi
ks

�

s
t

!
þ B cos

 ffiffiffiffi
ks

�

s
t

!
ð4:12Þ

and the angular frequency is

! ¼
ffiffiffiffi
ks

�

s

It is easy to demonstrate that the potential energy is

U ¼ 1
2
ksðx2 � x1 � ReÞ2

and the total energy "vib of the harmonically vibrating diatomic is therefore

"vib ¼ 1

2
m1

�
dx1

dt

�2

þ 1

2
m2

�
dx2

dt

�2

þ 1
2
ksðx2 � x1 � ReÞ2 ð4:13Þ

4.4 Three Problems

This simple treatment suggests three problems. First, how do we determine the spring

constant for a simple molecule such as 1H35Cl or 12C16O? Second, how good is the

harmonic approximation? And third, have we missed anything by trying to treat a

molecular species as if it obeyed the laws of classical mechanics rather than quantum

mechanics?

The three questions are interlinked, but let me start with the third one. The experi-

mental evidence suggests that we have made a serious error in neglecting the quantum

mechanical details. If we irradiate a gaseous sample of 1H35Cl with infrared radiation, it
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is observed that the molecules strongly absorb radiation of wavenumber 2886 cm�1.

With hindsight we would of course explain the observation by saying that the molecular

vibrational energies are quantized. Amajor flaw of the classical treatment is that the total

vibrational energy is completely unrestricted and quantization does not arise.

The quantum mechanical treatment of a harmonically vibrating diatomic molecule

is given in all the elementary chemistry texts. The results are quite different from the

classical ones, in that

1. the vibrational energy cannot take arbitrary values, it is quantized;

2. there is a single quantum number v, which takes values 0, 1, 2, . . . , called the

vibrational quantum number; and

3. vibrational energies "vib are given by

"vib ¼ h

2�

ffiffiffiffi
ks

�

s �
vþ 1

2

�

where h is Planck’s constant.

The results are usually summarized on an energy level diagram, such as Figure 4.5.

I have just drawn the first four vibrational energy levels, but there are an infinite number

of them. According to the harmonic model, the spacing between the levels is constant.

A careful investigation into the mechanism by which electromagnetic radiation

interacts with matter suggests that transitions between these vibrational energy levels

are allowed, provided the vibrational quantum number changes by just 1 unit. So

molecules with v¼ 0 can absorb radiation of exactly the right energy for promotion

Figure 4.5 Vibrational energy levels
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to v¼ 1. Molecules with v¼ 1 can either absorb radiation with exactly the

right energy for promotion to v¼ 2 or they can emit radiation and fall to v¼ 0 and

so on.

According to the quantum model, then, molecules can only have certain vibrational

energies and this behaviour is totally at variance with the classical treatment. Also,

the quantum treatment differs from the classical treatment in that the lowest energy is

that with v¼ 0, where the energy is non-zero. This is called the zero-point energy.

According to the classical treatment, a molecule can be completely at rest. According

to the quantum treatment, the lowest vibrational energy allowed is the zero-point

energy.

How do we measure the spring constant? According to the harmonic quantum

model, the energy difference between any consecutive pair of energy levels is given

by

�" ¼ h

2�

ffiffiffiffi
ks

�

s

so all we need to do is measure this energy difference experimentally. The reduced

mass � of the 1H35Cl isotopic species is 1.6267� 10�27 kg and substitution of the

experimental value (2886 cm�1) into the energy difference gives the harmonic force

constant as 480.7Nm�1.

In fact, there is more to the experiment than I have told you. Spectroscopic experi-

ments are done at finite temperatures and a given sample of N molecules may have

many energy levels populated. Relative populations Nv are given by the Boltzmann

formula

Nv / exp

�
� "v
kBT

�

Substitution of values into the formula shows that for many everyday diatomic mo-

lecules at everyday temperatures, the only vibrational level populated is that with

v¼ 0. So an infrared absorption spectrum should just show a single absorption,

corresponding to the transition v¼ 0 to v¼ 1.

A closer examination of the 1H35Cl spectrum shows weak absorptions at 5668,

8347, . . . cm�1, which are nearly (but not exactly) two and three times the

fundamental vibration frequency. The existence of these lines in the spectrum

shows that our assumption of Hooke’s Law is not completely correct. Figure 4.6

shows the ‘experimental’ energy level diagram compared with the harmonic

one.

Our conclusion from the experimental data is that vibrational energy levels get

progressively closer together as the quantum number increases. This suggests that

whilst the harmonic model is a reasonable one, we need to look more carefully at the

form of the potential in order to get better agreement with experiment.
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4.5 The Morse Potential

Professional spectroscopists would be unhappy with the idea of using Hooke’s Law

as a model for the vibrational motion. They would be more concerned with matching

their experimental energy levels to a more accurate potential. Many such potentials

have been used over the years, with that due to Morse being widely quoted in

elementary chemistry texts. The Morse potential is as follows

U ¼ Deð1� expð��ðR� ReÞÞÞ2 ð4:14Þ
where De is the depth of the potential well, i.e. the thermodynamic dissociation

energy, and

� ¼
ffiffiffiffiffiffiffiffiffiffi�
d2U
dR2

�
2De

s

¼ !e

2

ffiffiffiffiffiffi
2�

De

r
ð4:15Þ

This potential contains three parameters, De, !e and Re, and so should be capable of

giving a better representation to the potential energy curve than the simple harmonic,

which contains just the two parameters, ks and Re.

In the case of 1H35Cl , a simple calculation shows that the dissociation energy

De ¼ D0 þ 1
2
hð2�!eÞ

is 4.430þ 0.186 eV¼ 4.616 eV. The Morse potential for 1H35Cl is shown in

Figure 4.7 compared with the simple harmonic model. The full curve is the simple

harmonic potential, the dashed curve the Morse potential.

Figure 4.6 Harmonic vs. experimental energy levels

60 BALLS ON SPRINGSBALLS ON SPRINGS



4.6 More Advanced Potentials

More often than not the following spectroscopic constants are available for a diatomic

molecule:

Re the equilibrium internuclear separation

De the dissociation energy

ks the force constant

!e xe the anharmonicity constant (sometimes written xe only)

�e the vibration–rotation coupling constant

Usually these five constants can be found to good experimental accuracy.

There are a number of three- to five-parameter potential functions for bonded pairs in

the literature, of which the Morse potential is the most popular. Jack Linnett [3] made a

careful study of many such functions, for example the four-parameter potential

UðRÞ ¼ a

Rm
� b expð�nRÞ

Figure 4.7 Simple harmonic and Morse curves for HCl
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The four parameters a, m, b and n in this reciprocal–exponential function are de-

duced by fitting spectroscopic data. At this point I should explain how we recover the

force constant from such a complicated expression, and to do this I’ll use a Taylor

expansion of the potential about the equilibrium bond length

UðRÞ ¼ UðReÞ þ ðR� ReÞ
�
dU

dR

�
R¼Re

þ 1
2
ðR� ReÞ2

�
d2U

dR2

�
R¼Re

þ � � � ð4:16Þ

U(R) is obviously equal to U(Re) when R¼ Re, and this fixes the constant of integra-

tion. The equation is sometimes written as

UðRÞ � UðReÞ ¼ ðR� ReÞ
�
dU

dR

�
R¼Re

þ 1
2
ðR� ReÞ2

�
d2U

dR2

�
R¼Re

þ � � �

or even

UðRÞ ¼ ðR� ReÞ
�
dU

dR

�
R¼Re

þ 1
2
ðR� ReÞ2

�
d2U

dR2

�
R¼Re

þ � � �

where it is understood that U(R) is measured relative to the potential energy mini-

mum (that is to say, we take the zero as U(Re)).

The quantity dU=dR is of course the gradient of U. The second derivative evaluated

at the minimum where R¼ Re is called the (harmonic) force constant. To find Re we

solve the equation dU=dR¼ 0 and substitute this value into the second derivative to

evaluate the force constant. In the special case of a harmonic potential, the second

derivative is a constant and is equal to the force constant.
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5 Molecular Mechanics

In Chapter 4 I showed you how to use classical mechanics to model the vibra-

tional motion of a diatomic molecule. I also explained the shortcomings of this

treatment, and hinted at applications where a quantum mechanical model would be

more appropriate. We will deal specifically with quantum mechanical models in later

chapters.

5.1 More About Balls on Springs

It is time to move on to more complicated molecules, and I want to start the discus-

sion by considering the arrangement of balls on springs shown in Figure 5.1.

We assume that the springs each satisfy Hooke’s Law. I will call the spring con-

stant of the left-hand spring k1 and the spring constant of the right-hand spring k2. The

equilibrium position corresponds to the two masses having x coordinates R1,e and

R2,e, and we constrain the motion so that the springs can only move along the x-axis.

The particle masses are shown in Figure 5.1.

We then stretch the system, so extending the two springs, and I will call the

instantaneous positions of the two masses, x1 and x2. The extensions of the springs

from their equilibrium positions are

�1 ¼ x1 � R1;e and �2 ¼ x2 � R2;e

Figure 5.1 Two balls, two springs



Consider the left-hand spring; it exerts a restoring force on particle 1 of � k1�1. Now
consider the right-hand spring. This spring is stretched by an amount (�2� �1), and so

it exerts a force of k2(�2� �1); this force acts to the left on particle 2 and to the right

on particle 1. Application of Newton’s second law gives

k2ð�2 � �1Þ � k1�1 ¼ m1

d2�1
dt2

�k2ð�2 � �1Þ ¼ m2

d2�2
dt2

ð5:1Þ

There are many different solutions to these simultaneous differential equations, but

it proves possible to find two particularly simple ones called normal modes of

vibration. These have the property that both particles execute simple harmonic

motion at the same angular frequency. Not only that, every possible vibrational

motion of the two particles can be described as linear combinations of the normal

modes.

Having said that it proves possible to find such solutions where both particles

vibrate with the same angular frequency !, let me assume that there exist such

solutions to the equations of motion such that

�1ðtÞ ¼ A sin ð!t þ �1Þ
�2ðtÞ ¼ B sin ð!t þ �2Þ

where A, B, �1 and �2 are constants that have to be determined from the boundary

conditions.

Differentiating these two equations with respect to time gives

d2�1ðtÞ
dt2

¼ �!2A sin ð!t þ �1Þ
d2�2ðtÞ
dt2

¼ �!2B sin ð!t þ �2Þ

and substituting these expressions into the equations of motion gives

�ðk1 þ k2Þ
m1

�1 þ k2

m1

�2 ¼ �!2�1

k2

m2

�1 � k2

m2

�2 ¼ �!2�2

ð5:2Þ

These two equations are simultaneously valid only when ! has one of two possible

values called the normal mode angular frequencies. In either case, both particles

oscillate with the same angular frequency.
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In order to investigate these normal modes of vibration, I write the above equations

in matrix form, and then find the eigenvalues and eigenvectors as follows

�ðk1 þ k2Þ
m1

k2

m1
k2

m2

� k2

m2

0
BB@

1
CCA �1

�2

� �
¼ �!2 �1

�2

� �
ð5:3Þ

Matrix diagonalization gives the allowed values of !2 (the eigenvalues), and for each

value of �!2 we calculate the relevant combinations of the �s (the eigenvectors). The

eigenvectors of the matrix are called the normal coordinates.

5.2 Larger Systems of Balls on Springs

For a molecule comprising N atoms, there are 3N Cartesian coordinates. Of these,

three can be associated with the position of the centre of mass of the whole molecule

and three for the orientation of the molecule at the centre of mass (two for linear

molecules). This leaves 3N� 6 vibrational degrees of freedom (3N� 5 if the mole-

cule is linear), and it is appropriate to generalize some concepts at this point. I am

going to use matrix notation in order to make the equations look friendlier.

The molecular potential energy U will depend on p¼ 3N� 6 (independent)

variables. For the minute, let me call them q1, q2, . . . , qp, and let me also write

q1,e, q2,e, . . . , qp,e for their ‘equilibrium’ values. These coordinates are often referred

to as internal coordinates, and they will be linear combinations of the Cartesian

coordinates.

First of all, for the sake of neatness, I will collect all the qs into a column matrix q.

I will also collect together the ‘equilibrium’ values into a column matrix qe and the

extensions into a column �

q ¼
q1
q2
. . .
qp

0
BB@

1
CCA; qe ¼

q1;e
q2;e
. . .
qp;e

0
BB@

1
CCA; j ¼

q1 � q1;e
q2 � q2;e

. . .
qp � qp;e

0
BB@

1
CCA ð5:4Þ

I will now write U(q) to indicate the dependence of U on these variables. If I use

Taylor’s Theorem to expandU(q) about the point qe, then the one-dimensional equation

UðRÞ � UðReÞ ¼ ðR� ReÞ
�
dU

dR

�
R¼Re

þ 1
2
ðR� ReÞ2

�
d2U

dR2

�
R¼Re

þ � � �

(given previously in Chapter 4) has to be modified to take account of the larger

number of variables. First derivatives become partial first derivatives, and we have to
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take account of the ‘mixed’ second-order derivatives

UðqÞ � UðqeÞ ¼
Xp
i¼1

�i

�
@U

@qi

�
�i¼0

þ 1

2

Xp
i¼1

Xp
j¼1

�i�j

�
@2U

@qi@qj

�
�i¼0;�j¼0

þ � � � ð5:5Þ

In ordinary vector differentiation, we meet the gradient of a scalar field f, defined in

Cartesian coordinates as

grad f ¼ @f

@x
ex þ @f

@y
ey þ @f

@z
ez

where ex, ey and ez are Cartesian unit vectors. When dealing with functions of many

variables it proves useful to make a generalization and write the gradient of U, for

example, as

gradU ¼

@U

@q1

@U

@q2
. . .

@U

@qp

0
BBBBBBBBB@

1
CCCCCCCCCA

ð5:6Þ

so grad U is a column matrix that stores all the partial derivatives. This ‘vector’ will

occur many times through the text, and I am going to give it the symbol g (for

gradient).

The second derivatives can be collected into a symmetric p� pmatrix that is called

the hessian of U and I will give this the symbol H. In the case where p¼ 3, we

have

H ¼

@2U

@q21

@2U

@q1@q2

@2U

@q1@q3

@2U

@q2@q1

@2U

@q22

@2U

@q2@q3

@2U

@q3@q1

@2U

@q3@q2

@2U

@q23

0
BBBBBBBBB@

1
CCCCCCCCCA

ð5:7Þ

The Taylor expansion then becomes

UðqÞ � UðqeÞ ¼ �Tgþ 1
2
�TH� þ � � � ð5:8Þ

Both the gradient and the hessian have to be evaluated at the point qe, and so you will

sometimes see the equation written with an ‘e’ subscript

UðqÞ � UðqeÞ ¼ �Tge þ 1
2
�THe� þ � � �
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The superscript T, as in �T, indicates the transpose of a matrix; the transpose of a column

matrix is a row matrix. The hessian is often referred to as the force constant matrix.

Finally, if I denote the 3N Cartesian coordinates X1,X2, . . . ,X3N, we usually write

the transformation from Cartesian coordinates to internal coordinates as

q ¼ BX ð5:9Þ
where the rectangular matrix B is called the Wilson B matrix. The B matrix has p

rows and 3N columns.

5.3 Force Fields

I have been vague so far about which variables are the ‘correct’ ones to take. Chem-

ists visualize molecules in terms of bond lengths, bond angles and dihedral angles,

yet this information is also contained in the set of Cartesian coordinates for the

constituent atoms. Both are therefore ‘correct’; it is largely a matter of personal

choice and professional training. I should mention that there are only 3N� 6 vibra-

tional coordinates, and so we have to treat the 3N Cartesian coordinates with a little

care; they contain three translational and three rotational degrees of freedom. I will

return to this technical point later.

Spectroscopists usually are interested in finding a set of equilibrium geometric param-

eters and force constants that give an exact fit with their experimental data. This is harder

than it sounds, because for a molecule comprising N atoms and hence p¼ 3N� 6

vibrational degrees of freedom, there are 1
2
pð p� 1Þ force constants (diagonal and off-

diagonal). In order to measure the individual force constants, the spectroscopist usually

has to make experimental measurements on all possible isotopically labelled species. It

turns out that there are many more unknowns than pieces of experimental information.

Spectroscopists usually want a force field (comprising force constants, equilibrium

quantities and every other included parameter) that is specific for a given molecule.

They want to match up ‘theory’ with their incredibly accurate measurements.

Many of the ‘off-diagonal’ force constants turn out to be small, and spectroscopists

have developed systematic simplifications to the force fields in order to make as many

as possible of the small terms vanish. If the force field contains only ‘chemical’ terms

such as bond lengths, bond angles and dihedral angles, then it is referred to as a

valence force field (VFF). There are other types of force field in the literature, inter-

mediate between the VFF and the general force field discussed above.

5.4 Molecular Mechanics

Molecular modellers usually have a quite different objective; they want a force field that

can be transferred from molecule to molecule, in order to predict (for example) the
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geometry of a new molecule by using data derived from other related molecules. They

make use of the bond concept, and appeal to traditional chemists’ ideas that a molecule

comprises a sum of bonded atoms; a large molecule consists of the same features we

know about in small molecules, but combined in different ways.

The termmolecular mechanics was coined in the 1970s to describe the application of

classical mechanics to determinations of molecular equilibrium structures. The method

was previously known by at least two different names, the Westheimer method and the

force-field method. The name and acronym, MM, are now firmly established quantities.

The idea of treating molecules as balls joined by springs can be traced back to the

1930 work of D. H. Andrews [4]. A key study to the development of MM was that by

R. G. Snyder and J. H. Schachtschneider [5] who showed that transferable force

constants could be obtained for alkanes provided that a few off-diagonal terms were

retained. These authors found that off-diagonal terms are usually largest when neigh-

bouring atoms are involved, and so we have to take account of non-bonded interac-

tions, but only between next-nearest neighbours.

A final point for consideration is that we must also take account of the chemical

environment of a given atom. An sp carbon atom is different from an sp2 carbon atom

and so on. It is traditional to speak of atom types in molecular mechanics.

Our idea is to treat the force field as a set of constants that have to be fixed by

appeal to experiment or more rigorous calculation. In molecular mechanics we take

account of non-bonded interactions, and also the chemical sense of each atom. A

valence force field that contains non-bonded interactions is often referred to as a

Urey–Bradley force field.

5.4.1 Bond-stretching

If we consider phenylanine (see Figure 5.2) we can identify a variety of bond types

including C(sp2)��C(sp2), C(sp2)��C(sp3), O��H, C����O and so on. If we assume that

Hooke’s Law is adequate, then each bond stretch between atom types A and B makes

a contribution to the total molecular potential energy of

UAB ¼ 1
2
kABðRAB � Re;ABÞ2 ð5:10Þ

in an obvious notation. Here kAB is the force constant, RAB the instantaneous bond

length and Re,AB the equilibrium bond length.

Figure 5.2 Phenylanine
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Other scientists recommend the Morse potential

UAB ¼ Dð1� expð��ðRAB � RAB;eÞÞÞ2

whilst some recommend the addition of extra terms to the simple Harmonic expression

UAB ¼ k1ðRAB � Re;ABÞ2 þ k2ðRAB � Re;ABÞ4 ð5:11Þ

5.4.2 Bond-bending

Next we have to consider the bond-bending vibrations. It is usual to write these as

harmonic ones, typically for the connected atoms A��B��C

UABC ¼ 1
2
kABCð�ABC � �e;ABCÞ2 ð5:12Þ

k is the force constant, and the subscript ‘e’ refers to the equilibrium value where the

molecule is at rest. A variation on the theme is given by

UABC ¼ kABC

2 sin 2�ABC;e
ð cos �ABC � cos �ABC;eÞ2 ð5:13Þ

5.4.3 Dihedral motions

Next we must consider the dihedral angle ABCD between the four bonded atoms

A, B, C and D (see Figure 5.3). Some authors divide these into proper dihedrals,

where we might expect full rotation about the connecting bond B��C, and improper

Figure 5.3 Dihedral angle
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dihedrals where the rotation is limited. For example, if C��D were a C��H fragment

of a methyl group, then we would be expect full rotation about B��C and a three-fold

symmetry in the potential energy term. A��CH��CH�� linkage in a benzene ring

would only show a moderate flexing from its planar value (angle zero).

If we use � to denote the ABCD angle, then a popular dihedral potential is

given by

U ¼ U0

2
ð1� cos ðnð�� �eÞÞÞ ð5:14Þ

Here n is the periodicity parameter, which would be 3 for a methyl group. �e is the

equilibrium torsional angle. A more complicated example is given by

U ¼ V1

Nd

ð1þ cos ðn1�� g1ÞÞ þ V2

Nd

ð1þ cos ðn2�� g2ÞÞ þ V3

Nd

ð1þ cos ðn3�� g3ÞÞ

The Vs are energy terms, the ns are periodicity parameters, the gs are phase param-

eters and Nd is a constant that depends on the number of bonds.

Some authors treat improper dihedrals in the same way as bond-bending, and take

a contribution to the molecular potential energy as

UABCD ¼ 1
2
kABCDð�ABCD � �e;ABCDÞ2 ð5:15Þ

where � is the dihedral angle, as above.

5.4.4 Out-of-plane angle potential (inversion)

Next we consider the out-of-plane potential terms. Imagine molecule ABCD in

Figure 5.4 to be ammonia, a molecule with a very low barrier to inversion; as  
changes from positive to negative, the molecule inverts. We can write the inversion

Figure 5.4 Out-of-plane (inversion) potential
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potential either in terms of the angle indicated ( ) or in terms of the height (h) of

atom D above the plane of atoms A, B and C. Four examples follow:

U ¼ k1

2 sin 2 e

ð cos � cos eÞ2

U ¼ k2h
2

U ¼ k3ð1þ k4 cos ðn ÞÞ
ð5:16Þ

where n is a periodicity parameter, and finally

U ¼ k5ð1þ cos ðn � k6ÞÞ

The ks are constants that have to be fixed against experiment, and  e is the equilib-

rium value.

5.4.5 Non-bonded interactions

I mentioned earlier that molecular mechanics force fields have to be transferable from

molecule to molecule, and explained the necessity for non-bonded interactions. These

are usually taken to be Lennard-Jones 12–6 type, and they are included between all

non-bonded pairs of atoms.

UL-J ¼ C12

R12
� C6

R6

The Born–Mayer–Huggins potential

UBMH ¼ A expð�BRÞ � C0
6

R6
� C8

R8

is sometimes used when dealing with polar species. B is a parameter determined

by the size and ‘softness’ of an ion, C0
6 (not the same as C6 in UL-J) has to do

with dipole–dipole interactions whilst C8 is determined by dipole–quadrupole

interactions.

Some force fields make special provision for hydrogen-bonded atoms; they treat

them as non-bonded interactions but soften the Lennard-Jones 12–6 potential for

A��H � � �B to a 12–10 version

UHB ¼ C12

R12
HB

� C10

R10
HB

ð5:17Þ

Other authors take the view that hydrogen bonds are perfectly respectable chemical

bonds that should be treated just like any other bond. They are therefore given a force

constant and so on.
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5.4.6 Coulomb interactions

Many force fields take account of electronegativity differences between atoms and

add electrostatic terms. Atomic charges QA and QB are assigned to atoms A and B

according to the rules of the particular force field, and we write

UAB ¼ 1

4�E0

QAQB

RAB

5.5 Modelling the Solvent

I should remind you that the electrostatic expression above relates only to point

charges in free space. In the presence of a dielectric material (such as water), the

force between point charges is reduced by a factor Er called the relative permittivity.

Many force fields were developed at a time when it was not feasible to include a

solvent explicitly in such calculations.

Various attempts were made to allow for the effect of a solvent; the most obvious

thing to do is to alter the relative permittivity even though no solvent molecules are

actually taken into account. There is no agreement between authors as to the correct

value of Er and values ranging between 1 and 80 have been used for water. Some force

fields take Er proportional to the distance between the point charges. I will explain

some more up-to-date ways of modelling the solvent in later chapters.

5.6 Time-and-Money-Saving Tricks

All the contributions to the molecular potential energy U given above can be done on

a pocket calculator. The larger the molecular system, the larger the number of in-

dividual contributions to U and the relationship between molecular size and compu-

tational effort is roughly dependent on the square of the number of atoms. Over the

years, people have tried to reduce the computational time for a given problem by the

use of various tricks of the trade. Two such methods are as follows.

5.6.1 United atoms

Some professional force fields use the so-called united atom approach. Here, we regard

(for example) a CH3 group as a pseudo-atom, X, and develop parameters for a C(sp2)��
X stretch, and so on. It is customary to treat methyl, methylene and methane groups as

united atoms, especially when dealing with large biological systems.
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5.6.2 Cut-offs

For a large molecule, there are many more non-bonded interactions than bonded inter-

actions. Molecular mechanics force fields very often cut these off to zero at some finite

distance, in order to save computer time. This can sometimes lead to mathematical

difficulties because of the discontinuity, and various ingenious methods have been pro-

posed to circumvent the problem (other than actually retaining the terms). I will show

you in a later chapter that there are other problems associatedwith this cut-off procedure;

it’s a real problem, not just one that I have mentioned out of historical interest. Figure 5.5

shows a Lennard-Jones 12–6 potential with a cut-off (after a certain value of R, the

potential is set to zero).

5.7 Modern Force Fields

A ‘standard’ modern molecular mechanics force field can be written

U ¼
X
stretch

UABþ
X
bend

UABC þ
X

dihedral

UABCD þ
X

out-of-plane
UABCD

þ
X

non-bonded
UAB þ

X
Coulomb

UAB ð5:18Þ

Figure 5.5 Schematic cut-off of L-J potential
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or written explicitly in terms of the contributions discussed above

U ¼
X
bonds

1
2
kABðRAB � Re;ABÞ2 þ

X
bends

1
2
kABCð�ABC � �e;ABCÞ2

þ
X

dihedrals

U0

2
ð1� cos ðnð�� �0ÞÞÞ þ

X
out-of-plane

k

2 sin 2 e

ð cos � cos eÞ2

þ
X

non-bonded

�
C12
AB

R12
AB

� C6
AB

R6
AB

�
þ 1

4�E0

X
charges

QAQB

RAB

ð5:19Þ

5.7.1 Variations on a theme

There are a number of variants of this expression in the literature. Some force fields

contain mixed terms such as

k

2
ðR� ReÞð�� �eÞ

which couple together the bond-stretching modes with angle bending. Others use

more complicated expressions for the individual bending and stretching terms.

Some force fields allow interactions between lone pairs, which are often referred

to as non-atomic interaction centres. In addition, there are specialist force fields that

are appropriate for restricted ranges of compounds such as ions, liquid metals and

salts.

Force fields are determined by one of two routes. First, in an ideal world, one might

calibrate their parameters against accurate quantum mechanical calculations on

clusters of small molecules. The alternative is to calibrate against experimental

data such as crystal structure, infrared absorption, X-ray measurements and liquid

properties such as density, enthalpy of vaporization, Gibbs energies of solvation and

the like. To date, almost all modern force fields have been obtained by the latter

approach.

The choice of a particular force field for a given application should depend on the

type of system for which the force field was designed. For example, some force fields

have been calibrated against the solution properties of amino acids. These are ob-

viously the ones to choose when it comes to modelling proteins in solution.

Finally, I must emphasize the importance of the atom type (i.e. the chemical

environment). The chemical environment of an atom can be distinguished by

1. its hybridization

2. its formal atomic charge

3. its nearest neighbours.
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For example, one well-known force field distinguishes five types of oxygen atom:

1. a carbonyl oxygen

2. a hydroxyl oxygen

3. a carboxylic or phosphate oxygen

4. an ester or ether oxygen

5. an oxygen in water.

The interactions are calculated according to atom type, not the ‘raw’ elements.

5.8 Some Commercial Force Fields

With these principles in mind, it is time to examine some of the common force fields

found in professional molecular modelling programs.

5.8.1 DREIDING [6]

This force field is parameterized for all atom types that any chemist would expect for

the elements H, C, N, O, P, S, F, Cl, Br and I. In terms of the ‘standard’ expression

we write

U ¼
X
bonds

1
2
kABðRAB � Re;ABÞ2 þ

X
bends

1
2
kABCð cos �ABC � cos �e;ABCÞ2

þ
X

dihedrals

U0

2
ð1� cos ðnð�� �0ÞÞÞ þ

X
out-of-plane

k

2
ð �  eÞ2

þ
X

non-bonded

�
C12
AB

R12
AB

� C6
AB

R6
AB

�
ð5:20Þ

5.8.2 MM1 [7]

In his 1976 Review, Norman Allinger essentially defined what we now call the MM1

force field. He treated hydrocarbons only, ignored the Coulomb terms and used an

exp-6 Lennard-Jones potential.
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Once all the standard cases have been successfully treated, one naturally looks at

the difficult ones. In the case of hydrocarbons, these difficult cases comprise strained

rings such as cyclobutane. The problem with cyclobutane is this; whilst having all

carbon atoms planar can minimize the angular deformation from tetrahedral, the

molecule is actually puckered by a substantial angle from planarity. In addition,

the C��C bond lengths are unusually large. The obvious solution is to say that a

four-membered ring is different from any other hydrocarbon and that the bond angle

does not have a natural tetrahedral value, but one then goes down the undesirable path

where all difficult cases have their own set of parameters.

Allinger and others introduced a variety of ‘mixed’ terms into the standard

molecular mechanics potential; for example, a bond length–bond angle term and a

torsion–bend interaction. Figure 5.6 shows typical bicyclic and related hydrocar-

bons described in the 1976 review [7].

5.8.3 MM2 (improved hydrocarbon force field)

Allinger introduced MM2 in 1977 [8]. At the time there was a deal of discussion in

the literature about how different force fields should represent hydrogen atoms, i.e. as

‘hard’ or ‘soft’ atoms. A hard atom was said to be one whose plot of force vs. distance

(in the diatom) showed a steep slope. A soft atom was one where the slope was

gentler. It all boiled down to the repulsive part of the non-bonded interactions but

eventually Allinger decided to retain his exp-6 intermolecular potential.

Figure 5.6 Bicyclic and related molecules
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MM2 differs from MM1 in three main respects:

1. The dihedral term was extended to

U ¼ U1

2
ð1þ cos!Þ þ U2

2
ð1þ cos 2!Þ þ U3

2
ð1þ cos 3!Þ ð5:21Þ

where each of the Us was found by calibration against experiment.

2. The bending term was extended to

UABC ¼ 1
2
kABCð�ABC � �e;ABCÞ2 þ 1

2
k0ABCð�ABC � �e;ABCÞ6 ð5:22Þ

3. All mention of cross terms between bond stretches and bends were finally dropped.

A great deal of importance was attached to the calculation of enthalpies of forma-

tion, and 42 hydrocarbons were treated. The author claimed that his enthalpy results

were comparable with experiment in terms of experimental error.

5.8.4 AMBER [9]

AMBER (an acronym for Assisted Model Building and Energy Refinement) is a force

field for the simulation of nucleic acids and proteins. It was calibrated against experi-

mental bond lengths and angles obtained from microwave, neutron diffraction and ac-

curate quantum chemical studies. The parameters were then refined with molecular

mechanics studies on model compounds such as tetrahydrofuran, deoxyadenosine, di-

methyl phosphate, 9-methyladenine-1-methylthymine hydrogen bonded complex and

others. The model differs from our standard expression, Equation (5.19), in four ways.

1. Hydrogen bonds were included explicitly with a 12–10 potential

UH-bonds ¼
X

H-bonds

�
C12

R12
� C10

R10

�

2. An attempt was made to include solvent effects by inclusion of the Coulomb term

with a distance-dependent relative permittivity.

3. The AMBER force field is a ‘united atom’ one, and hydrogen atoms bonded to

carbons are not explicitly included. They are absorbed into the atom type

parameters for neighbouring atoms.

4. Lone pairs were explicitly included for sulfur hydrogen bonding.

There are a number of different versions of AMBER; the original united atom version

was later extended to include all atoms. Just to give you a flavour, one modern
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software package has the following choices

1. AMBER 2

2. AMBER 3

3. AMBER for saccharides

4. AMBER 94

5. AMBER 96

5.8.5 OPLS (Optimized Potentials for Liquid Simulations) [10]

Like AMBER, OPLS is designed for calculations on amino acids and proteins. The

easiest thing is for me to quote part of the Abstract to the keynote paper:

A complete set of inter molecular potential functions has been developed for use in

computer simulations of proteins in their native environment. Parameters have

been reported for 25 peptide residues as well as the common neutral and charged

terminal groups. The potential functions have the simple Coulomb plus Lennard-

Jones form and are compatible with the widely used models for water, TIP4P,

TIP3Pand SPC. The parameters were obtained and tested primarily in conjunction

with Monte Carlo statistical mechanics simulations of 36 pure organic liquids and

numerous aqueous solutions of organic ions representative of subunits in the side

chains and backbones of proteins . . . . Improvement is apparent over the AMBER

united-atom force field which has previously been demonstrated to be superior to

many alternatives.

I will explain about TIP and Monte Carlo in later chapters. Each atomic nucleus is

an interaction site, except that CHn groups are treated as united atoms centred on the

carbon. Hydrogen bonds are not given any special treatment, and no special account

is taken of lone pairs.

5.8.6 R. A. Johnson [11]

I mentioned earlier the existence of a number of specialist force fields. The Johnson force

field is specific to the pure elements Fe, W and V. The pair potential terms are written

U ¼ a1ðR� b1Þ3 þ c1Rþ d1 if "1 < R< "2
¼ a2ðR� b2Þ3 þ c2Rþ d2 if "2 < R< "3
¼ a3ðR� b3Þ3 þ c3Rþ d3 if "3 < R< "4
¼ 0 if "4 < R

ð5:23Þ

where R is the distance between a pair of atoms, the "s are characteristic distances

and the as, bs, cs and ds are parameters.
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6 The Molecular Potential

Energy Surface

For one-dimensional problems, we speak about a molecular potential energy curve.

The simple potential energy curves we have met so far have all shown a single

minimum. From now on, life gets more complicated (or interesting, depending on

your viewpoint).

6.1 Multiple Minima

The plot in Figure 6.1 shows how the ethane molecular potential varies with

dihedral angle. The figure shows a full rotation of 360�; all the remaining geo-

metrical variables were kept constant. Note that there are three identical minima

(and of course three identical maxima), and the differences between maxima and

minima are all the same. The ‘1D’ in the figure means that it is a one-dimen-

sional plot. The chemical interpretation is that these three minima correspond to

conformers where the hydrogens are as far apart as possible (i.e. in the trans

position). The maxima correspond to conformers where the C��H bonds eclipse

each other.

Multiple minima are common in potential energy surface studies, as we will

see. Consider now the substituted ethane CH2Cl��CH2Cl. A plot of the potential

energy vs. the ClC��CCl dihedral angle gives Figure 6.2. There are three minima,

one lower than the other two. The three minima are referred to as local minima

and the minimum at 180� is called the global minimum. The global minimum

corresponds to a conformation with the two chlorines as far apart as possible. The

two other minima correspond to conformers where each chlorine is trans to

hydrogen.



6.2 Saddle Points

One-dimensional potential energy curves show minima, maxima and points of

inflexion. Two and higher-dimensional surfaces often show a new feature called a

saddle point. Saddle points are a maximum in some variables and a minimum in the

remainder. The one type of saddle point that interests chemists is where we have a

minimum in all variables but one, and a maximum in this remaining one. This

corresponds to a transition state in theories of reaction mechanisms. I just mention

it here, despite the fact that molecular mechanics cannot properly treat bond breaking

or bond making. I am not going to deal in detail with saddle points until I have given

you a firm grounding in quantum chemistry, but you should be aware of their ex-

istence. There are also points where the molecular potential energy is a maximum.

We are rarely interested in these.

Figure 6.1 Ethane dihedral motion

Figure 6.2 CH2Cl��CH2Cl
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Figure 6.3 shows a saddle point (for the function f ðx; yÞ ¼ x2 � y2). The

vertical axis shown the function values, and the two horizontal axes are x and y.

The apocryphal reason why such points are called saddle points is that the figure

above resembles a horse’s saddle. Molecular potential energy surfaces generally

contain all possible features and you might like to consider the example shown in

Figure 6.4, which shows two (equal) minima and a saddle point.

In this Chapter I want to show you how we locate stationary points on the mole-

cular potential energy surface, and how we characterize them. I will start with the

second problem, because it is straightforward.

Figure 6.3 Saddle point

Figure 6.4 Two minima and a saddle point
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6.3 Characterization

For a linear molecule with N atoms, there are in total 3N degrees of freedom. Three

of these are translational degrees of freedom, three are rotational (two for a linear

molecule) and the remaining p¼ 3N� 6 (3N� 5 if linear) are vibrational degrees of

freedom. We therefore need p independent variables to describe them, and these are

known as the internal coordinates. It is traditional to denote such variables by the

letter q; if I write them q1, q2, . . . , qp, then the molecular potential energy will depend

on these qs and the normal coordinates will be linear combinations of them. For the

minute, don’t worry about the nature of these variables. In Chapter 5, I showed how

to collect such variables into the column vector q (a matrix of dimension p� 1)

q ¼
q1
q2
. . .
qp

0
BB@

1
CCA

and I also defined the gradient of U, g¼ grad U, as a column vector, and its hessian H

as a symmetric square matrix

g ¼

@U

@q1

@U

@q2
. . .

@U

@qp

0
BBBBBBBBB@

1
CCCCCCCCCA
; H ¼

@2U

@q21
. . .

@2U

@q1@qp

. . . . . . . . .

@2U

@qp@q1
. . .

@2U

@q2p

0
BBBBBB@

1
CCCCCCA

The molecular potential energy depends on the qs, and I will write it as U(q). At a

stationary point, the gradient is zero; it’s as easy as that. In order to characterize the

stationary point, we have to find the eigenvalues of the hessian calculated at that

point. If the eigenvalues are all positive, then the point is a minimum. If the eigen-

values are all negative, then the point is a maximum. Otherwise the point is a saddle

point. Saddle points of interest to chemists are those that are a minimum in all

degrees of freedom except one, and it transpires that the hessian has just one negative

eigenvalue at such a point. They are sometimes called first-order saddle points.

6.4 Finding Minima

Molecular mechanics tends to be concerned with searching the molecular potential

energy surfaces of very large molecules for minima (equilibrium structures). Many
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mathematicians, scientists and engineers are concerned with related problems. The

field of study is now an established part of applied mathematics, and is referred to as

optimization theory. An optimization problem involves minimizing a function of

several variables, possibly subject to restrictions on the values of the variables. There

is no single universal algorithm for optimization, and it is necessary for us to spend a

little time dealing with the different methods of interest.

I should tell you that one speaks of optimization and less commonly of minimiza-

tion or maximization; the latter two are equivalent, for maximization of the function f

is the same as minimization of the function � f.

The first molecular mechanics optimization seems to have been carried out by F. H.

Westheimer [12] in 1956, who did the calculations ‘by hand’. The first computer

calculations seem to have been done by J. B. Hendrickson in 1961 [13]. Neither of

their methods was generally applicable to molecules.

Many algorithms have been developed over a number of years for the location of

stationary points, some of which are suitable for molecular mechanics calculations,

some of which are suitable for quantum mechanical calculations and many of which

are not particularly suited to either. In molecular mechanics we tend to deal with large

molecules and consequently the molecular potential energy function will depend on

hundreds if not thousands of variables. On the other hand, evaluation of the potential

energy at each point on the hypersurface is relatively simple.

Different considerations apply to quantum chemical calculations, to be dealt with

later in the book. Calculation of the energy at points on the surface is far from easy

but the number of variables tends to be smaller.

As stated above, transition states are special cases of saddle points; they are

stationary points on the surface where the hessian has just one negative eigen-

value. Transition state searching is a hot topic in chemistry, and a number of special-

ist algorithms have been proposed. I will deal with transition states later in the

book.

6.5 Multivariate Grid Search

This is the oldest method for finding minima, and it has a long history. What we do is

the following.

1. Choose a suitable grid for the variables.

2. Choose a starting point A on the grid.

3. For each variable q1, q2, . . . , qp evaluate the molecular potential energy U at the

two points surrounding A (as determined by the grid size).

4. Select the new point for which U is a minimum, and repeat steps 3 and 4 until the

local minimum is identified.
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The method is intuitive, and it is apparent that a local minimum will eventually be

found.

6.5.1 Univariate search

This is sometimes called the cyclic search, for we perform successive one-dimen-

sional searches for each of the variables in turn.

1. Choose a starting point A.

2. Minimize U(q) for each variable q1, q2, . . . , qp in turn.

3. Repeat the cycle as necessary.

The second step is the crucial one, and a favourite strategy is quadratic interpolation;

suppose that x1, x2 andx3 are three successivevaluesofoneof thevariablesqi (say), chosen

such that they bracket a minimum in that particular variable, as shown in Figure 6.5.

We fit the three points to a quadratic, and a little algebra shows that the minimum �
is given by

� ¼ 1

2

Uðx1Þðx23 � x22Þ þ Uðx2Þðx21 � x23Þ þ Uðx3Þðx22 � x21Þ
Uðx1Þðx3 � x2Þ þ Uðx2Þðx1 � x3Þ þ Uðx3Þðx2 � x1Þ ð6:1Þ

The method is also known as a line search.

6.6 Derivative Methods

It is conventional to divide optimization algorithms into those methods that make use

of derivatives (gradients and hessians), and those that do not. Neither of the two

methods discussed so far makes use of derivatives. Some authors use a further sub-

Figure 6.5 Univariate minimization

84 THE MOLECULAR POTENTIAL ENERGY SURFACETHE MOLECULAR POTENTIAL ENERGY SURFACE



division into first-order derivative methods (where we make use of the gradient), and

second-order derivative methods (where we use both the gradient and the hessian).

There are many algorithms in the literature; I can only give you a flavour.

6.7 First-Order Methods

6.7.1 Steepest descent

This first-order derivative scheme for locating minima on molecular potential energy

surfaces was put forward by K. Wiberg in 1965 [14]. His basic algorithm can be

summarized as follows.

1. Calculate U for the initial structure.

2. Calculate U for structures where each atom is moved along the x, y and z-axes by a

small increment. Movement of some atoms will lead to a small change in U, whilst

movements of other atoms will lead to a large change in U. (The important

quantity is clearly the gradient.)

3. Move the atoms to new positions such that the energy U decreases by the

maximum possible amount.

4. Repeat the relevant steps above until a local minimum is found.

Wiberg’s method would today be classified as ‘steepest descent’; the idea is that

we start from point A on a molecular potential energy surface and identify the

fastest way down the surface to the local minimum. Figure 6.6 below shows a

Figure 6.6 Steepest descents
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two-dimensional potential energy surface. The negative of grad U at point A gives the

maximum rate of decrease of U, and also the direction in which to proceed (the

gradient vector is perpendicular to the contour at A). The only problem is to choose

a step length; this can be done by a line search along the vector indicated, and it is

clear that U will pass through a linear minimum around point B.

We repeat the process from point B until the local minimum is (eventually)

reached. It can be proved that every step is necessarily at right angles to the one

before it, and this leads to one of the infuriating characteristics of the steepest descent

method: it takes very many tiny steps when proceeding down a long narrow valley

because it is forced to make a right-angled turn at every point, even though that might

not be the best route to the minimum.

At this point, I should introduce some notation that is universally understood by

workers in the field of optimisation. Like it or not, you will come across it when you

read the technical literature.

All the algorithms that I will describe are iterative; that is, we start from some

initial point A on a surface, and then move on in cycles, according to an algorithm,

hopefully toward a stationary point. Each cycle of the calculation is called an itera-

tion, and people often use the symbol k to keep track of the iteration count. I am

going to follow common practice and add a superscript (k) to variables in order to

indicate this iteration count. Sometimes I will just write it as k, when there is no

possibility that you will regard the iteration count as meaning ‘to the power of’.

6.7.2 Conjugate gradients

Starting from point q(k) (where k is the iteration count), we move in a direction given

by the vector

VðkÞ ¼ �gðkÞ þ �ðkÞVðk�1Þ ð6:2Þ

where g(k) is the gradient vector at point q(k) and �(k) is a scalar given by

�ðkÞ ¼ ðgðkÞÞTgðkÞ
ðgðk�1ÞÞTgðk�1Þ ð6:3Þ

I have used the superscript T to denote the transpose of a matrix. The line search

method is then used to determine the distance to be moved along this vector. This

algorithm was first proposed by R. Fletcher and C. M. Reeves [15].

Conjugate gradients methods produce a set of directions that overcome the oscil-

latory behaviour of steepest descents in narrow valleys. Successive directions are not

at right angles to each other. Such methods are also referred to as conjugate direction

methods.
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E. Polak and G. Ribi�eere [16] proposed an alternative form for the scalar �(k)

�ðkÞ ¼ ðgðkÞ � gðk�1ÞÞTgðkÞ
ðgðk�1ÞÞTgðk�1Þ ð6:4Þ

For a purely quadratic function, their method is identical to the original Fletcher–

Reeves algorithm. The authors pointed out that most Us encountered in chemistry are

only approximately quadratic, and that their method was therefore superior.

6.8 Second-Order Methods

6.8.1 Newton–Raphson

Second-order methods use not only the gradient but also the hessian to locate a

minimum. Before launching into any detail about second-order methods, it is worth

spending a little time discussing the well-known Newton–Raphson method for find-

ing the roots of an equation of a single variable. This is a simple illustration of a

second-order method. For illustration, consider the function

f ðxÞ ¼ x exp ð�x2Þ
shown as the full curve in Figure 6.7. It is obvious by inspection that our chosen

function has roots at x¼ 0 and at plus and minus infinity, but suppose for the sake of

Figure 6.7 Newton–Raphson
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argument that we don’t know that the function has a root at x¼ 0. We might make a

guess that the function has a root at (say) x¼ 0.4. This is our first guess, so I set the

iteration count¼ 1 and write the guess x(1) (also, the function has a value of

f (1)¼ 0.3409). Thus we have

xð1Þ ¼ 0:4; f ð1Þ ¼ 0:3409

The function can be differentiated to give

df

dx
¼ ð1� 2x2Þ exp ð�x2Þ

and the gradient g(1) at x(1)¼ 0.4 has a value 0.5795. The tangent line at x(1)¼ 0.4 is

therefore

y ¼ 0:5795xþ 0:1091

which I have shown as a full straight line on Figure 6.7. A little algebra shows that

this line crosses the x-axis at

xð2Þ ¼ xð1Þ � f ð1Þ

gð1Þ

This crosses the x-axis at �0.1883 and this value is taken as the next best estimate x(2)

of the root. I then draw the tangent line at x(2), which is shown dotted in Figure 6.7

and so on. Table 6.1 summarizes the iterations.

There are a few points worth noting. First, the convergence is rapid. In fact, for a

quadratic function Newton’s method will locate the nearest root in just one step.

Second, the choice of starting point is crucial. If I start with x¼�0.5, then the

successive estimates simply oscillate between þ0.5 and �0.5. If I start with jxj< 0.5,

then the method converges to the root x¼ 0. If I start with jxj> 0.5, then we find the

infinite roots.

The method can be easily modified to search for stationary points, which are

characterized by a zero gradient. The iteration formula

xðkþ1Þ ¼ xðkÞ � f ðkÞ=gðkÞ ð6:5Þ

Table 6.1 Iterations from Figure 6.7

k x(k) f (k) g(k)

1 0.4 0.3409 0.5795

2 �0.1882 �0.1817 0.8968

3 1.4357� 10�2 1.4354� 10�2 0.9994

4 �5.9204� 10�6 �5.9204� 10�6 1.0000

5 0.0000 0.0000 1.0000
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becomes

xðkþ1Þ ¼ xðkÞ � gðkÞ=HðkÞ ð6:6Þ

where H(k) is the value of the second derivative at the current point x(k). For this

particular function, we have

HðxÞ ¼ ð4x3 � 6xÞ exp ð�x2Þ

and I can now repeat the argument given above, but this time searching for stationary

points rather than roots of the equation.

Figure 6.8 shows the gradient (the full curve), and the first two iterations of the

Newton–Raphson algorithm for the stationary point, starting at x(1)¼ 0.2. The gra-

dient is zero at infinity and at x¼�0.7071

In the case of a function of many variables x1, x2, . . . , xn the Newton–Raphson

optimization algorithm can be written

Xðkþ1Þ ¼ XðkÞ � ðHðkÞÞ�1gðkÞ ð6:7Þ

where I have collected the xs into a column vector X and so on. The formula can be

easily derived from the Taylor expansion.

We therefore have to calculate the gradient and the hessian at each successive point

in the iterations. Normally, the algorithm needs an infinite number of steps but it will

find the minimum of any quadratic function in just one step, starting at an arbitrary

Figure 6.8 Location of the stationary point
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point on the surface. For example, if we consider the function f(x, y)¼ x2þ y2, which

has a minimum at x¼ 0, y¼ 0, we have

g ¼ 2x

2y

� �
; H ¼ 2 0

0 2

� �

H�1 ¼
1
2

0

0 1
2

 !

If we start from the point (2, 2), then we calculate

Xð2Þ ¼ 2

2

� �
�

1
2

0

0 1
2

 !
4

4

� �

which is a null vector.

In practice molecular potential energy surfaces are rarely quadratic and so an

infinite number of steps will be required. We simply stop the calculation once a given

number of decimal places have been achieved.

6.8.2 Block diagonal Newton–Raphson

There are a number of variations on the Newton–Raphson method, many of which

aim to eliminate the need to calculate the full hessian. Awidely used algorithm is the

block diagonal Newton–Raphson method, where just one atom is moved at each

iteration. This means that all the elements of the hessian are zero except for a block

along the diagonal describing the atom in question.

6.8.3 Quasi-Newton–Raphson

In addition, there are a number of so-called quasi-Newton–Raphson methods that

gradually build up the inverse hessian in the successive iterations. At each iteration,

the vector X(k) is updated to X(k þ 1)

Xðkþ1Þ ¼ XðkÞ � ðHðkÞÞ�1
gðkÞ

using the gradient and the current estimate of the inverse hessian. Having made the

move to the new position, H�1 is updated from its value at the previous step by an

approximate procedure depending on the algorithm employed. The methods of

Davidon–Fletcher–Powell, Broyden–Fletcher–Goldfarb–Shanno and Murtaugh–

Sargent are often encountered, but there are many others.
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6.8.4 The Fletcher–Powell algorithm [17]

The Fletcher–Powell algorithm is a derivative method where elements of the gradient

and the hessian are estimated numerically each cycle. Essentially, it assumes that the

surface is quadratic around each chosen point, and finds the minimum for the ap-

proximate quadratic surface. Steps in the algorithm are as follows.

1. Calculate the energy U(1) for an initial geometry X(1), and at positive and negative

displacements for each of the coordinates.

2. Fit a quadratic for each of the coordinates according to the formula

UðXÞ ¼ Uk þ
Xp
i¼1

ðgki ðXi � Xk
i Þ þ 1

2
Hk

iiðXi � Xk
i Þ2Þ ð6:8Þ

(this essentially gives numerical estimates of the gradient and the hessian; I have

dropped the brackets round the iteration count for clarity).

3. Find a minimum of this expression; we have

@U

@Xi

¼ 0

gki þ Hk
iiðXi � Xk

i Þ ¼ 0

cki ¼ Xi � Xk
i ¼ � gki

Hk
ii

ð6:9Þ

The last term gives the correction to coordinate xi; if these are small enough then

stop.

4. Calculate the energy at points Xk, Xkþ ck and Xkþ 2 ck.

5. Fit a quadratic to these three points as above.

6. Find the energy minimum, as above. This gives point Xkþ1 on the surface.

7. Calculate the gradient gkþ1 at this point, increase the iteration count and go back

to step 3.

6.9 Choice of Method

The choice of algorithm is dictated by a number of factors, including the storage

and computing requirements, the relative speeds at which the various parts of the

CHOICE OF METHODCHOICE OF METHOD 91



calculation can be performed and the availability of an analytical gradient and

hessian. Analytic first and second derivatives are easily evaluated for molecular

mechanics force fields; the only problem might be the physical size of the hessian.

For this reason, molecular mechanics calculations on large systems are often per-

formed using steepest descent and conjugate gradients. The Newton–Raphson meth-

od is popular for smaller systems, although the method can have problems with

structures that are far from a minimum. For this reason, it is usual to perform a

few iterations using, for example, steepest descent before switching to Newton–

Raphson. The terms ‘large’ and ‘small’ when applied to the size of a molecule are

of course completely relative and are dependent on the computer power available

when you do the calculation.

In cases where the differentiation cannot be done analytically, it is always possible

to estimate a gradient numerically; for example in the case of a function of one

variable �
df

dx

�
x¼x1

� f ðx1 þ DÞ � f ðx1Þ
D

where D is small. Algorithms that rely on numerical estimates of the derivatives need

more function evaluations than would otherwise be the case, so there is a delicate

trade-off in computer time. It is generally supposed that gradient methods are super-

ior to non-gradient methods, and it is also generally thought to be advantageous to

have an analytical expression for the gradient and hessian.

6.10 The Z Matrix

For a non-linear molecule of N atoms, there are p¼ 3N� 6 vibrational degrees of

freedom that should be described by p independent coordinates q1, q2, . . . , qp and at

first sight all should be varied in a geometry optimization. These coordinates are often

defined by modelling packages using the so-called Z matrix, which gives a way of

building up a molecular geometry in terms of valence descriptors such as bond

lengths, bond angles and dihedral angles. A few examples will help to make things

clear. First of all water, for which I will take a bond length of 95.6 pm (0.956 Å) and

an H��O��H bond angle of 104� (see Figure 6.9).

I can start my Z matrix at any atom, and that atom occupies a line by itself. I chose

oxygen, which I have called Oxy. H1 is joined to oxygen with a bond length of ROH

(0.956 Å). I have assumed that the bond lengths are equal. H2 is also joined to oxygen

with a bond length of 0.956 Å, and the H2��oxygen��H1 bond angle is Ang (104�).
Note that I have subconsciously added a symmetry constraint by requiring that the

two bond lengths be equal. This means that I am effectively reducing the number of

degrees of freedom, for the purposes of geometry optimization. We will see later that

this is not necessary.
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I hadn’t any particular software in mind when I wrote this example (although it

would be fine for the GAUSSIAN suite, as we will see in later chapters). There are

many pits for the unwary to fall into, some simple and some subtle. First, two simple

ones. I didn’t call the first atom ‘oxygen’ because many packages limit you to a small

number of characters for atomic descriptors. Also, I was careful to include a decimal

point for the starting values of ROH and Ang. Many packages still expect floating-

point numbers rather than integers.

For molecules having more than three atoms, we also have to define the dihedral

angles in addition to bond lengths and bond angles. Figure 6.10 shows a Z matrix for

ethene, where I have made a lot of assumptions about the molecular geometry. All the

C��H bond lengths are equal, and all the HCC bond angles are also taken to be equal.

I have also assumed that the molecule is planar (as indeed it is, in its electronic

ground state).

Figure 6.9 Z matrix for water

Figure 6.10 Ethene Z matrix
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6.11 Tricks of the Trade

There are two important tricks of the trade, should you want to input geometries

using the Z matrix. The first trick relates to linear structures, the second to symme-

trical ring compounds.

6.11.1 Linear structures

Many optimization algorithms run into trouble when trying to optimize geometries

having bond angles of 180�. The way around the problem was (and still is) to

introduce dummy atoms which are often given a symbol X. Dummy atoms play no

part in the calculation, apart from defining the molecular geometry. For example, I am

sure you know that ethyne is linear. One correct way to write its Z matrix is as shown

in Figure 6.11.

You should by now have picked up a subtle point: I am making use of chemical

knowledge to make assumptions about the equality or otherwise of bonds, bond

angles and dihedral angles. That’s why I took the two C��H bonds to be equal in

the ethyne Z matrix above. I am really putting an answer into the question, and I

should perhaps have written the ethyne Z matrix as in Figure 6.12.

I freely admit that Z matrices are not easy things to write for large molecules, and

in any case downloads of molecular geometries (for example, from the Protein Data

Bank) are usually Cartesian coordinates. There is also a problem to be addressed,

namely that there are at most 3N� 6 vibrational degrees of freedom for a non-linear

molecule that is described by 3N Cartesian (or other) coordinates. The Z matrix has to

Figure 6.11 Ethyne Z matrix
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be correctly written in order to describe these 3N� 6 internal coordinates, and a

frequent cause of problems in optimizations specified by a Z matrix was (and still

is) the specification of too many or too few internal coordinates. Too few coordinates

corresponds to a constraint on the geometry and means that the full surface is not

searched. Too many coordinates results in a redundancy leading to zero eigenvalues

in the hessian (which cannot then be inverted). If there are no dummy atoms and no

symmetry constraints, then the Z matrix must describe 3N� 6 unique internal co-

ordinates, all of which should be varied. When dummy atoms are present, some of the

Z matrix parameters are redundant and must be held fixed. Their coordinates are not

varied.

6.11.2 Cyclic structures

The second trick is to do with cyclic structures. Imagine furan (Figure 6.13), and you

might think to construct the Z matrix by starting (for example) with the oxygen

(called O this time, for the sake of variety) and working around the ring.

This Z-matrix will certainly work, but it will lose the symmetry of the molecule

(C2v) because of tiny numerical rounding errors. By the time you get back to oxygen,

small errors in the bond length–bond angle calculations (much less than 1%) will

have destroyed the symmetry of the molecule. This may not matter to you, since most

organic molecules have no symmetry elements apart from the identity operation and

there is a strong argument in favour of letting the geometry optimization procedure

sort out the symmetry, rather than making any assumption about the point group. If

the molecule genuinely has C2v symmetry, then this conclusion ought to follow from

your calculations. Inclusion of the symmetry constraint, as in Figure 6.14, leads to

fewer variables in the optimization.

Figure 6.12 Improved Z matrix
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Figure 6.13 Naive furan

Figure 6.14 Symmetry-preserving furan
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In the early days of geometry optimizations it was usual to take these kinds of

shortcuts in order to save on computer resource. You probably noticed that I took all

CH bonds equal in my furan examples above, yet there are subtle, systematic differ-

ences even in CH bond lengths, and these should come out of a respectable calcula-

tion. Computer resource is much cheaper than was once the case, and the assumptions

of constant bond length, etc. are no longer needed.

The Z matrix method is often claimed to be intuitive to chemists because it uses the

everyday concepts of bond lengths, bond angles and so on. On the other hand, many

databases give molecular geometries in terms of Cartesian coordinates, not internal

ones.

6.12 The End of the Z Matrix

Geometry optimization is of major importance in modern molecular modelling. Most

of the early packages used internal coordinates as input by the Z matrix. Virtually all

modern (gradient) optimization procedures require calculation of the hessian H

and=or its inverse. In practice, it is usual to make an estimate and update these

estimates at every iteration. Sometimes the initial hessian is taken to be the unit

matrix, sometimes not. A great strength of the internal coordinate method is that

construction of the initial Hessian can be based on chemical ideas; the individual

diagonal elements of H are identified as bond-stretching and bond-bending force

constants, etc. Also, the redundant translational and rotational degrees of freedom

have already been eliminated.

J. Baker and W. J. Hehre [18] investigated the possibility of performing gradient

geometry optimization directly in terms of Cartesian coordinates. Their key finding

concerned the identification of a suitable initial hessian, together with a strategy for

updates. They reported on a test set of 20 molecules, and argued that optimization in

Cartesian coordinates can be just as efficient as optimization in internal coordinates,

provided due care is taken of the redundancies.

There are actually two mathematical problems here, both to do with the Newton–

Raphson formula. Modern optimizations use gradient techniques, and the formula

Xðkþ1Þ ¼ XðkÞ � ðHðkÞÞ�1gðkÞ

demonstrates that we need to know the gradient vector and the hessian in order

to progress iterations. In the discussion above, I was careful to stress the use of p

independent variables q1, q2, . . . , qp.
As stressed many times, there are p¼ 3N� 6 independent internal coordinates for

a non-linear molecule but 3N Cartesian coordinates. The familiar Wilson B matrix

relates these

q ¼ BX ð6:10Þ
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B has 3N rows and p columns, and the rows of B are linearly dependent. The

molecular potential energy depends on the qs, and also on the Xs, but we need to

be careful to distinguish between dependent and independent variables. We can

certainly write gradient vectors in terms of the two sets of variables

gradU ¼

@U

@q1

@U

@q2
. . .

@U

@qp

0
BBBBBBBBBB@

1
CCCCCCCCCCA
; ðgradUÞC ¼

@U

@X1

@U

@X2

. . .

@U

@X3N

0
BBBBBBBBBB@

1
CCCCCCCCCCA

where I have added a subscript ‘C’ to show that the differentiations are with respect to

the 3N Cartesian coordinates, but it is gradU that appears in optimization expressions

and not (gradU)C. We therefore have to relate the two.

Starting from q ¼ BX we can show that the gradients are related by

BTgradU ¼ ðgradUÞC

Remember that we want an expression for gradU; if B were square and invertible,

then we would just write

gradU ¼ ðBTÞ�1ðgradUÞC

but unfortunately B is rectangular. We therefore appeal to the mathematical concept

of a generalized inverse. Consider the 3N� 3N matrix G¼BuBT, where u is an

arbitrary non-singular p� p matrix. The generalized inverse of G, written G�1, is

a matrix with the property that GG�1 is a diagonal matrix with a certain number of

ones and a certain number of zeros along the diagonal. In our case, GG�1 will have p

ones along the diagonal and 3N� p zeros. There are many algorithms for calculating

such a generalized inverse. The zeros might actually be tiny numbers, depending on

the accuracy of the numerical algorithm used.

It can be shown that the gradient vector referred to the independent variables is

related to the coordinate gradient vector by

gradU ¼ G�1Bu ðgradUÞC ð6:11Þ

Similar considerations apply to the hessian, and formulae are available in the

literature.
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6.13 Redundant Internal Coordinates

All coordinate systems are equal in principle, but I have stressed above that

1. they should ideally give transferable force constants from molecule to molecule,

and

2. they should ideally be capable of being represented as harmonic terms in U; that

is, cubic and higher corrections should not be needed.

These requirements can be best satisfied by local internal valence coordinates such as

bond lengths, bond angles and dihedral angles. The expression ‘local’ in this context

means that the coordinates should extend to only a few atoms.

P. Pulay and co-workers [19] and H. B. Schlegel et al. [20] investigated the use of

redundant internal coordinates for gradient optimizations. Pulay defined an internal

coordinate system similar to that used by vibrational spectroscopists. It minimizes the

number of redundancies by using local symmetry coordinates about each atom and

special coordinates for ring deformations, ring fusions, etc. Schlegel used a simpler

set of internal coordinates composed of all bond lengths, valence angles and dihedral

angles. The mathematical considerations outlined above also apply here.

Packages such as Gaussian98 offer a choice between Z matrix, Cartesian coordi-

nate and redundant internal coordinate optimizations. Perhaps by now you will have

an inkling of the theory behind the choices you can make in such powerful packages.
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7 A Molecular Mechanics
Calculation

In this chapter I will give an example of what can be routinely done at the molecular

mechanics (MM) level of theory. As a rough guide, MM is used these days to deduce

equilibrium conformations of large molecules. For simplicity, I have used phenyla-

nine as the example (Figure 7.1), and the HyperChem 6.03 package (the current

release is 7.0, see http:==www.hyper.com=).

7.1 Geometry Optimization

Geometry optimization requires a starting structure. HyperChem has a database of the

amino acids, stored as ‘residues’, that can be quickly joined together to construct a

chain. Of the four force fields available (MMþ, AMBER, BIOþ and OPLS) I have

chosen MMþ and left all the options set at their default values.

The pK of most amino acids is such that the molecule exists in zwitterion form in

aqueous solution, so I edited the residue to give the zwitterion in Figure 7.2. I have

also shown the atom numbering for later reference. It can be argued that one should

include any ‘formal’ atom charges, such as the zwitterion charges, explicitly, and so I

modified the charge on each oxygen atom to be � 1
2
electron and added a charge ofþ1

electron on the nitrogen.

There are four options for optimization as shown in the box; the steepest descent

algorithm displayed its usual behaviour by making very large initial decreases in the

gradient, followed by a seemingly infinite number of small steps near the minimum.

The other three options all converged quickly and without a problem. Figure 7.3

shows my answer, and the energy reported is �0.269 112 kcalmol�1. Bear in mind

that this energy cannot be compared with experiment; it is simply a relative marker

for the success or otherwise of our search for the global minimum.

This structure is just one possible local minimum on the molecular potential energy

surface. For small molecules, it is possible (but laborious) to search systematically for

all the minima but such techniques quickly become impracticable as the molecular

size increases.



7.2 Conformation Searches

Figure 7.4 shows the results we might expect to find from a limited conforma-

tional search on a (hypothetical) molecule. Repeating the optimization from different

Figure 7.1 Phenylanine

Figure 7.2 Zwitterion before optimization

Figure 7.3 Optimized structure 1
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starting points has identified many local minima and the conformation corresponding

to energy "1 appears to be the global minimum.

Our MM calculations refer to the molecule at 0K, whilst we would normally

concern ourselves with molecules at room temperature. At 0K, we would find all

molecules in the lowest energy conformation but at other temperatures we will find

certain fractions of the molecules in higher energy conformations. These fractions are

determined by the Boltzmann factor

exp

�
� "

kBT

�

where kB is the Boltzmann constant. I have therefore drawn a vertical line on the

figure of size kBT, and we see that the first four conformations lie close together

(compared with the yardstick kBT ), and so we expect that all four would make a

significant contribution to measured properties of the molecule at temperature T. The

remaining groups of conformations are far away from the first four in terms of the

yardstick kBT, and so can be discarded.

Several approaches have been applied to the problem of automatically identifying

the low-energy conformations of a given molecule. Molecular flexibility is usually

associated with rotation of unhindered bond dihedral angles, with little change in

bond lengths and bond angles. A common theme is therefore to limit the exploration

to those parameters that have the least effect on the energy. Another strategy is to

automatically scan a possible structure for unfavourably close non-bonded atoms and

unlikely ring closure bond lengths before optimization.

Achoice thenhas tobemade todecidewhether the starting structure shouldbe the same

for every optimization, or each optimization should start with the structure found by the

previous successful optimization. The latter choice is often favoured, on the grounds that

one low-energy conformation is pretty much like another, and starting from one success-

ful geometry will tend to keep the search in a low-energy region of the potential surface.

Figure 7.4 Conformation search
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Variations in the parameters can be either random or systematic; in the case of

systematic variations, it is usual to scan the surface first at ‘low resolution’, then to

refine likely-looking regions at high resolution. In the case of random variations, a

common problem is that as the calculation progresses, more and more of the trial

structures lead to conformations that have already been examined. Many modern

software packages have sophisticated algorithms that can recognize identical con-

formations, and so reject them from the global search. They also automatically reject

conformations that are too high in energy, compared with kBT.

Table 7.1 shows a run using the Conformational Search option of HyperChem

6.03. I had to decide which torsional (dihedral) angles to vary, and I chose just

two for this illustrative calculation.

The package did 500 Random Walk iterations (as shown in Figure 7.5), and kept

the eight lowest energy conformations. The ‘Found’ entry shows the number of times

that this particular conformation has been found, and ‘Used’ shows the number of

times it has been used as a starting structure. Energies are recorded as kcalmol�1.

7.3 QSARs

Quantitative Structure–Activity Relationships (QSARs) are attempts to correlate

molecular structure with chemical or biochemical activity. I will use the remainder

Table 7.1 Conformation search on phenylanine

Name of variable Atoms involved (see Figure 7.5)

Torsion1 10–7–3–5

Torsion2 11–10–7–3

Figure 7.5 Random Walk Conformation search
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of this chapter to give you a flavour for the QSAR properties that are often routinely

calculated in MM studies.

7.3.1 Atomic partial charges

Atomic charges can be calculated using the (costly) techniques of molecular quantum

mechanics, as we will discover in later chapters. They are often calculated within the

spirit of QSAR analyses using the Partial Equalization of Orbital Electronegativity

(PEOE) approach of J. Gasteiger and M. Marsili [21].

The key concept of their method is atom electronegativity (often given the symbol

�), and an attraction is that their calculation is rapid. L. Pauling and D. M. Yost [22]

first introduced this concept in 1932, and they tried to give numerical values to atomic

electronegativities based on bond energy values. R. S. Mulliken [23] put the concept

on a firmer theoretical footing in 1934 by relating an atomic electronegativity to the

ionization energy I and the electron affinity E of the atom concerned

� ¼ 1
2
ðI þ EÞ ð7:1Þ

The only problem with Mulliken’s definition is that both E and I relate to some

mythical state of an atom called the valence state. There have been many learned

discussions relating to the concept of valence state, and such discussions still occa-

sionally appear in the literature.

Whatever the valence state of an atom is (depending on the atom), it rarely corre-

sponds to a spectroscopic state and so cannot be studied experimentally. Electrone-

gativities and valence states go hand in hand; they are part of our folklore and both

are widely quoted in even the most elementary chemistry texts.

R. T. Sanderson [24] proposed that on bond formation, atoms change their electron

density until their electronegativities are equal. These ideas were further elaborated

Figure 7.6 Atomic partial charges
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by J. Hinze and co-workers [25], who introduced the concept of orbital electrone-

gativity. This is the electronegativity of a specific orbital in a given valence state. You

will understand that I am introducing quantum mechanical concepts before we have

finished our discussion of techniques based on classical mechanics; just bear with me.

In the Abstract of their paper, Gasteiger and Marsili state

A method is presented for the rapid calculation of atomic charges in �-bonded

and nonconjugated � systems. Atoms are characterised by their orbital electro-

negativities. In the calculation, only the connectivities of the atoms are con-

sidered. Thus only the topology of a molecule is of importance. Through an

iterative procedure partial equalization of orbital electronegativity is obtained.

Excellent correlations of the atomic charges with core electron binding energies

and with acidity constants are observed.

These authors decided to relate the electronegativity of orbital � on atom i (�i,� ) to

the total charge Qi on atom i as a quadratic

�i;� ¼ ai;� þ bi;�Qi þ ci;�Q
2
i ð7:2Þ

The three unknowns a, b and c were determined from values used at the time for

orbital ionization energies and affinities. Typical values are shown in Table 7.2. The

calculation is iterative; starting from a reference structure where all the atoms carry

zero charge, electric charge is permitted to flow from the less to the more electro-

negative atoms. The electronegativity of an atom decreases as it accumulates electric

charge, according to the formula, and in the next iteration less charge will flow until

eventually the electronegativity of each (charged) atom is equalized. At this point the

flow of charge stops.

MM is of course a classical treatment, and orbitals do not appear. The key equation is

thereforewritten in terms of the atoms overall rather than in terms of orbital contributions

�i ¼ ai þ biQi þ ciQ
2
i ð7:3Þ

Atom electronegativities are adjusted at each iteration using the calculated charges, until

self-consistency is achieved. Figure 7.6 shows typical results for phenylanine. Note the

negative charges on oxygen and the positive charge on nitrogen. Charges calculated in

this way depend only on the atomic connectivity and not on the molecular geometry.

Table 7.2 Parameters needed to calculate electronegativity

Atom Hybridization a b c

H 7.17 6.24 �0.56

C sp3 7.98 9.18 1.88

sp2 8.79 9.32 1.51

sp1 10.39 9.45 0.73
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7.3.2 Polarizabilities

I introduced you to polarizabilities in Chapter 3, when we discussed the theory of

intermolecular forces. The experimental determination of a molecular polarizability

is far from straightforward, especially if the molecule has little or no symmetry. The

classical experimental route to the mean polarizability h�i is via the refractive index
or relative permittivity of a gas. Polarizabilities can be routinely calculated by quan-

tum mechanical techniques, but the calculations are computer-intensive and this route

is of no help if your aim in life is the high throughput screening of very many potential

pharmaceutical molecules.

An insight into the order of magnitude of polarizabilities can be obtained by

considering Figure 7.7, which represents a (mythical) atom. The nucleus of charge

Q is at the coordinate origin, and the nucleus is surrounded by an electron cloud of

radius a. The electrons are assumed to have a uniform density in space. The total

electron charge is �Q and so the atom is electrically neutral.

When an external uniform electric field is applied, the nucleus is displaced a

relative distance d in the direction of the field. At this point, the force on the nucleus

QE is exactly balanced by the force exerted on the nucleus by the electron cloud.

According to Gauss’s electrostatic theorem, this is the same force as would be

exerted if all the charge within a sphere of radius d were concentrated at the centre.

This charge is �Q times the ratio of the volumes of spheres of radius a and d and so is

�Qd3=a3. This gives a force of magnitude

Q2 d
3

a3
1

4��0

1

d2
¼ Q2d

4��0

1

a3

Hence the displacement d satisfies

Q2d

4��0a3
¼ QE

Figure 7.7 Construct needed to discuss polarizability
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The induced dipole is Qd and the polarizability is Qd=E and so

� ¼ 4��0 a
3 ð7:4Þ

Apart from the dimensional factor, the volume of the sphere determines the polariz-

ability. Table 7.3 shows the experimental polarizabilities for three inert gas atoms,

which illustrates the dependence on volume.

Table 7.4 shows a comparison between typical h�i QSAR model calculations for

a number of alkanes, together with the result of a serious quantum mechanical

calculation. The latter are recorded in the ‘Accurate’ column. At the chosen level

of quantum mechanical theory (BLYP=6-311þþG(3d,2p) with optimized geome-

tries, to be discussed in later chapters), the results are at least as reliable as those

that can be deduced from spectroscopic experiments. The downside is that the butane

calculation took approximately 4 hours on my home PC; the corresponding parame-

terized calculation took essentially no time at all.

It looks at first sight as if there is an incremental effect. Adding a CH2 increases

the mean polarizability by about 2.13� 10�40 C2m2 J�1 and there has been much

speculation over the years as to whether a molecular polarizability can generally be

written as a sum of atomic contributions.

Many atomic parameter schemes have been proposed, yet there were always ex-

ceptions that needed a complicated sub-rule in order to get agreement with experi-

ment. L. Silberstein [26] wrote in his famous paper of 1917 of ‘. . . the ever growing

hierarchy of rules indicating how to treat the exceptions to the law of additivity,

although helpful to the chemist, is the clearest confession of non-additivity’.

The concept of bond polarizability was then introduced in order to try to circum-

vent the additivity problem. For example, the C��H bond polarizability �CH is taken

to be one-quarter of the methane mean polarizability h�i, and for the alkanes of

formula CnH2nþ2 we have

h�ðCnH2nþ 2Þi ¼ ðn� 1Þh�CCi þ ð2nþ 2Þh�CHi ð7:5Þ

Table 7.3 Polarizabilities of inert gases

Inert gas �=10�40C2m2J�1

He 0.23

Ne 0.44

Ar 1.83

Table 7.4 Comparison of accurate quantummechanical calculationwithQSAR

Alkane Accurate h�i=10�40C2m2J�1 QSAR h�i=10�40C2m2J�1

Methane 2.831 2.90

Ethane 4.904 4.94

Propane 7.056 6.99

Butane 9.214 9.02
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from which it is possible to deduce a value for �CC. This method actually reproduces

experimental data for hydrocarbons to within a few percent. But once again, such

additivity schemes fail when applied to molecules containing heteroatoms, and

hydrocarbons containing atoms in different states of hybridization.

K. J. Miller and J. A. Savchik [27] proposed a method whereby h�i was written as

the square of a sum of atomic hybrid components. If they had known about 4-quantity

electromagnetic formulae they would have written their formula

h�i ¼ 4��0
4

N

�X
A

�A

�2
ð7:6Þ

but in the event, the 4��0 is missing from their paper. The number of electrons in the

molecule is N, and the �s are parameters for each atom in its particular hybrid

configuration. The summation is over all atoms in the molecule, and the �s depend
on the chemical hybridization but not the chemical environment; they are constant for

an sp2 carbon atom, for example.

The authors based their algorithm on an old quantum mechanical treatment of dipole

polarizability discussed in the classic book,Molecular Theory of Gases and Liquids [1].

TheMiller–Savchik treatment is widely used in QSAR studies, and to give you a flavour

I have recalculated the mean polarizabilities and included them in Table 7.4 under the

QSAR heading. Given that each calculation took just a few seconds, you can see why

QSAR practitioners think so highly of the Miller–Savchik technique. To put things in

perspective, we should not be surprised to find such excellent agreement between the two

sets of results in Table 7.4; it is heterosubstituted molecules that pose the severe test.

7.3.3 Molecular volume and surface area

Molecular volumes are often calculated by a numerical integration grid technique that

I can illustrate by considering the trivial problem of finding the volume of an atom

whose van der Waals radius is R (the volume is of course 4
3
�R3).

Figure 7.8 shows a two-dimensional representation of the atom whose van der

Waals radius is R, surrounded by a three-dimensional grid of equally spaced points.

Figure 7.8 Grid around atom
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The grid has its centre at the atom centre, and the edges of the grid correspond to the

van der Waals radius.

For each grid point in turn we calculate its distance from the centre and determine

whether the grid point lies inside or outside the atom. If n is the total number of grid

points and na the number that lie within the atom whose volume is V, then we have

V

8R3
¼ na

n

For a polyatomic, we have to give special consideration to grid points that lie in the

overlap region. Figure 7.9 shows two atoms, A and B, with radii RA and RB. The

overlap region is labelled X.

For atom A, we know that the volume is 4
3
�R3

A. We now surround atom B with a grid,

as described above, and test each grid point in turn. If the grid point lies within sphere B,

then we test to see if it lies in region X and so has already been counted as part of the

volume of atom A. The algorithm proceeds until all atoms have been considered in turn.

The molecular volume is found by adding all atomic contributions. There are similar

methods for the estimation of molecular surface area.

7.3.4 log(P)

When an organic solute is in equilibrium with water and a polar solvent such as

octan-1-ol, it is observed that the ratio of the concentrations

P ¼ ½solute in octan-1-ol�
½solute in water�

is roughly constant. P is called the partition coefficient and can be used in

predicting transmembrane transport properties, protein binding, receptor affinity and

Figure 7.9 Atoms A, B and overlap region X
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pharmacological activity. It is easy to determine P experimentally, but in the process

of molecular design we have to deal with a high throughput of possible molecular

structures and so a number of attempts have been made to give simple models for

predicting P.

In studying the effect of structural variations on P, it was suggested that it had an

additive–constitutive character. In the case of a �-substituent, people made use of

Hammett’s ideas and wrote

�X ¼ log10ðPXÞ � log10ðPHÞ ð7:7Þ

where PH is the partition coefficient for the parent compound and PX the partition

coefficient for a molecule where X has been substituted for H. Workers in the field

refer to ‘log(P)’ rather than ‘P’.

It was originally envisaged that specific substituents would have the same contri-

bution in different molecules. It has been demonstrated however that this hoped-for

additivity does not even hold for many disubstituted benzenes. There are two classical

methods for estimating log(P), both based on the assumed additivity: R. E. Rekker’s

f-constant method [28] and A. Leo et al.’s fragment approach [29].

Rekker defined an arbitrary set of terminal fragments using a database of some 1000

compounds with known log(P). Linear regression was performed, and the regression

coefficients designated group contributions. Deviations from the straight lines were

corrected by the introduction of multiples of a so-called ‘magic factor’ that described

special structural effects such as polar groups, etc. Log(P) is calculated from the

fragmental contributions and the correction factors. Leo and Hansch derived their

own set of terminal fragments, together with a great number of correction factors.

G. Klopman and L. D. Iroff [30] seem to be the first authors to make use of

quantum mechanical molecular structure calculations. They performed calculations

at the quantum mechanical MINDO=3 level of theory (to be discussed in Chapter 13)

in order to calculate the atomic charge densities of a set of 61 simple organic mo-

lecules. They then developed a linear regression model that included the number of C,

N, H and O atoms in the given molecule, the atomic charges on C, N and O, and

certain ‘indicator’ variables nA, nT and nM designed to allow for the presence of

acid=ester, nitrile and amide functionalities. They found

log10 ðPÞ ¼ 0:344þ 0:2078nH þ 0:093nC � 2:119nN � 1:937nO

� 1:389q2C � 17:28q2N þ 0:7316q2O þ 2:844nA þ 0:910nT þ 1:709nM

ð7:8Þ

The terms involving q2 represent the interaction of the solute and solvent.

Klopman and Iroff’s method was a great step forward; there are many fewer

parameters, it does not produce ambiguous results depending on an arbitrary choice

of fragment scheme, and it does not have a complicated correction scheme, apart from

the indicatorvariables.Aswewill see inChapter 13,MINDO=3calculations canbedone
very quickly even for large molecules.
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N. Bodor et al. [31] decided to extend and enhance Klopman and Iroff’s work by

including the molecular volume, weight and surface area. In addition, they included

the molecular electric dipole moment in the correlation, all possible products of pairs

of charges and a further 57 compounds in the analysis. They used a more up-to-date

quantum mechanical model, AM1 (again to be discussed in Chapter 13). The mole-

cular volume and surface area were calculated by a grid method. In their equation

log10 ðPÞ ¼ �1:167� 10�4S2 � 6:106� 10�2Sþ 14:87O2 � 43:67Oþ 0:9986Ialkane

þ 9:57� 10�3Mw � 0:1300D� 4:929QON � 12:17Q4
N þ 26:81Q2

N

� 7:416QN � 4:551Q4
O þ 17:92Q2

O � 4:03QO þ 27:273 ð7:9Þ

where S (cm2) is the molecular surface area, O the molecular ovality, Ialkane is the

indicator variable for alkanes (it is 1 if the molecule is an alkane, 0 otherwise), Mw

the relative molar mass, D the calculated electric dipole moment, and QON the sum of

absolute values of the atomic charges on nitrogen and oxygen. The remaining Qs

differ from those used by Klopman and Iroff in that they are the square root of the

sum of charges on the nitrogen or oxygen atoms. The most significant parameters are

the volume and the surface area; the authors claim that this demonstrates that the most

important contribution to log(P) is the creation of a hole in the structure of water.
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8 Quick Guide to Statistical

Thermodynamics

Molecular structure theory tends to deal with the details of individual atoms and

molecules, and the way in which a small number of them interact and react.

Chemical thermodynamics on the other hand deals with the bulk properties of matter,

typically 1023 particles. There clearly ought to be a link between the two sets of

theories, even though chemical thermodynamics came to maturity long before there

was even a satisfactory atomic theory and does not at first sight draw on the concept

of a molecule.

Suppose then that we have a macroscopic pure liquid sample, which might consist

of 1023 particles, and we want to try to model some simple thermodynamic properties

such as the pressure, the internal energy or the Gibbs energy. At room temperature,

the individual particles making up the sample will be in motion, so at first sight we

ought to try to solve the equations of motion for these particles. In view of the large

number of particles present, such an approach would be foolhardy. Just to try to

specify the initial positions and momenta of so many particles would not be possible,

and in any case such a calculation would give too much information.

Even if we could do this impossible task, the next step would be to find a way

in which we could relate the individual molecular information to the bulk

properties.

For the sake of argument, suppose that the container is a cube. I have shown a two-

dimensional slice through the cube as the left-hand side of Figure 8.1, and I have

exaggerated the size of the particles by a factor of approximately 1010.

The pressure exerted by a gas on a container wall depends on the rate at which

particles collide with the wall. It is not necessary, or even helpful, to know which

particle underwent a particular collision. What we need to know are the root mean

square speed of the particles, their standard deviation about the mean, the temperature

and so on. In chemical thermodynamics, we don’t enquire about the behaviour of the

individual particles that make up a macroscopic sample; we just enquire about their

average properties.

Ludwig Boltzmann and Josiah Willard Gibbs understood all these problems, and

invented the subject of statistical thermodynamics to get around them.

If we were to measure the pressure exerted on the walls at time intervals

t1, t2, . . . , tn then we might record results p(t1), p(t2), . . . , p(tn). We could calculate a



sample mean hpi and a sample standard deviation using these results

hpi ¼ 1

n

Xn
i¼1

pðtiÞ

�p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

ðpðtiÞ � hpiÞ2
s ð8:1Þ

We might expect that the greater the number of measurements, the closer the sample

mean would be to the true mean, and the smaller the sample deviation would become.

8.1 The Ensemble

When we considered Figure 8.1, I was careful to draw your attention to the difference

between particle properties and bulk properties. I also mentioned that classical thermo-

dynamics is essentially particle-free; all that really matters to such a thermodynamicist

are bulk properties such as the number of particlesN, the temperatureTand the volume of

the container V. I have represented this information in the right hand box in Figure 8.1.

Rather than worry about the time development of the particles in the left-hand box

in Figure 8.1, what we do is to make a very large number of copies of the system on

the right-hand side. We then calculate average values over this large number of

replications and according to the ergodic theorem, the average value we calculate

is exactly the same as the time average we would calculate by studying the time

evolution of the original system. The two are the same.

I am not suggesting that all the cells in the ensemble are exact replicas at the

molecular level; all we do is to ensure that each cell has a certain number of thermo-

dynamic properties that are the same. There is no mention of molecular properties at

this stage of the game.

So Figure 8.2 is an ensemble of cells all with the same values of N, V and T. This

array of cells is said to form a canonical ensemble. There are three other important

ensembles in the theory of statistical thermodynamics, and they are named according

to what is kept constant in each cell. Apart from the canonical ensemble, where N, V

and T are kept constant, statistical thermodynamicists concern themselves also with

three others.

Figure 8.1 Box of particles
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In a microcanonical ensemble, N, the total energy E and V are kept constant in each

cell. In fact, this is a very simple ensemble because energy cannot flow from one cell

to another. In an isothermal–isobaric ensemble, N, T and the pressure p are kept

constant. Finally, we have the grand canonical ensemble, where V, T and the chemical

potential are kept constant. The grand canonical ensemble is a fascinating one be-

cause the number of particles is allowed to fluctuate.

Suppose then that we consider a canonical ensemble of N� cells, comprising the

original cell together with N� � 1 replications. Energy may flow between the cells,

but the total energy of the ensemble is constant. Suppose that the possible

total energies of the N particles contained in each cell are E�
1, E

�
2, and so on. We

take an energy snapshot, and find a distribution of energies amongst the cells as

follows:

N�
1 cells have energy E�

1,

N�
2 cells have energy E�

2, etc.

According to Boltzmann, the E� and the N� are related by

N�
i

N� ¼
exp

�
� E�

i

kBT

�
P

i exp
�
� E�

i

kBT

� ð8:2Þ

Be sure to understand that the energies E�
i are not molecular energies; they are the

total energies of the collection of the N particles contained in each cell. Also note that

N� is the number of cells in the ensemble, and that the energies are taken as relative to

a common arbitrary zero.

Figure 8.2 Canonical ensemble
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The denominator in the expression above plays an important role in our theory, and

so it is given a special name and symbol

Q ¼
X
i

exp

�
� E�

i

kBT

�
ð8:3Þ

Q is (in this case) the canonical partition function, and it can be used to calculate the

usual chemical thermodynamic functions as follows.

8.2 The Internal Energy Uth

The IUPAC recommended symbol for thermodynamic internal energy is U, but I have

added a subscript ‘th’ for ‘thermodynamic’ so that there is no confusion with the total

potential energy of a system U (often written F). Internal energy is obviously related

to the ensemble energy average, but we have to exercise caution. Chemical measure-

ments only give changes in the internal energy, not absolute values. I will therefore

write the internal energy as Uth�U0, where U0 is an arbitrary constant. For most

purposes we can take U0 to be zero.

We have, for the ensemble of N� members

Uth � U0 ¼
P

i N
�
i E

�
i

N� ð8:4Þ

and according to the ergodic theorem, this is equal to the time average of Uth�U0 for

any one cell. Using the Boltzmann expression we have

Uth � U0 ¼
P

i E
�
i exp

�
� E�

i

kBT

�
Q

ð8:5Þ

I can tidy up Equation (8.5) by noting

�
@Q

@T

�
V ;N

¼ 1

kBT2

X
i

E�
i exp

�
� E�

i

kBT

�
ð8:6Þ

and so on substitution

Uth � U0 ¼ kBT
2

Q

�
@Q

@T

�
V

ð8:7Þ
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8.3 The Helmholtz Energy A

From the definition of A we have the following

A ¼ U � TS

S ¼ �
�
@A

@T

�
V ;N

A ¼ U þ T

�
@A

@T

�
V ;N

ð8:8Þ

A little manipulation gives�
@

@T

�
A

T

��
V ;N

¼ �kB

�
@ lnQ

@T

�
V ;N

A� A0 ¼ �kBT lnQ

ð8:9Þ

Again, the arbitrary constant A0 can be taken as zero, since only changes in A are ever

measured.

8.4 The Entropy S

Finally, since

S ¼ U � A

T

we have

S ¼ kBT

�
@ lnQ

@T

�
V ;N

þ kB lnQ ð8:10Þ

8.5 Equation of State and Pressure

The pressure is related to the Helmholtz energy by

p ¼ �
�
@A

@V

�
T ;N
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and so we find

p ¼ kBT

�
@ lnQ

@V

�
T ;N

ð8:11Þ

This equation is sometimes called the equation of state. The enthalpy and the Gibbs

energy can be derived using similar arguments. They turn out to be

H ¼ kBT
2

�
@ lnQ

@T

�
V ;N

þ kBTV

�
@ lnQ

@V

�
T ;N

G ¼ �kBT lnQþ kBTV

�
@ lnQ

@V

�
T ;N

ð8:12Þ

8.6 Phase Space

Sophisticated methods such as those due to Hamilton and to Lagrange exist for the

systematic treatment of problems in particle dynamics. Such techniques make use of

generalized coordinates (written q1, q2, . . . , qn) and the generalized momenta (written

p1, p2, . . . , pn); in Hamilton’s method we write the total energy as the Hamiltonian H.

H is the sum of the kinetic energy and the potential energy, and it is a constant

provided that the potentials are time independent. H has to be written in terms of

the ps and the qs in a certain way, and systematic application of Hamilton’s equations

gives a set of differential equations for the system.

To fix our ideas, consider the particle of mass m undergoing simple harmonic

motion as discussed in Chapter 4. In this one-dimensional problem I wrote the

potential as

U ¼ 1
2
ksðR� ReÞ2

so that the total energy is

" ¼ 1
2
m

�
dR

dt

�2

þ 1
2
ksðR� ReÞ2

If I put q¼ R� Re, then the momentum p is m dR=dt and I can write the Hamiltonian

H ¼ p2

2m
þ ksq

2

2
ð8:13Þ

We say that the particle moves through phase space and in this example the trajectory

through phase space is an ellipse (see Figure 8.3), which can be easily seen by
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rewriting Equation (8.13) as

p2

a2
þ q2

b2
¼ 1

Hamilton’s equations of motion are

dqi

dt
¼ @H

@pi
;

dpi

dt
¼ � @H

@qi
ð8:14Þ

so for a general problem with N atoms, we have to solve 6N first-order differential

equations rather than the 3N second-order differential equations we would get from

straightforward application of Newton’s Law.

In the case of a one-particle, three-dimensional system, the Hamiltonian will be a

function of the three coordinates q and the three momenta p, and for a more general

problem involving N particles the Hamiltonian will be a function of the 3N qs and the

3N ps. We say that the ps and the qs together determine a point in 6N-dimensional

phase space, and this point is often denoted G.

8.7 The Configurational Integral

Returning now to the canonical partition function, Equation (8.3)

Q ¼
X
i

exp

�
� E�

i

kBT

�

Figure 8.3 Phase space
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the first thing to note is that all points in phase space contribute to the sum, and the

summation has to be replaced by an integral. For an ideal monatomic gas the expres-

sion becomes

Q ¼ 1

N!

1

h3N

ZZ
exp

�
� E

kBT

�
dp dq ð8:15Þ

The equation is often written with the Hamiltonian H replacing E, for the reasons

discussed above.

The N! term is needed in situations where the particles are completely indistin-

guishable from one another; for particles that can be distinguished there is no N!

term. The integrals have to be done over the spatial variables of all the N particles,

and also the momentum variables of the N particles. The integral is therefore a

6N-dimensional one.

The energy (the Hamiltonian) is always expressible as a sum of kinetic and po-

tential energies, and I have written the mass of each particle m

E ¼
XN
i¼1

p2i
2m

þ Fðq1;q2; . . . ; qNÞ ð8:16Þ

Kinetic energies depend on the momentum coordinates p. All the potential energies

we will meet depend on the spatial coordinates q but not on the momenta and so the

partition function can be factorized into a product of a kinetic part and a potential part

Q ¼ 1

N!

1

h3N

Z
exp

�
� 1

kBT

XN
i¼1

p2i
2m

�
dp

Z
exp

�
� F
kBT

�
dq ð8:17Þ

The kinetic integral has to be done over the momentum coordinates of all N particles,

and it can be seen to be a product of N identical three-dimensional integrals of the

type

Z
exp

�
� 1

kBT

p21
2m

�
dp1

Each of these is a product of three identical standard integrals of the type

Z
exp

�
� 1

kBT

p2x
2m

�
dpx

and the final result is

Q ¼ 1

N!

�
2�mkBT

h2

�3N=2 Z
exp

�
� F
kBT

�
dq ð8:18Þ
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The 3N-dimensional integral over the position variables is often referred to as the

configurational integral. For an ideal gas F¼ 0 and so the configurational integral is

VN, where V is the volume of the container. Some authors include the N! in the

definition of the configurational integral.

The canonical partition function for an ideal gas is therefore

Q ¼ VN

N!

�
2�mkBT

h2

�3N=2

ð8:19Þ

The partition function for a real system is often written as the product of an ideal part

and an excess part due to non-ideal behaviour

Q ¼ QidealQexcess

where

Qexcess ¼ 1

VN

Z
exp

�
� F
kBT

�
dq ð8:20Þ

The point of doing this is that thermodynamic properties such as A are often mea-

sured experimentally as an ideal and an excess part

A ¼ Aideal þ Aexcess

The ideal part can be related to Qideal and the excess part to Qexcess.

8.8 The Virial of Clausius

Let me focus attention on one particular particle i moving in the box, Figure 8.1. As

this particle moves it will be subject to some varying force Fi and

Fi ¼ m
dvi

dt
ð8:21Þ

Taking the scalar product of both sides of this equation with ri I get

ri Fi ¼ mri

�
dvi

dt

�
ð8:22Þ

Consider now the vector identity

d

dt
ðri viÞ ¼ ri

dvi

dt
þ dri

dt
vi ð8:23Þ

� �

� � �
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which can also be written

d

dt
ðri viÞ ¼ ri

dvi

dt
þ v2i ð8:24Þ

On comparison of Equations (8.22) and (8.24), I have

ri Fi ¼ m

�
d

dt
ðri viÞ � v2i

�
ð8:25Þ

or

�1
2
ri Fi ¼ �1

2
m

d

dt
ri vi þ 1

2
mv2i ð8:26Þ

The next step is to sum corresponding terms on both sides of the equation for each

particle in the box. For N particles each of mass m, this gives

� 1

2

XN
i¼1

ri Fi ¼ �1
2
m

d

dt

XN
i¼1

ri vi þ 1
2
m
XN
i¼1

v2i ð8:27Þ

Finally, we take a time average over all the particles in the box, which is assumed to

be in an equilibrium state

� 1

2

�XN
i¼1

ri Fi

�
¼ �m

2

d

dt

�XN
i¼1

ri vi

�
þ 1

2
m

�XN
i¼1

v2i

�
ð8:28Þ

The second term on the right-hand side is obviously the mean kinetic energy of all the

particles in the box. This must be 3
2
NkBT, according to the equipartition of energy

principle.

Whatever the value of the first average quantity in brackets on the right-hand side it

cannot vary with time because we are dealing with an equilibrium state and so the

first time derivative must vanish

�m

2

d

dt

�XN
i¼1

ri vi

�
¼ 0

Thus, we have

� 1

2

�XN
i¼1

ri Fi

�
¼ 1

2
m

�XN
i¼1

v2i

�
ð8:29Þ

The summation term on the left hand side � 1
2
hPN

i¼1 ri Fii involving the forces and

coordinates is often referred to as the virial of Clausius.

� �

� �

� �

� �

� �

�

�
�
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9 Molecular Dynamics

Molecular mechanics (MM) these days tends to be concerned only with predic-

tion of local minima on molecular potential energy surfaces. QSAR properties

are often calculated in order to assist high-volume screening studies in pharma-

ceuticals applications. Should we want to study the motions of the molecule, all

that would be needed would be to investigate the normal modes of vibration

(which can be obtained from the hessian). MM does not take account of zero-

point vibrations and the calculations refer to a molecule at 0K, when it is

completely at rest. Workers in the modelling field often refer to MM as energy

minimization.

We now turn our attention to the time development of collections of atoms and

molecules, for which the techniques of Molecular Dynamics and Monte Carlo are

widely used.

I have stressed in previous chapters the intermolecular potential energy Umol (often

written F). Assuming pairwise additivity, F can be found by summing over all distinct

pairs of particles

F ¼
XN�1

i¼1

XN
j¼iþ1

Uij ð9:1Þ

If the assumption of pairwise additivity is not valid, then we have to include all

possible triples, and so on

F ¼
XN�1

i¼1

XN
j¼iþ1

Uij þ
XN�2

i¼1

XN�1

j¼iþ1

XN
k¼jþ1

Uijk þ � � � ð9:2Þ

In this book we will generally be concerned with situations where the potentials (and

the forces) are pairwise additive. If we focus on particle A, then the mutual potential

energy of A with all the other particles UA is found from

UA ¼
X
j6¼A

UAj



and we can find the force on particle A, FA, by differentiating with respect to the

coordinates of particle A

FA ¼ �gradUA

For example, if we consider a pair of Lennard-Jones particles A and B where

UAB ¼ 4"

��
�

RAB

�12

�
�

�

RAB

�6�

we note that the potential only depends on the distance between the particles. The

expression for gradU is particularly simple so that

FA ¼ � @U

@RA

RBA

RBA

which gives

FA ¼ 24"

�
2

�
�

RAB

�12

�
�

�

RAB

�6�
RAB

R2
AB

Newton’s second law connects force and acceleration by

FA ¼ mA

d2RA

dt2

and in principle we could study the time development of a system by solving this

second-order differential equation, one such equation for each of the particles in our

system. Calculating the trajectories of N particles therefore appears to involve the

solution of a set of 3N second-order differential equations. Alternatively, we could

use an advanced method such as Hamilton’s to solve 6N first-order differential equa-

tions. For any set of N particles it is always possible to find three coordinates that

correspond to translation of the centre of mass of the system, and, if the particles have

‘shape’, three coordinates that correspond to rotations about three axes that pass

through the centre of mass.

Most of the early molecular dynamics studies were directed at the problem of

liquid structure, so that is where we will begin our discussion.

9.1 The Radial Distribution Function

Of the three states of matter, gases are the easiest to model because the constituent

particles are so far apart on average that we can ignore intermolecular interactions,

124 MOLECULAR DYNAMICSMOLECULAR DYNAMICS



apart from during their brief collisions. This is why researchers were able to bring the

kinetic theory of gases to such an advanced stage by the end of the nineteenth century

(and before the existence of a satisfactory theory of molecular structure).

The atoms or molecules in a crystalline solid are arranged in a regular order, and

for this reason we usually start a discussion of the solid state from the properties of

regular solids. Once such patterns were truly understood at the beginning of the

twentieth century, the theory of the solid state made rapid progress.

Liquids are much harder to model and to study experimentally than solids and

gases; elementary textbooks usually state that liquids show neither complete order

nor complete disorder. The basis of this remark concerns a property called the radial

distribution function g(r). Consider Figure 9.1, which is a snapshot of the particles in

a simple atomic liquid.

We take a typical atom (the grey one, designated i) and draw two spheres of radii r

and rþ dr. We then count the number of atoms whose centres lie between these two

spheres, and repeat the process for a large number N of atoms. If the result for atom i

is gi(r) dr, then the radial distribution function is defined as

gðrÞ dr ¼ 1

N

XN
i¼1

giðrÞ dr ð9:3Þ

This process then has to be repeated for many complete shells over the range of

values of r thought to be significant.

In the case of an ideal gas, we would expect to find the number of particles to be

proportional to the volume enclosed by the two spheres, which is 4�r2 dr. This gives
g(r)¼ 4�r2, a simple quadratic curve.

Figure 9.1 Radial distribution function
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Consider now the simple cubic solid shown in Figure 9.2 whose nearest neighbour

distance is a. Each atom is surrounded by 6 nearest neighbours at a distance a, 12 at a

distance
p
2 a, 8 next-next nearest neighbours at a distance

p
3 a, 6 at a further

distance 2a and so on. We would therefore expect to find a radial distribution function

similar to the one shown in Figure 9.3. The height of each peak is proportional to the

number of atoms a distance r from any given atom.

Radial distribution functions can be deduced experimentally from diffraction stu-

dies. In the case of a liquid, Figure 9.4, the curve resembles that expected for a

Figure 9.2 Simple cubic lattice

Figure 9.3 First part of the radial distribution function for a simple solid
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solid at low temperatures, and at high temperatures it resembles the quadratic expected

for an ideal gas. At intermediate temperatures, the two features can be clearly

seen; essentially a solid pattern is superimposed on the gas pattern. This gives the

experimental basis for the well-known remark about liquid structure quoted

above.

9.2 Pair Correlation Functions

The radial distribution function for a gas varies as 4�r2 and so tends to infinity as r

tends to infinity. It is usual to remove the 4�r2 dependence by defining a related

quantity called the pair correlation function gAB(r), which gives information about

the probability of finding two particles A and B separated by a distance r. If the

volume of a system is V and it contains NA species of type A and NB species of type

B, then the number densities are NA=V and NB/V. The fraction of time that the

differential volume elements d�1 and d�2, which are separated by a distance r,

simultaneously contain species of type A and B is given by

NA

V

NB

V
gABðrÞ d�1d�2

In a mixture of A and B we would be interested in the three distinct pair correlation

functions gAA(r), gBB(r) and gAB(r). These pair correlation functions have a limiting

value of 1 for a fluid.

Figure 9.4 Radial distribution function for liquid superimposed on an ideal gas
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9.3 Molecular Dynamics Methodology

In an ideal gas, the particles do not interact with each other and so the potential F is

zero. Deviations from ideality are due to the interparticle potential, and most of the

early studies were made on just three types of particle: the hard sphere model, the

finite square well and the Lennard-Jones model.

9.3.1 The hard sphere potential

The hard sphere potential of Figure 9.5 is the simplest one imaginable; the system

consists of spheres of radii � and U(r) is zero everywhere except when two spheres

touch, when it becomes infinite.

The hard sphere potential is of great theoretical interest not because it represents

the intermolecular potential of any known substance, rather because any calculations

based on the potential are simple. B. J. Alder and T. E. Wainwright introduced the

modelling technique now known as Molecular Dynamics to the world in a short

Journal of Chemical Physics ‘Letters to the Editor’ article in 1957 [32]. They re-

ported a study of hard disks, the two-dimensional equivalent of hard spheres.

9.3.2 The finite square well

B. J. Alder and T. E. Wainwright’s 1959 paper [33] is usually regarded the keynote

paper in the field, and you might like to read the Abstract.

A method is outlined by which it is possible to calculate exactly the behaviour of

several hundred interacting classical particles. The study of this many-body

problem is carried out by an electronic computer that solves numerically the

Figure 9.5 Hard sphere potential
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simultaneous equations of motion. The limitations of this numerical scheme are

enumerated and the important steps in making the program efficient on

computers are indicated. The applicability of this method to the solution of

many problems in both equilibrium and nonequilibrium statistical thermo-

dynamics is discussed.

In this second paper they chose a three-dimensional system of particles and the

finite square well potential shown in Figure 9.6. This potential is especially simple

because a given particle does not experience any change in velocity except when it is

separated from another particle by �1 (when it undergoes an attractive collision) or �2
(when it undergoes a repulsive collision). On collision, the velocities are adjusted and

the calculation restarts. Statistical data are collected every collision.

In their dynamic calculation all the particles were given initial velocities and

positions. In one example, the particles were given equal kinetic energies with the

three direction cosines of the velocity vector chosen at random, and initial positions

corresponding to a face-centred cubic lattice. Once the initial configuration was set

up, they calculated exactly the time at which the first collision occurs. The collision

time can be found by evaluating, for every pair in the system, the time taken for the

projected paths to reach a separation of �1 or �2.
If two particles A and B have initial positions rA,0 and rB,0 and velocities vA and

vB, then the instantaneous positions at time t will be

rA ¼ rA;0 þ uAt

rB ¼ rB;0 þ uBt

giving

rA � rB ¼ rA;0 � rB;0 þ ðuA � uBÞt

and so

ðrA � rBÞ2 ¼ ðrA;0 � rB;0Þ2 þ 2tðrA;0 � rB;0Þ ðuA � uBÞ þ t2ðuA � uBÞ2�

Figure 9.6 Finite square well
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If we rewrite the last equation as a quadratic in t as

u2ABt
2 þ 2bABt þ r2AB;0 ¼ �2

�

where � takes values 1 or 2, then we see that the time required for a repulsive or

attractive collision is

t
ð�Þ
AB ¼ �bAB � ðb2AB � u2ABðr2AB � �2

�ÞÞ1=2
u2AB

ð9:4Þ

In order to find the first collision time, all pairs have to be analysed. All the particles

are then allowed to move for such time, and the velocities of the colliding pair are

adjusted according to the equations of motion.

The finite square well occupies an important place in the history of molecular

modelling. Real atomic and molecular systems have much more complicated mutual

potential energy functions, but the finite square well does at least show a minimum.

On the other hand, because of the finite square well potential, the equations of motion

are particularly simple and no complicated numerical techniques are needed. There

are no accelerations until two particles collide.

9.3.3 Lennardjonesium

The first simulation of a ‘real’ chemical system was A. Rahman’s 1964 study

of liquid argon [34]. He studied a system comprising 864 Lennard-Jones particles

under conditions appropriate to liquid argon at 84.4K and a density of 1.374 g cm�3.

Once again, there is much to be gained by studying the Abstract, so here is the first

part of it.

A system of 864 particles interacting with a Lennard-Jones potential and

obeying classical equations of motion has been studied on a digital computer

(CDC 3600) to simulate molecular dynamics in liquid argon at 94.4K and a

density of 1.374 g cm�3. The pair correlation function and the constant of self-

diffusion are found to agree well with experiment; the latter is 15% lower

than the experimental value. The spectrum of the velocity autocorrelation

function shows a broad maximum in the frequency range !¼ 0.25 (2�kBT=h).

The shape of the Van Hove function Gs(r, t) attains a maximum departure from a

Gaussian at about t¼ 0.3� 10�2 s and becomes a Gaussian again at about

10�11 s.

There are several interrelated problems. A sample size has to be chosen; this is

usually determined by the available computer resource and the complexity of the

potential function, because the potential function has to be calculated very many

times during the simulation. The number of particles and the density determine the

size of the container. At the same time we need to decide on a potential function; the
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natural choice for the inert gases is the Lennard-Jones potential, and we should note

that the L-J potential is essentially short range.

So many early papers used the L-J potential that the noun Lennardjonesium was

coined to describe a non-existent element whose atoms interacted via the L–J

potential.

9.4 The Periodic Box

Figure 9.7 shows a suitable virtual box of argon atoms. Examination of the figure

reveals two problems. Atoms near the edges of the box will experience quite different

resultant forces from the atoms near the centre of the box. Secondly, the atoms will be

in motion if the temperature is non-zero. As the system evolves in time, it is quite

likely that one of the atoms will pass through the container walls and so disappear

from the calculation. This has the undesirable effect of reducing the density.

There is a third subtle point: if the atoms are sufficiently light (He rather than Ar),

we would need to take the quantum mechanical zero point energy into effect; even at

0K, quantum mechanical particles have a residual motion.

The periodic box concept, illustrated in Figure 9.8, gives a solution to the first two

problems. We appeal to the ensemble concept of statistical thermodynamics, and

surround our system with a large number of identical copies. In this case the boxes

are truly identical at the atomic level rather than in the usual thermodynamic sense of

having N, V and T in common.

Figure 9.8 shows a two-dimensional slice through a small portion of the system

(the central box where the atoms are shown grey) and the copies (where the atoms are

Figure 9.7 Box of argon atoms
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shown black). Each copy is identical at the atomic level, and each atom undergoes the

same time development as its image in every other copy. As the dark grey atom (top

left, central cell) leaves the central cell, its image enters from an adjoining copy,

shown by the vector displacements in the figure. This keeps the density constant.

There are no effects due to the walls because each atom in the central cell is under the

influence of every other atom in the central cell and in all other cells.

Consider now the dark grey atom (top left in the central cell). We need to calculate

the force on this atom in order to understand its time development. To do this we

should in principle sum the pair potential of the atom with every other atom. Differ-

entiation of the potential with respect to the coordinates of the dark grey atom gives

the force on the particle. This would give an infinite sum.

In this particular case, there is no great problem because the L-J potential is short

range. We decide on a cut-off distance beyond which the pair potential will be

negligible; this defines a sphere. In order to treat the dark grey atom, we have to

include contributions from all other atoms in the sphere. This is illustrated as a two-

dimensional slice in Figure 9.9.

Truncation of the intermolecular potential at a cut-off distance introduces two

technical difficulties. First, the pair potential has a discontinuity at the cut-off dis-

tance rc, and secondly, whenever a pair of particles A and B have separation greater

than rc the total energy is not conserved. The first problem is solved by shifting the

potential function by an amount U(rc), that is we take

UsðrABÞ ¼ UðrABÞ � UðrcÞ if rAB � rc
0 if rAB > rc

�
ð9:5Þ

Figure 9.8 Small part of the molecular ensemble
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The second problem can be solved by adding a small linear term to the potential,

chosen so that its derivative is zero at the cut-off distance

UlinðrABÞ ¼ UðrABÞ � UðrcÞ �
�

dU

drAB

�
Rc

ðrAB � rcÞ if rAB � rc

0 if rAB > rc

8<
: ð9:6Þ

9.5 Algorithms for Time Dependence

Once we have calculated the potential and hence the force by differentiation, we have

to solve Newton’s equation of motion. If FA is the force on particle A, whose position

vector is rA and whose mass is mA, then

FA ¼ mA

d2rA

dt2

¼ mAaA

This is a second-order differential equation that I can write equivalently as two first-

order differential equations for the particle position rA and the velocity vA

FA ¼ mA

dvA

dt

vA ¼ drA

dt

Figure 9.9 The cut-off distance
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9.5.1 The leapfrog algorithm

A simple algorithm for integration of these two equations numerically in small time

steps �t can be found by considering the Taylor expansion for v(t)

vA

�
t þ�t

2

�
¼ vAðtÞ þ

�
dvA

dt

�
t

�t

2
þ 1

2

�
d2vA

dt2

�
t

�
�t

2

�2

þ � � �

vA

�
t ��t

2

�
¼ vAðtÞ �

�
dvA

dt

�
t

�t

2
þ 1

2

�
d2vA

dt2

�
t

�
�t

2

�2

þ � � � ð9:7Þ

Subtracting and rearranging we get

vA

�
t þ�t

2

�
¼ vA

�
t ��t

2

�
þ aAðtÞ�t þ � � � ð9:8Þ

I will switch back and forth between, for example, v and dr=dt in order to try to

improve the readability of the equations. Also, I could have written vA(t) or (vA)t to

mean the instantaneous velocity of particle A at time t. The acceleration a is calcu-

lated from the force.

Using the same procedure for the Taylor expansion of rA at the time point tþ 1=2

�t we get

rAðt þ�tÞ ¼ rAðtÞ þ vA

�
t þ�t

2

�
�t þ � � � ð9:9Þ

Equations (9.8) and (9.9) form the so-called leapfrog algorithm, which is reputed to

be one of the most accurate and stable techniques for use in molecular dynamics.

A suitable time increment �t for molecular dynamics is a femtosecond (10�15 s). In

the leapfrog scheme the velocities are first calculated at time tþ 1=2 �t. These are

used to calculate the positions of the particles at time tþ�t and so on. In this

way the velocities leap over the positions and then the positions leap over the

velocities.

9.5.2 The Verlet algorithm

If instead we start from the Taylor expansion of rA(t) we have

rAðt þ�tÞ ¼ rAðtÞ þ
�
drA

dt

�
t

�t þ 1

2

�
d2rA

dt2

�
t

ð�tÞ2 þ � � �

rAðt ��tÞ ¼ rAðtÞ �
�
drA

dt

�
t

�t þ 1

2

�
d2rA

dt2

�
t

ð�tÞ2 þ � � � ð9:10Þ
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which gives (assuming that third-order and higher terms are negligible)

rAðt þ�tÞ ¼ 2rAðtÞ � rAðt ��tÞ þ
�
d2rA

dt2

�
t

ð�tÞ2 ð9:11Þ

This is known as the Verlet algorithm. The acceleration is obtained from the force

experienced by atom A at time t. The velocity does not appear in the expression, but it

can be obtained from the finite difference formula

vAðtÞ ¼ rAðt þ�tÞ � rAðt ��tÞ
2�t

ð9:12Þ

The Verlet algorithm uses positions and accelerations at time t and the position at

time t��t to calculate a new position at time tþ�t. All these have to be stored at

every iteration.

A variant is the velocity Verlet algorithm, which requires only the storage of

positions, velocities and accelerations that all correspond to the same time step. It

takes the form

rAðt þ�tÞ ¼ rAðtÞ þ
�
drA

dt

�
t

�t þ 1

2

�
d2rA

dt2

�
t

ð�tÞ2

vAðt þ�tÞ ¼
�
drA

dt

�
t

þ 1

2

��
d2rA

dt2

�
t

þ
�
d2rA

dt2

�
tþ�t

�
�t

ð9:13Þ

There are many other algorithms in the literature, each with their own strengths and

weaknesses.

9.6 Molten Salts

Molten salts (such as the alkali halides) are of great technological interest in the field

of metal extraction. The first simulations were done by L. V. Woodcock in 1971 [35].

Molten salts introduce a new problem because the potential energy terms are long

range. Consider a (hypothetical) one-dimensional infinite crystal, part of which is

shown in Figure 9.10. The unshaded ions have charge �Q, the shaded ions have

charge þQ and the spacing between the ions is a. Suppose we start with the central

(grey) ion at infinity, and all the other ions at their lattice positions as shown. The

work done, W, in bringing the grey ion from infinity to its place in the lattice is

W ¼ � 2Q2

4��0a

�
1� 1

2
þ 1

3
� 1

4
þ � � �

�

and the term in brackets converges very slowly to its limiting value of ln (2). Such

series have to be summed when calculating the force on a given ion in a periodic box
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such as Figure 9.8; in the case of neutral species, the sum is very quickly convergent

because of the short-range nature of the forces (see Table 9.1). For neutral systems, a

cut-off radius usually is taken beyond which the interactions are set to zero.

9.7 Liquid Water

Water plays a prominent place amongst solvents for obvious reasons. Two-thirds of

our planet is covered in water, chemical reactions tend to be done in aqueous solution,

and so on. The relatively strong hydrogen bonding in liquid water causes many of its

physical properties to be ‘anomalous’, and the structure of ice has long interested

both theoreticians and experimentalists.

Neutron diffraction studies on heavy ice D2O have shown that water molecules

retain their identity in condensed phases with very little distortion of their molecular

geometry. This means that water molecules may be treated as rigid asymmetric rotors

(with six degrees of freedom) rather than explicitly treating the three nuclei sepa-

rately (nine degrees of freedom). The classical energy for a collection of N rigid rotor

molecules consists of the kinetic energy for translation and rotation, together with the

intermolecular potential. Each water molecule is described by six coordinates; three

specify the centre of mass and three angles that fix the spatial orientation about the

centre of mass. In this section I will denote these coordinates by the six-dimensional

vector X. In terms of the linear velocities vi, the angular velocity vectors !i, the

moments of inertia Ii and the coordinates Xi the energy turns out to be

" ¼ 1

2

XN
i¼1

ðmv2i þ !T
i Ii!iÞ þ UðX1;X2; . . . ;XNÞ

Figure 9.10 Part of a one-dimensional crystal, where the separation between ions is a

Table 9.1 Summation of series for W

No of terms Sum

1 1.0000

2 0.5000

3 0.8333

4 0.5833

100 0.6882
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The question then is the extent to which the intermolecular potential is pairwise

additive; such functions may always be resolved into contributions from pairs, triples

and higher contributions

UðX1;X2; . . . ;XNÞ ¼
XN
i < j

Uð2ÞðXi;XjÞ

þ
XN

i < j < k

Uð3ÞðXi;Xj;XkÞ þ � � � þ UðNÞðX1;X2; . . . ;XNÞ

ð9:14Þ
In the case of simple fluids such as liquid argon it is widely believed that U is

practically pairwise additive. In other words, the contributions U(p) for p> 2 are

negligible. However, the local structure in liquid water is thought to depend on just

these higher order contributions and so it is unrealistic in principle to terminate the

expansion with the pair contributions. It is legitimate to write the potential as a sum of

pair potentials, provided one understands that they are effective pair potentials that

somehow take higher terms into account.

The classic molecular dynamics study of liquid water is that of A. Rahman and

F. H. Stillinger [36]. They wrote the effective pair potential as a sum of two con-

tributions: a Lennard-Jones 12-6 potential ULJ for the two oxygen atoms

ULJðRÞ ¼ 4"

��
�

R

�12

�
�
�

R

�6�

and a function Uel, modulated by a function S(Rij) that depends sensitively on the

molecular orientations about the oxygen atoms

Uð2ÞðXi;XjÞ ¼ ULJðRijÞ þ SðRijÞUelðXi;XjÞ ð9:15Þ
The Lennard-Jones parameters were taken to be those appropriate to neon, �¼ 282 pm

and "¼ 5.01� 10�22 J, on the grounds that neon is isoelectronic with water.

Four point charges Q, each of magnitude 0.19 e and each 100 pm from the oxygen

nucleus, are embedded in the water molecule in order to give Uel. Two charges are

positive, to simulate the hydrogen atoms, whilst the other two are negative and simulate

the lone pairs. The four charges are arranged tetrahedrally about the oxygen. The set of

16 Coulomb interactions between twowater molecules givesUel. Figure 9.11shows the

Figure 9.11 Two water molecules
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minimum energy conformation, with the two ‘molecules’ 76 pm apart (i.e. an oxygen–

oxygen distance of 276 pm).

The so-called switching function prevents the charges overlapping, and takes va-

lues between 0 and 1 depending on the distance between the oxygen atoms. The

authors took N¼ 216 water molecules in a cube of side 1862 pm, which corresponds

to a density of 1 g cm�3. They took periodic boundary conditions in order to eliminate

undesirable wall effects, and a cut-off of distance of 916.5 pm beyond which the

intermolecular interactions were set to zero.

The first step in a molecular dynamics calculation is to generate a suitable initial

state. In general, random structures created using density values consistent with

experiment may give atoms that are very close together. This causes undesirable

large repulsive forces in small localized regions of space. One approach is to start

from a low-density system with the atoms or molecules placed on simple cell lattices.

The density is then increased gradually.

Starting velocities then have to be assigned. One technique is to calculate a value

of the speed from equipartition of energy, and then assign random directions to each

particle, with the constraint that the system has zero overall momentum. The next

step is to let the system progress for a sufficient number of time steps in order

to eliminate any undesirable effects due to the choice of initial conditions. After

that, the collection of statistics begins. The temperature is inferred from the average

values of the translational and rotational kinetic energies, both of which should equal
3
2
NkBT.

It is possible in principle to follow a molecular dynamics simulation by displaying

the atom coordinates at a series of time points. It proves more convenient to calculate

certain statistical quantities. I mentioned the pair correlation function g(2)(r) earlier;

in water the three distinct types of nuclear pairs lead to three corresponding functions

g
ð2Þ
OOðrÞ, gð2ÞOHðrÞ and g

ð2Þ
HHðrÞ, which give information about the fraction of time that

differential volume elements separated by a distance r simultaneously contain pairs of

the nuclei given by the subscripts. These functions all have a limiting value of 1 as

r!1 . The g
ð2Þ
OOðrÞ curve is shown schematically in Figure 9.12. The horizontal axis

is actually a reduced distance r=�.

Figure 9.12 O–O pair distribution function
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Two important features of the curve are as follows

1. The narrow first peak at 275 pm corresponds to 5.5 neighbouring oxygen atoms.

2. The second peak is low and broad, with a maximum at about 465 pm. The ratio of

the second peak to the first, 465 pm=275 pm¼ 1.69, is close to that observed for an

ideal ice structure (2
p
2=
p
3¼ 1.633).

The mean square displacement is often calculated. This indicates the average dis-

placement of an atom during a fixed time period.

9.7.1 Other water potentials

Over the years, a number of authors have tackled the problem of finding a suitable

pair potential for liquid water. All involve a rigid water monomer with a number of

interaction sites. The original TIPS 3-site model proposed by W. L. Jorgensen [37]

has positive charges on the hydrogens and a negative charge (qO¼ � 2qH) on the

oxygen. The interaction potential is taken as the sum of all intermolecular Coulomb

terms together with a single Lennard-Jones 12-6 term between the oxygens

UAB ¼ 1

4��0

X
i on A

X
j on B

qiqj

Rij

þ A

R12
OO

� B

R6
OO

ð9:16Þ

The parameters qi, A and B were chosen to give reasonable energetic results for gas-

phase complexes of water and alcohols. The author subsequently reoptimized the

parameters to give TIP3P, an improved three-site model.

Four-site models have also been used; the oldest is that due to J. D. Bernal and R.

H. Fowler [38], with a more modern version referred to as TIP4P by W. L. Jorgensen

et al. [39]. In this case the negative charge is moved off the oxygen and towards the

hydrogens at a point along the bisector of the HOH angle. The pair potential is still

calculated according to the equation above, but more distances have to be evaluated.

Stillinger and Rahman’s ST2 potential is widely used; this is an improved version

of the one discussed above, but adds a Lennard-Jones 12-6 term between the oxygen

atoms. In all, 17 distances have to be evaluated.

9.8 Different Types of Molecular Dynamics

When Newton’s equations of motion are integrated, the energy is conserved. Since

the energy and temperature are related by the equipartition of energy principle, the

temperature should also be constant. Slow temperature drifts do occur as a result of
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the numerical integration and also because of the truncation of the forces. Several

methods for performing molecular dynamics at constant temperature have been

proposed, of which the simplest is known as rescaling. If the current temperature

at time t is T(t), then for a system of N particles and 3N degrees of freedom we

have

h"kini ¼
�XN

i¼1

1
2
miv

2
i

�
¼ 3

2
NkBTðtÞ

To adjust the temperature to exactly a reference temperature Tref we simply rescale

the velocities by a factor

�
Tref

TðtÞ
�1=2

Scaling the velocities at appropriate intervals can therefore control the temperature of

the system. We speak about constant-temperature molecular dynamics.

S. Nose [40] proposed an alternative method that adds an extra degree of freedom,

referred to as a heat bath, to the atomic degrees of freedom. Extra kinetic energy and

potential energy terms are added to the total energy, and the molecular dynamics is

carried out with this one extra degree of freedom. Energy can flow back and forth

between the heat bath and the system, and an equation of motion for the extra degree

of freedom is solved.

Similar considerations apply to the pressure; in order to control the pressure in

a system, any change in volume must be monitored and adjusted. Methods are

available, and such calculations are referred to as constant-pressure molecular

dynamics.

9.9 Uses in Conformational Studies

Molecular dynamics generally is used to study the structure and behaviour of materi-

als, where one is concerned with the intermolecular potential. It is of course also

perfectly possible to study single molecules and it is sometimes used as an aid in

conformational analysis. As noted previously, there are very many local minima on

the potential energy surface and it may be that small variations in torsional angles do

not facilitate searching of all regions.

The idea is to start with a molecular mechanics local minimum, which corresponds

to a temperature of 0K. We use molecular dynamics to raise the temperature, let the

molecule vibrate for a while at an elevated temperature and cool it back to 0K.

Hopefully the molecule will then have crossed over any potential barriers and a re-

optimization will give a new structure.
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To give a simple example, consider the straight chain hydrocarbon C20H42, shown

in Figure 9.13. A MMþ optimization starting from the fully stretched structure gave

the structure shown. There is restricted rotation about each C��C bond and in a later

chapter I will show how theories of polymeric molecules focus attention on the end-

to-end distance; the simplest theories predict relationships between this and the

number of C��C links in such a molecule. C20H42 is barely a polymer, but the

principles are the same. There are very many conformers, all similar in energy.

Figure 9.13 Molecular dynamics calculation on hydrocarbon

Figure 9.14 End-to-end distance
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I therefore set up a 15 ps molecular dynamics calculation, as shown in Figure 9.13.

The options are shown, and statistics were collected in an MS=EXCEL file. The

end-to-end distance varied dramatically over the experiment, from its initial value

of 2435 pm through 850 pm. The average end-to-end distance was 1546 pm, as shown

in Figures 9.14 and 9.15. The resulting structure was then optimized. One strategy in

such calculations is to take snapshots of the structure at regular time intervals and

then optimize from each snapshot.

Figure 9.15 C20 hydrocarbon at end of MD experiment
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10 Monte Carlo

10.1 Introduction

When discussing QSAR in Chapter 7, I mentioned that the molecular volume was

thought to be a useful index and explained how it could be calculated within the

framework of a molecular mechanics (MM) study.

Figure 10.1 shows a diatomic molecule, where the atomic radii are RA and RB. The

problem is to find the volume of the molecule AB. The volume of atom A is 4
3
�R3

A and

the total for AB is given by this plus the part of B that is not shared with atom A.

Thus, we have to be careful not to count volume X twice in any calculation.

I suggested that the total could be calculated by surrounding atom B with a regular

grid of side 2RB, and examining which grid points lay inside B but excluding those

lying in region X, and those that lay outside atom B. A simple ratio then gives the

contribution to the volume from atom B. The process can be easily extended to any

polyatomic system.

Rather than take a regularly spaced cubic array of points around atom B, we can

surround atom B by an (imaginary) cube of side 2RB and choose points at random

inside this cube. For each point, we examine whether it lies outside atom B, in which

case we reject it. If the point lies inside atom B but also inside atom A (i.e. it lies in

the X region), we also reject it. Otherwise we increment the number of successful

points. A simple proportionality between the number of successful points and the

total number tried gives the required volume.

The following BASIC program accomplishes the calculation.

REM MONTE CARLO CALCULATION OF DIATOMIC A--B VOLUME
REM ATOMIC RADII RA AND RB, SEPARATION RAB.
REM
PI¼ 3.14159265359#
NPOINTS¼ 10000
RA¼ 2
RB¼ 1
RAB¼ 2!
XA¼ 0!
YA¼ 0!



ZA¼ 0!
XB¼ 0!
YB¼ 0!
ZB¼ RAB
VA¼ 4=3 ? PI ? RA^3
VB¼ 0
FOR I¼ 1 TO NPOINTS
XI¼ XBþ RB ? (2 ? RND - 1)
YI¼ YBþ RB ? (2 ? RND - 1)
ZI¼ ZBþ RB ? (2 ? RND - 1)
DISTB¼ SQR ((XI - XB)^2þ (YI - YB)^2þ (ZI - ZB)^2)
IF DISTB>RB THEN 2000
DISTA¼ SQR ((XI - XA)^2þ (YI - YA)^2þ (ZI - ZA)^2)
IF DISTA<RA THEN 2000
VB¼ VBþ 1
2000 NEXT I
VB¼ 8 ? RB^3 ? VB=NPOINTS
VTOTAL¼ VAþ VB
PRINT
PRINT "VOLUME AFTER"; NPOINTS; "POINTS IS"; VTOTAL
END

You might have to modify the statements involving RND to make it run with your

version of BASIC. I have taken two atoms with radii 2 units and 1 unit, and the atoms

are separated by RAB that I have set to 2 units. I have calculated the volume of atom A

as 4
3
�R3

A. I then chose 10 000 points at random within a cube of side 2RB surrounding

atom B.

If the point lies outside atom B, then we do nothing apart from increment the

counter and progress to the next point. If the point lies inside atom B, then we test

whether it also lies inside atom A (in which case we have already counted it). I hope

the code is transparent; this little program can be easily extended to deal with a

polyatomic molecule.

Figure 10.1 A MM diatomic
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This calculation is an example of theMonte Carlo technique (denoted MC). MC is a

generic term applied to calculations that involve the use of random numbers for sam-

pling; it became widely used towards the end of the Second World War by physicists

trying to study the diffusion of neutrons in fissionable material. In fact, the MCmethod

was first discussed by the French eighteenth-century naturalist B�uuffon, who discovered
that if a needle of length l were dropped at random onto a set of parallel lines with

spacing d> l, then the probability of the needle crossing a line is 2l=�d.

Straightforward thermodynamic quantities such as the pressure, the internal energy

and the Gibbs energy turn out to be impossible to calculate directly for a macroscopic

system, simply because of the large number of particles involved. In fact, it is not

even sensible to contemplate recording an initial starting point for 1023 particles, let

alone devising methods for solving the equations of motion. Boltzmann and Gibbs

recognized this problem, and invented the subject of statistical thermodynamics.

Suppose for the sake of argument that we have a system of N simple atomic

particles (such as argon atoms) and we are interested in the total potential energy

F. If the pair potential is Uij(R) and the potentials are pairwise additive, then we have

F ¼
XN�1

i¼1

XN
j¼iþ1

UijðRijÞ

If I denote the position vectors of the N particles measured at time t by RA(t),

RB(t), . . . ,RN(t), then the position vectors will depend on time and the instantaneous

value of F will depend on the values of the variables at that time. If we make enough

measurements F(t1),F(t2), . . . ,F(tn) at times t1, t2, . . . , tn, then the average of these

measurements will approach the mean value of F

hFi ¼ 1

n

Xn
i¼1

FðtiÞ

Other properties such as the self-diffusion depend on fluctuations about mean values.

In statistical thermodynamics, rather than calculating a time average we consider the

average over a large number of replications of the system (an ensemble). The ergodic

theorem tells us that the two are the same.

In Chapter 8 I considered the case of a canonical ensemble, which consists of a

large number of replications (or cells), each of which is identical in the sense that the

number of particles, the volume and the temperature are the same. The cells are not

identical at the atomic level, all that matters is N, V and T. Energy can flow from one

cell to another, but the total energy of the ensemble is constant.

Under these conditions, the chance of finding a cell with energy E is proportional

to the Boltzmann factor

exp

�
� E

kBT

�
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The mean value hEi can be found by averaging over the replications

hEi ¼
P

Ei exp
�� Ei

kBT

�
P

exp
�� Ei

kBT

� ð10:1Þ

I explained the importance of the configurational integral, which depends only on

exponential terms involving the total mutual potential energy F

Z
exp

�
�FðqÞ

kBT

�
dq ð10:2Þ

and showed how it could be related to the so-called excess thermodynamic

functions.

I have written the configurational integral in a simplified way; if there are N

particles, then it is actually a 3N dimensional integral over the positions of the N

particles. We might want to take N¼ 10 000 particles, but a little thought shows that it

is impracticable to carry out such a multidimensional integral by the usual techniques

of numerical analysis. Instead we resort to the MC method and generate a represen-

tative number of points in conformation space. For each point we calculate a value of

F. The integral is approximated by a finite sum.

The first serious MC calculation was that of N. Metropolis et al. [41]. In fact, this

paper marked the birth of computer simulation as a statistical mechanical technique,

and it preceded the molecular dynamics studies mentioned in Chapter 9. I can’t do

better than repeat the words of the authors (i.e. quote the Abstract):

A general method, suitable for fast computing machines, for investigating such

properties as equations of state for substances consisting of interacting

individual molecules is described. The method consists of a modified Monte

Carlo integration over configuration space. Results for the two-dimensional

rigid-sphere system have been obtained on the Los Alamos MANIAC, and are

presented here. These results are compared to the free volume equation of state

and to a four-term virial coefficient expansion.

They took a two-dimensional square array of 224 hard disks with finite radius.

Each disk was moved in turn according to the formulae

X ! X þ ��1; Y ! Y þ ��2

where � is some maximum allowed distance and the �i are random numbers between 0

and 1. In the case that the move would put one disk on top of another disk, the move is

not allowed and we progress to the next disk. This is a primitive form of the technique

known as importance sampling that is a key feature of modern MC simulations.

In the case of a more complicated problem such as the Lennard-Jones potential,

a more sophisticated treatment of importance sampling is needed. The average
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potential energy can be obtained from the configuration integral

hFi ¼
R
FðqÞ exp �� FðqÞ

kBT

�
dqR

exp
�� FðqÞ

kBT

�
dq

ð10:3Þ

and each integral is approximated by a finite sum of M terms in MC

hFi �
PM

i¼1 FiðqÞ exp
�� FiðqÞ

kBT

�
PM

i¼1 exp
�� FiðqÞ

kBT

� ð10:4Þ

If we calculate the mutual potential energy Fi(q) for a random array of atoms, then

the array will have a Boltzmann weight of

exp

�
�FðqÞ

kBT

�

and if some atoms are close together, then Fi will be large and the Boltzmann factor

small.

Most of phase space corresponds to non-physical configurations with very high

energies and only for a very small proportion of phase space does the Boltzmann

factor have an appreciable value. The authors proposed a modified MC scheme

where, instead of choosing configurations randomly and then weighting them with

exp (�F=kBT ), configurations were chosen with a probability distribution of

exp (�F=kBT ) and then weighted equally. This adds a step to the algorithm as

follows.

Before making a move, we calculate the energy change of the system caused by the

move. If the energy change is negative, then the move is allowed. If the energy

change is positive, then we allow the move but with a probability of exp (�F=kBT);
to do this, we generate a random number �3 between 0 and 1, and if

�3 < exp

�
� F
kBT

�

then we allow the move to take place and increment the numerator and denominator

in Equation (10.1). Otherwise we leave the particle in its old position and move on to

the next particle. This summarizes the Metropolis Monte Carlo technique.

The box is taken to be periodic, so if amove places the particle outside the box, then an

image particle enters the box from the opposite side. The procedure is repeated for very

many trials, and the configurational integral is estimated as a sum.

Hard disk systems were the first ones investigated, and they occupy an important

place in the history of modelling. The results of the first successful ‘realistic’ MC
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simulation of an atomic fluid was published in 1957 by W. W. Wood and F. R. Parker

[42]. Again, let the authors tell the story in their own words.

Values obtained byMonte Carlo calculations are reported for the compressibility

factor, excess internal energy, excess constant-volume heat capacity, and the

radial distribution function of Lennard-Jones (12-6) molecules at the reduced

temperature kBT="
� ¼ 2.74, and at thirteen volumes between v=v� ¼ 0.75 and 7.5

(v is the molar volume; v� ¼ 2�1=2 N0r
�3; N0 is Avogadro’s number; "� is the

depth and r� the radius of the Lennard-Jones potential well). The results are

compared with the experimental observations of Michels (�150–2000 atm) and

Bridgman (�2000–15 000 atm) on argon at 55 �C, using Michels’ second virial

coefficient values for the potential parameters. Close agreement with Michels

is found, but significant disagreement with Bridgman. The Monte Carlo

calculations display the fluid–solid transition; the transition pressure and the

volume and enthalpy increments are not precisely determined. The Lennard-

Jones–Devonshire cell theory gives results which disagree throughout the fluid

phase, but agree on the solid branch of the isotherm. Limited comparisons with

the Kirkwood–Born–Green results indicate that the superposition approxima-

tion yields useful results at least up to v=v� ¼ 2.5.

They therefore studied a three-dimensional Lennard-Jones fluid (i.e. argon) and com-

pared their results with experimental equation of state data. One of the most impor-

tant technical questions discussed in the paper is the procedure used to truncate a

potential in a system with periodic boundary conditions.

10.2 MC Simulation of Rigid Molecules

For rigid non-spherical molecules, it is necessary to vary their orientation as well as

the position in space; usually each molecule is translated and rotated by random

amounts once per cycle. The simplest approach is to rotate about each Cartesian axis

in turn by an angle chosen at random but subject to a suitable maximum allowed

variation. For example, if the position vector of an atom is the column vector R, then

the position vector after rotation by � about the x-axis is given by

R0 ¼
1 0 0

0 cos� sin�
0 � sin� cos�

0
@

1
AR ð10:5Þ

The three Euler angles �, � and  are often used when discussing rotational motion.

First of all we rotate by � about the Cartesian z-axis. This changes the x and y-axes

to x0 and y0 as shown in Figure 10.2. Then we rotate by � about the new x-axis

which changes the y and z-axes. Finally, we rotate by  about the new z-axis.
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The relationship between a position vector before and after the three rotations is

R0 ¼
cos�cos � sin�cos�sin sin�cos þ cos�cos�sin sin�sin 
�cos�sin � sin�cos�cos �sin�sin þ cos�cos�cos sin�cos 

sin�sin� �cos�sin� cos�

0
@

1
AR

ð10:6Þ

There are two technical problems with the use of Euler angles. First, sampling the angles

at random does not give a uniform distribution; it is necessary to sample  , cos � and  .
Second, there are a total of six trigonometric function evaluations per rotation.

A preferred alternative makes use of quaternions, which are four-dimensional unit

vectors. A quaternion q is usually written in terms of the scalar quantities q0, q1, q2
and q3 as

q ¼ q0 q1 q2 q3ð ÞT

and the components satisfy

q20 þ q21 þ q22 þ q24 ¼ 1

They can be related to the Euler angles as follows

q0 ¼ cos 1
2
� cos 1

2
ð�þ  Þ

q1 ¼ sin 1
2
� cos 1

2
ð��  Þ

q2 ¼ sin 1
2
� sin 1

2
ð��  Þ

q3 ¼ cos 1
2
� sin 1

2
ð�þ  Þ

ð10:7Þ

Figure 10.2 First Euler angle
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The rotation matrix can be written as

R0 ¼
q20 þ q21 � q22 � q23 2 q1q2 þ q0q3ð Þ 2 q1q3 � q0q2ð Þ
2 q1q2 � q0q3ð Þ q20 � q21 þ q22 � q23 2 q2q3 þ q0q1ð Þ
2 q1q3 þ q0q2ð Þ 2 q2q3 � q0q1ð Þ q20 � q21 � q22 þ q23

0
@

1
AR ð10:8Þ

and all that is necessary is to generate four suitable random numbers.

10.3 Flexible Molecules

Monte Carlo simulations of flexible molecules are difficult to perform unless the

system is small or some of the internal degrees of freedom are kept fixed. The

simplest way to generate a new configuration is to perform random changes to the

Cartesian coordinates of individual atoms in the molecule but it is a common experi-

ence that very small changes are needed in order to produce an acceptable Boltzmann

factor (in the Metropolis MC sense).
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11 Introduction to

Quantum Modelling

By the early days of the twentieth century, scientists had successfully developed three

of the four great cornerstones of physics; Sir Isaac Newton’s mechanics, James Clerk

Maxwell’s electromagnetic theory and Albert Einstein’s theory of special relativity.

They had a picture of the physical world where matter was made from point particles

and radiation consisted of electromagnetic waves, and this picture seemed to explain

all known physical phenomena with just a few untidy exceptions.

These untidy exceptions comprised phenomena such as the theory of black body

radiation, the photoelectric effect, Compton scattering, atomic structure and spectra

and a few other apparently unrelated experimental findings. I don’t have space in this

book to go into the historical detail; I will simply say that a thorough study of such

phenomena led to the fourth cornerstone, quantum theory. Every textbook that has to

deal with quantum theory has its own particular treatment and starting point, and this

one is no exception; I am going to assume that you have heard of Erwin Schr€oodinger
and his famous equations, and start the discussion at that point. Perhaps I can reassure

you by saying that most professional scientists perceive quantum theory as a hard

subject (along with electromagnetism). Even Schr€oodinger didn’t fully understand the

physical meaning that we now attach to his wavefunctions when he first wrote down

his famous equation and solved it for the hydrogen atom.

11.1 The Schrödinger Equation

Consider then the simple case of a particle of mass m constrained to the x-axis by a

potential U(x, t) that depends on x and time t. I have allowed the potential to be time

dependent in order to cover the possibility of (for example) an electron being influenced

by an external electromagnetic wave. Schr€oodinger’s time-dependent equation states

that �
� h2

8�2m

@2

@x2
þ Uðx; tÞ

�
Cðx; tÞ ¼ j

h

2�

@Cðx; tÞ
@t

ð11:1Þ



where j is the square root of � 1 (j2¼ � 1).C(x, t) is thewavefunction and in general it

is a complex valued quantity. The square of the modulus of C can be found from

jCðx; tÞj2 ¼ C�ðx; tÞCðx; tÞ

where C� is the complex conjugate of C. The fact that complex wavefunctions are

allowed and that the Schr€oodinger equation mixes up real and imaginary quantities

caused Schr€oodinger and his contemporaries serious difficulties in trying to give a

physical meaning to C. According to Max Born, the physical interpretation attaching

to the wavefunction C(x, t) is that C�(x, t)C(x, t)dx gives the probability of finding

the particle between x and xþ dx at time t. It is therefore the square of the modulus of

the wavefunction rather than the wavefunction itself that is related to a physical

measurement.

Since C�(x, t)C(x, t)dx is the probability of finding the particle (at time t) between

x and xþ dx, it follows that the probability of finding the particle between any two

values a and b is found by summing the probabilities

P ¼
Z b

a

C�ðx; tÞCðx; tÞdx

In three dimensions the equation is more complicated because both the potential U

and the wavefunction C might depend on the three dimensions x, y and z (written as

the vector r) as well as time.�
� h2

8�2m

�
@2

@x2
þ @2

@y2
þ @2

@z2

�
þ Uðr; tÞ

�
Cðr; tÞ ¼ j

h

2�

@Cðr; tÞ
@t

ð11:2Þ

You are probably aware that the operator in the outer left-hand bracket is the

Hamiltonian operator and that we normally write the equation

bHHCðr; tÞ ¼ j
h

2�

@Cðr; tÞ
@t

ð11:3Þ

The Born interpretation is then extended as follows

C�ðr; tÞCðr; tÞdxdydz ð11:4Þ

gives the probability that the particle will be found at time t in the volume element

dxdydz. Such volume elements are often written d� .
I have not made any mention of time-dependent potentials in this book, but they

certainly exist. You will have met examples if you have studied electromagnetism

where the retarded potentials account for the generation of electromagnetic radiation.

For the applications we will meet in this book, the potentials are time independent; in

such cases the wavefunction still depends on time, but in a straightforward way as I

will now demonstrate.
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11.2 The Time-Independent Schrödinger Equation

I am going to use a standard technique from the theory of differential equations called

separation of variables to simplify the time-dependent equation; I want to show you

that when the potential does not depend on time, we can ‘factor out’ the time

dependence from the Schr€oodinger time-dependent equation and just concentrate on

the spatial problem. I will therefore investigate the possibility that we can

write C(r, t) as a product of functions of the spatial (r) and time (t) variables, given

that the potential only depends on r. We write

Cðr; tÞ ¼  ðrÞTðtÞ ð11:5Þ

and substitute into the time-dependent Schr€oodinger equation to get

�
� h2

8�2m

�
@2

@x2
þ @2

@y2
þ @2

@z2

�
þ Uðr; tÞ

�
 ðrÞTðtÞ ¼ j

h

2�

@ ðrÞTðtÞ
@t

Note that the differential operators are partial ones and they only operate on functions

that contain them. So we rearrange the above equation

TðtÞ
�
� h2

8�2m

�
@2

@x2
þ @2

@y2
þ @2

@z2

�
þ Uðr; tÞ

�
 ðrÞ ¼ j ðrÞ h

2�

dTðtÞ
dt

divide by C(r, t) and simplify to get

1

 ðrÞ
�
� h2

8�2m

�
@2

@x2
þ @2

@y2
þ @2

@z2

�
þ Uðr; tÞ

�
 ðrÞ ¼ j

1

TðtÞ
h

2�

dTðtÞ
dt

The left-hand side of the equation depends on the spatial variable r and the time

variable t. Suppose now that the potential depends only on r and not on t. That is to

say

1

 ðrÞ
�
� h2

8�2m

�
@2

@x2
þ @2

@y2
þ @2

@z2

�
þ UðrÞ

�
 ðrÞ ¼ j

1

TðtÞ
h

2�

dTðtÞ
dt

ð11:6Þ

Under these circumstances, the left-hand side of the equation depends only on r and

the right-hand side only on t. The spatial and the time variables are completely

independent and so the right-hand side and the left-hand side must both equal a

constant. In the theory of differential equations, this constant is called the separation
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constant. In this case it is equal to the total energy so I will write it as "

1

 ðrÞ
�
� h2

8�2m

�
@2

@x2
þ @2

@y2
þ @2

@z2

�
þ UðrÞ

�
 ðrÞ ¼ "

j
1

TðtÞ
h

2�

dTðtÞ
dt

¼ "

The second equation can be solved to give

TðtÞ ¼ A exp

�
� 2�j"t

h

�
ð11:7Þ

and so the full solution to the time-dependent equation in the special case that the

potential is time independent can be written

Cðr; tÞ ¼  ðrÞ exp
�
� 2�j"t

h

�
ð11:8Þ

Probabilities then become time independent since

C�ðr; tÞCðr; tÞ ¼  �ðrÞ exp
�
þ 2�j"t

h

�
 ðrÞ exp

�
� 2�j"t

h

�
¼  �ðrÞ ðrÞ

11.3 Particles in Potential Wells

I have mentioned a number of model potentials in earlier chapters when dealing with

Molecular Dynamics and Monte Carlo. A model potential of historical interest in

quantum mechanical studies is the ‘infinite well’ (see Figure 11.1).

11.3.1 The one-dimensional infinite well

A particle of mass m is constrained to a region 0� x� L by a potential that is infinite

everywhere apart from this region, where it is equal to a constant U0. This might be a

very crude model for the conjugated electrons in a polyene, or for the conduction

electrons in a metallic conductor. (In fact, there is a technical problem with this

particular model potential caused by the infinities, as I will explain shortly.)

To solve the problem we examine the Schr€oodinger equation in each of the three

regions and then match up the wavefunction at the boundaries. The wavefunction
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must be continuous at any boundary. In regions I and III the potential is infinite and so

the wavefunction must be zero in order to keep the Schr€oodinger equation finite. In

region II the potential is a finite constant U0 and we have�
� h2

8�2m

d2

dx2
þ U0

�
 ðxÞ ¼ " ðxÞ

which can be rewritten

d2 

dx2
þ 8�2mð"� U0Þ

h2
 ¼ 0 ð11:9Þ

The standard solution to this second-order differential equation is

 ¼ A sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�2mð"� U0Þ

h2

r
xþ B cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�2mð"� U0Þ

h2

r
x

whereA andB are constants of integration.We know that ¼ 0 in regions I and III so the

wavefunction must also be zero at x¼ 0 and at x¼ L in order to be continuous at these

points. Substituting ¼ 0 at x¼ 0 shows thatB¼ 0. Ifwe substitute ¼ 0 at x¼ Lweget

0 ¼ A sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�2mð"� U0Þ

h2

r
L

This means that either A¼ 0 or the argument of sin must be an integral multiple of �
(written n). A cannot be 0, for otherwise the wavefunction would be 0 everywhere and

so, on rearranging

"n ¼ U0 þ n2h2

8mL2

 n ¼ A sin

�
n�

L
x

� ð11:10Þ

Figure 11.1 One-dimensional infinite well
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The energy is quantized, and so I have added a subscript to the " for emphasis. It

generally happens that the imposition of boundary conditions leads to energy quan-

tization. It is often necessary when tackling such problems to match up both the

wavefunction and its gradient at the boundaries, but in this particular case the solution

appeared just by considering the wavefunction. (In fact, the infinities in this particular

potential mean that the first derivative is not continuous at the boundaries; ‘real’

potentials don’t contain such sudden jumps to infinity.) n is the quantum number

and at first sight the allowed values are n¼ . . . � 2, � 1, 0, 1, 2, . . . . The value n¼ 0

is not allowed for the same reason that A cannot be 0. We can deduce the constant of

integration A by recourse to the Born interpretation of quantum mechanics; the

probability of finding the particle between x and xþ dx is

 2
nðxÞ dx

Probabilities have to sum to 1 and so we requireZ L

0

 2
nðxÞ dx ¼ 1

from which we deduce

 n ¼ �
ffiffiffi
2

L

r
sin

�
n�x

L

�
We note also that the values of �n give wavefunctions that differ only by multi-

plication by � 1, since

sin

�
� n�x

L

�
¼ �sin

�
n�x

L

�
According to the Born interpretation, both give the same probability density and so

we only need one set. It is conventional to take the quantum numbers as positive and

the value of A as the positive square root so the results can be collected together as

"n ¼ U0 þ n2h2

8mL2

 n ¼
ffiffiffi
2

L

r
sin

�
n�x

L

�
n ¼ 1; 2; 3 . . .

ð11:11Þ

Plots of the squares of the wavefunctions for n¼ 1 and n¼ 3 are shown in Figure

11.2. For a particle with n¼ 1 (the full curve) there is zero probability of finding the

particle at the end points and a maximum probability of finding the particle at the

centre point. For n¼ 3 there are three equal maxima of probability.
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11.4 The Correspondence Principle

In 1923, Neils Bohr formulated a principle that he had already used in his treatment

of the hydrogen atom, called the Correspondence Principle; this states that quantum

and classical predictions have to agree with each other in the limit, as the quantum

number(s) get large. In other words, the results of classical physics may be considered

to be the limiting cases of quantum mechanical calculations with large quantum

Figure 11.2 Squares of wavefunction for n¼ 1 and n¼ 3

Figure 11.3 Square of wavefunction n¼ 30
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numbers. A plot of  2
30 shows the operation of the Correspondence Principle; the

probabilities appear much more evenly spread out over the region (see Figure 11.3).

In the case of a ‘classical’ particle in such a well, we would expect an equal prob-

ability of finding the particle at any point along the line.

11.5 The Two-Dimensional Infinite Well

In the two-dimensional version of this problem, we consider a single particle of mass

m constrained to a region of the xy plane by a potential that is infinite everywhere

except for a region where 0� x�1 and 0� y�1, where it is equal to a constant

U0 as shown in Figure 11.4. I have taken the region to be square, but this is not

necessary.

The (time-independent) Schr€oodinger equation is

@2 

@x2
þ @2 

@y2
þ 8�2mð"� U0Þ

h2
 ¼ 0 ð11:12Þ

and the wavefunction now depends on x and y. Straightforward application of the

‘separation of variables’ technique discussed above gives the following wavefunc-

tions and energies

"n;k ¼ U0 þ n2h2

8mL2
þ k2h2

8mL2

 n;k ¼ 2

L
sin

�
n�x

L

�
sin

�
k�y

L

�
n; k ¼ 1; 2; 3 . . .

ð11:13Þ

There are now two quantum numbers that I have decided to call n and k. Each

quantum number can equal a positive integer. The wavefunction is a product of sine

Figure 11.4 Two-dimensional infinite well
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functions, and we now have to think about visualization. Two popular ways to

visualize such objects are as contour diagrams or as surface plots. The two repre-

sentative figures, Figures 11.5 and 11.6, refer to the solution n¼ 4 and k¼ 2. The

horizontal axes are x and y, the vertical axis  .

Figure 11.5 Wavefunction, contour view

Figure 11.6 Two-dimensional box, surface plot
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11.6 The Three-Dimensional Infinite Well

It should be obvious by now how we proceed to three dimensions. The relevant

Schr€oodinger equation is

@2 

@x2
þ @2 

@y2
þ @2 

@z2
þ 8�2m "� U0ð Þ

h2
 ¼ 0 ð11:14Þ

which can be solved by the standard techniques discussed above. Application of the

boundary conditions gives three quantum numbers that I will write n, k and l. The

solutions are

"n;k;l ¼ U0 þ n2h2

8mL2
þ k2h2

8mL2
þ l2h2

8mL2

 n;k;l ¼
�
2

L

�3=2

sin

�
n�x

L

�
sin

�
k�y

L

�
sin

�
l�y

L

�
n; k; l ¼ 1; 2; 3 . . .

ð11:15Þ

Figure 11.7 summarizes the one-dimensional and the cubic three-dimensional infinite

well problems. The energies are plotted in units of h2=8mL2. The one-dimensional

Figure 11.7 One-dimensional and cubic three-dimensional wells
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energy levels are shown as the left-hand ‘column’ of the figure. They simply increase

as n2.

The three-dimensional problem shows a much more interesting pattern. First of all,

many of the energy levels are degenerate (that is to say, there are many quantum

states with the same energy). Some of the degeneracies are natural, for example

 1,2,3,  1,3,2,  2,1,3,  2,3,1,  3,1,2 and  3,2,1 all have energy 14h2=(8mL2). There are

also many accidental degeneracies; for example there are nine degenerate quantum

states with energy 41h2=(8mL2) because 12þ 22þ 62 and 42þ 42þ 32 are both equal

to 41. Secondly, as the energy increases, the energy levels crowd together and the

number of quantum states of near equal energy is seen to increase. This crowding

together does not happen in the one-dimensional case.

The square two-dimensional case lies somewhere in between, with fewer degen-

eracies. The degeneracies do not occur if we take arbitrary sides for the two- and

three-dimensional regions. Nevertheless, their quantum states still crowd together as

the quantum numbers increase.

11.7 Two Non-Interacting Particles

Consider now the case of two non-interacting particles A and B in a one-dimensional

well. Writing xA and xB for their position coordinates along the x-axis, the time-

independent Schr€oodinger equation is (taking the constant of integration to be zero, for
simplicity)

� h2

8�2m

�
@2

@x2A
þ @2

@x2B

�
CðxA; xBÞ ¼ ECðxA; xBÞ ð11:16Þ

I have written capital C and E to emphasize that the equation refers to a system of

two particles, and I will use this convention from now on. Equation (11.16) looks like

a candidate for separation of variables, so we investigate the conditions under which

the total wavefunction can be written as a product of one-particle wavefunctions

CðxA; xBÞ ¼  AðxAÞ BðxBÞ

Substitution and rearrangement gives

� h2

8�2m

1

 A

d2 A

dx2A
� h2

8�2m

1

 B

d2 B

dx2B
¼ E

Applying the now familiar argument, we equate each term on the left-hand side to a

(different) separation constant "A and "B, which have to sum to E. The total wave-

function is therefore a product of wavefunctions for the individual particles, and the
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total energy is the sum of the one-particle energies. There are two quantum numbers

that I will call nA and nB and we find

CnA;nB ¼ 2

L
sin

�
nA�xA

L

�
sin

�
nB�xB
L

�
EnA;nB ¼ ðn2A þ n2BÞ

h2

8mL2

nA; nB ¼ 1; 2; 3 . . .

ð11:17Þ

We often summarize the results of such calculations, where the solution turns out to

be a product of individual one-particle solutions, by a simple extension of Figure

11.7.

Figure 11.8 shows one possible solution, where particle A has quantum number 2

and particle B has quantum number 1. There is more to this simple problem than

meets the eye; you might be wondering how it is possible to ‘label’ one particle A and

one B. If A and B had been two motorcars travelling along the M6 motorway, then

the labelling could be done by the vehicle number plate. But how can we possibly

label electrons, or any other atomic particles for that matter? This isn’t an easy

question; I will return to it later in the book.

Figure 11.8 Two particles in a one-dimensional box
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11.8 The Finite Well

The infinite well occupies an important place in the history of molecular quantum

mechanics, and we will meet it again in Chapter 12. We discussed the finite well in

Chapters 9 and 10, but from the viewpoint of classical mechanics. The finite well

potential gives a rather crude model for a diatomic molecule, and it is shown again in

Figure 11.9. It keeps an infinite potential for the close approach of the two nuclei, but

allows for a ‘valence region’ where the potential is constant.

The potential is infinite for �1� x� 0, zero (or a constant) for the valence

region where 0� x� L and a constant D for L� x�1. As usual, we divide up

the x-axis into three regions and then match up  at the two boundaries. It is also

necessary to match up the first derivative of  at the x¼ L boundary.

In region I, the potential is infinite and so  ¼ 0. This means that  ¼ 0 at the

boundary when x¼ 0. In region II, the potential is constant (zero) and so we have

� h2

8�2m

d2 ðxÞ
dx2

¼ " ðxÞ

This can be solved to give

 ¼ A sin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
8�2m"

h2

r
xþ B cos

ffiffiffiffiffiffiffiffiffiffiffiffiffi
8�2m"

h2

r
x

where A and B are constants of integration. We can eliminate the B term straight away

by the argument of Section 11.3. In region III we have�
� h2

8�2m

d2

dx2
þ D

�
 ðxÞ ¼ " ðxÞ

Figure 11.9 The finite well
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For now, let us interest ourselves only in those solutions where the energy is less

than or equal to D. Such solutions are called bound states. We will shortly see that

solutions exist where the energy is greater than D and these are called unbound states.

I can rewrite the Schr€oodinger equation for region III as

d2 

dx2
� h2

8�2m
ðD� "Þ ¼ 0

The standard solution to this second-order differential equation is

 ¼ E exp

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�2mðD� "Þ

h2

r
x

�
þ F exp

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�2mðD� "Þ

h2

r
x

�
where E and F are constants of integration.

We now have to apply boundary conditions for the bound state solutions where " is
less than D. If we want the wavefunction to be zero at infinity, then E must be zero.

The wavefunction and its first derivative must also be equal at the boundary x¼ L.

Thus we have

A sin

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
8�2m"

h2

r
L

�
¼ F exp

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�2mðD� "Þ

h2

r
L

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
8�2m"

h2

r
A cos

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
8�2m"

h2

r
L

�
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�2mðD� "Þ

h2

r
F exp

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�2mðD� "Þ

h2

r
L

�
Dividing one equation by the other and rearranging gives a formula involving the

energy "

tan

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
8�2m"

h2

r
L

�
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffi
"

D� "

r
ð11:18Þ

The energy is quantized and the precise values of " depend on D and L.

11.9 Unbound States

I mentioned in the discussion that we would be concerned only with solutions where

the energy " was less than the well depth D. Such states are called bound states,

which means that the particle is somehow localized to the potential well in the sense

that the probability of finding the particle between x and xþ dx should decrease the

farther we move away from the potential well (you probably noticed that I assumed

the wavefunction should fall off exponentially, and so I deliberately excluded the

possibility that the probability could get larger with distance).
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Depending on L and D, a one-dimensional finite well can have one, many or an

infinite number of bound state solutions. Finite wells can also have unbound solutions

that are perfectly acceptable in so far as both  and its first derivative are finite and

continuous for all values of x, but they do not necessarily have the property that they

tend to zero for large values of x.

Taken individually these solutions cannot represent the state of a particle because

they do not vanish for large values of x. This causes a real problem with the Born

interpretation because they cannot be made to satisfy the normalization condition.

The solution to this problem is to combine waves into wave packets; this topic is

discussed in more advanced textbooks.

11.10 Free Particles

The simplest example of unbound states are afforded by studying free particles;

consider again the one-dimensional problem of a particle (of mass m) and a potential

that is a constant which I will take to be zero. The time-independent Schr€oodinger
equation is �

� h2

8�2m

d2

dx2

�
 ðxÞ ¼ " ðxÞ

which has solutions that I can write

 ðxÞ ¼ A expðjkxÞ; where k ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
8�2m"

p

h

Here k can take any value; the energy " is positive, but now it has a continuum of

possible values. The time-dependent solution is therefore

Cðx; tÞ ¼ A expðjkxÞ exp
�
� 2�j"t

h

�
which can be written

Cðx; tÞ ¼ A expðjðkx� !tÞÞ;

where ! ¼ 2�"=h. This is a classic one-dimensional wave equation, and it

corresponds to a de Broglie wave. In three dimensions we write

Cðr; tÞ ¼ A expðjðk r� !tÞÞ ð11:19Þ

where k is the wavevector. You will have encountered the wavevector if you have

studied electromagnetism beyond elementary level.

�
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We note then that for each value of the energy, there are two possible wave-

functions

 ðxÞ ¼ A exp

�
þj

ffiffiffiffiffiffiffiffiffiffiffiffiffi
8�2m"

p

h
x

�
 ðxÞ ¼ A exp

�
�j

ffiffiffiffiffiffiffiffiffiffiffiffiffi
8�2m"

p

h
x

� ð11:20Þ

that is, there is a double degeneracy. A feature of free particle wavefunctions is that

they cannot be made to satisfy the Born normalization condition because there is no

value of A that will satisfy the ‘equation’

jAj2
Z þ1

�1
j ðxÞj2dx ¼ 1

This is not a trivial problem, and workers in the field often interpret solutions of the

form of Equation (11.20) as an infinite beam of non-interacting particles moving to

the right or left (according to the þ or � sign) with a constant number of particles

per length.

11.11 Vibrational Motion

I gave you the classical treatment of a diatomic molecule in Chapters 4 and 5, where I

assumed that the relevant potential was Hooke’s Law. I demonstrated that the vibra-

tions of a diatomic molecule (atomic masses m1 and m2) were exactly equivalent to

the vibrations of a single atom of reduced mass � where

� ¼ m1m2

m1 þ m2

If I write the ‘spring’ extension R� Re as x, then the vibrational Schr€oodinger equation
can be written

d2 

dx2
þ 8�2�

h2

�
"� 1

2
ksx

2
� ¼ 0 ð11:21Þ

where ks is the force constant. The energy " and wavefunction  now describe the

nuclear vibrations. This is a more difficult differential equation than the ones dis-

cussed earlier in this chapter, but fortunately it is well known in many areas of

engineering, physics and applied mathematics. A detailed solution of the vibrational

Schr€oodinger equation is given in all advanced texts, and so to cut a long story short

we interest ourselves in bound states and thus impose a condition  ! 0 as x!�1.
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This gives rise to energy quantization described by a single quantum number that is

written v. The general formula for the vibrational energies is

"v ¼ h

2�

ffiffiffiffi
ks

�

s �
vþ 1

2

�
v ¼ 0; 1; 2 . . . ð11:22Þ

The harmonic oscillator is not allowed to have zero vibrational energy. The smallest

allowed energy is when v¼ 0, and this is referred to as the zero point energy. This

finding is in agreement with Heisenberg’s Uncertainty Principle, for if the oscillating

particle had zero energy it would also have zero momentum and would be located

exactly at the position of the minimum in the potential energy curve.

The normalized vibrational wavefunctions are given by the general expression

 vð�Þ ¼
�

1

2vv!

ffiffiffi
�

�

r �1=2

Hvð�Þ exp
�
� �2

2

�
ð11:23Þ

where

� ¼ 2�
ffiffiffiffiffiffiffi
ks�

p
h

and � ¼
ffiffiffi
�

p
x

The polynomials Hv are called the Hermite polynomials; they are solutions of the

second-order differential equation

d2H

d�2
� 2�

dH

d�
þ 2vH ¼ 0 ð11:24Þ

and are most easily found from the recursion formula

Hvþ1ð�Þ ¼ 2�Hvð�Þ � 2vHv�1ð�Þ

The first few are shown in Table 11.1. Squares of the vibrational wavefunctions for

v¼ 0 and v¼ 5 (with numerical values appropriate to 14N2) are shown as Figures 11.10

and 11.11. The classical model predicts that the maximum of probability is when the

Table 11.1 The first few Hermite polynomials, Hv(�)

v Hv(�)

0 1

1 2�
2 4�2 � 2

3 8�3 � 12�
4 16�4 � 48�2 þ 12

5 32�5 � 160�3 þ 120�
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Figure 11.10 Square of vibrational wavefunction v¼ 0 for dinitrogen

Figure 11.11 Square of vibrational wavefunction v¼ 5 for dinitrogen
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particle is at the ends of its vibrations (when it is stationary). The quantum mechanical

model seems quite different, since the v¼ 0 solution has a probability maximum half

way along the bond. The operation of the correspondence principle should be clear

once we consider higher quantum numbers. Even by v¼ 5 it is becoming clear that the

maxima are moving toward the ends of the vibration. Examination of v¼ 30, as shown

in Figure 11.12, confirms the trend, which in any case can be deduced analytically.

Figure 11.12 Square of vibrational wavefunction v¼ 30 for dinitrogen
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12 Quantum Gases

In Chapter 11 I discussed the quantum mechanical description of a particle in a

selection of potential wells, including the three-dimensional infinite cubic box of

side L. For a single particle of mass m, I showed that the energy is quantized and

that each quantum state is described by three quantum numbers, n, k and l, as follows

"n;k;l ¼ U0 þ n2h2

8mL2
þ k2h2

8mL2
þ l2h2

8mL2

 n;k;l ¼
�
2

L

�3=2

sin

�
n�x

L

�
sin

�
k�y

L

�
sin

�
l�y

L

�

n; k; l ¼ 1; 2; 3 . . .

ð12:1Þ

We often set the constant of integration U0 to zero, without any loss of generality. We

will make this simplification for the rest of the chapter.

Consider now an ideal gas comprising N such particles, constrained to the cubic

three-dimensional infinite potential well. Ideal gas particles don’t interact with each

and the total wavefunction is therefore a product of one-particle wavefunctions (or-

bitals), as discussed in Chapter 11. Also, the total energy is the sum of the one-

particle energies.

Suppose we arrange that the system is thermally isolated and then make a mea-

surement on the system to find how the energy is distributed amongst the particles at

(say) 300K. We will find some particles with low quantum numbers and some with

high. The kinetic energy of particle i is given by

"i ¼ ðn2i þ k2i þ l2i Þ
h2

8mL2

and the total kinetic energy is therefore

Ekin ¼ h2

8mL2

XN
i¼1

ðn2i þ k2i þ l2i Þ ð12:2Þ

This can be identified with the thermodynamic internal energy Uth

Uth ¼ h2

8mL2

XN
i¼1

ðn2i þ k2i þ l2i Þ ð12:3Þ



We do not yet know how the kinetic energy will be divided out amongst the particles,

all we know is that the summation will be a complicated function of the quantum

numbers. For the sake of argument, call the summation A. Since the box is a cube of

side L, the volume V of the box is L3 and so we can write

Uth ¼ h2

8m
AV�2=3 ð12:4Þ

We know from elementary chemical thermodynamics that for a thermally isolated

system

p ¼ �
�
@Uth

@V

�
N

and so the particle in a box model gives the following relationship between pressure

and volume

p ¼ 2

3

h2

8m
AV�5=3 ð12:5Þ

which can be rearranged together with the expression for Uth to give

pV ¼ 2
3
Uth ð12:6Þ

That is to say, the pressure times the volume is a constant at a given temperature. Not

only that, but if the internal energy of the sample (of amount n) is given by the

equipartition of energy expression 3
2
nRT, then we recover the ideal gas law.

12.1 Sharing Out the Energy

Statistical thermodynamics teaches that the properties of a system in equilibrium can

be determined in principle by counting the number of states accessible to the system

under different conditions of temperature and pressure. There is as ever some inter-

esting small print to this procedure, which I will illustrate by considering three

collections of different particles in the same cubic infinite potential well. First of

all, I look at distinguishable particles such as the ones discussed above that have mass

and quantized energy. I raised the question in Chapter 11 as to whether or not we

could truly distinguish one particle from another, and there is a further problem in

that some particles have an intrinsic property called spin just as they have a mass and

a charge.

We will then extend the ideas to photons (which have momentum but no mass), and

finally consider the case where the particles are electrons in a metal.

We noted in Chapter 11 two differences between a one-dimensional and a three-

dimensional infinite well; first, the three-dimensional well has degeneracies, both
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natural and accidental, and secondly the three-dimensional quantum states tend to

crowd together as the quantum numbers increase. If we consider a box of 1 dm3

containing, for example, 20Ne atoms at 300K, then each atom will have 3
2
kBT kinetic

energy, according to the equipartition of energy principle. A short calculation sug-

gests that we will find typically quantum numbers as high as 109; energy is certainly

quantized, but the separation between the energy levels is minute in comparison with

kBT. Under these circumstances, it is possible to treat the energy levels and the

quantum numbers as if they were continuous rather than discrete. This is called

the continuum approximation. Direct calculation shows how the number of quantum

states lying in a given small interval increases with energy (Table 12.1).

What matters in many experiments is not the precise details of an energy level

diagram, but rather a quantity called the density of states, D("), defined such that the

number of states between " and "þ d" is D(") d". Figure 12.1 shows a plot of the

number of states vs. the square root of the energy=(h2=8mL2), and it seems that there

is a very good linear relationship.

Table 12.1 Properties of quantum states. Here E¼ h2=8mL2

Number of quantum states with energy lying between

(100 and 110) E 85

(1000 and 1010) E 246

(10 000 and 10 010) E 1029

(100 000 and 100 010) E 2925

(1 000 000 and 1 000 010) E 8820

Figure 12.1 Square root relationship

SHARING OUT THE ENERGYSHARING OUT THE ENERGY 173



I want now to establish that this is indeed the general case, and I can do this using a

process called Rayleigh counting.

12.2 Rayleigh Counting

First of all I plot out the quantum numbers n, k and l along the x, y and z Cartesian

axes, as shown in Figure 12.2. For large quantum numbers the points will be very

close together and there will be very many possible combinations of the three parti-

cular quantum numbers n, k and l that correspond to the same energy

"n;k;l ¼ ðn2 þ k2 þ l2Þ h2

8mL2

According to Pythagoras’s theorem, each combination will lie on the surface of a

sphere of radius r, where

r2 ¼ n2 þ k2 þ l2

We therefore draw the positive octant of a sphere of radius r, as shown. The volume

of the octant also contains all other combinations of the three quantum numbers that

have energy less than or equal to the value in question. We only need consider this

octant, since all quantum numbers have to be positive. The number of states with

energy less than or equal to " is

1

8

4�

3
ðn2 þ k2 þ l2Þ3=2

Figure 12.2 Rayleigh counting
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or in terms of the energy

1

8

4�

3

8mL2

h2
"3=2

I now draw a second octant of radius rþ dr, shown in Figure 12.3, which contains all

quantum states having energy less than or equal to "þ d". The volume of the outer

sphere is

1

8

4�

3

8mL2

h2
ð"þ d"Þ3=2

The number of states having energy between " and "þ d" is given by the volume

contained between the two spheres

1

8

4�

3

8mL2

h2
ð"þ d"Þ3=2 � 1

8

4�

3

8mL2

h2
"3=2 ð12:7Þ

which is by definition D(") d". Use of the binomial theorem in Equation (12.7) gives

Dð"Þ d" ¼ 1

8
2�

8mL2

h2
"1=2 d"

¼ 2�mL2

h2
"1=2 d"

ð12:8Þ

I will write the result as

Dð"Þ ¼ B"1=2 ð12:9Þ

Figure 12.3 Rayleigh counting continued
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12.3 The Maxwell Boltzmann Distribution

of Atomic Kinetic Energies

It is possible to perform experiments that measure the kinetic energies of atoms in

gaseous samples. Once again we note that there are so many particles present that the

quantities of interest are the mean and standard deviation, rather than the properties of

every individual particle. We normally study the variation of a quantity

f ¼ 1

N

dN

d"
ð12:10Þ

with energy " at a fixed thermodynamic temperature. Here, N is the number of atoms

in the sample. The related quantity

g ¼ dN=d"

is referred to as the distribution function of the kinetic energy. When the experiments are

carried out, we find a characteristic spread of kinetic energies as shown in Figure 12.4.

The distribution is independent of the type of atom; the solid curve refers to a

temperature of 500K and the dashed curve refers to a temperature of 1500K. The

Figure 12.4 Distribution of atomic kinetic energies
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peak moves to higher energy as the temperature increases, but the area under the

curve remains constant.

The quantity g(") gives the number of atoms whose energies lie between " and

"þ d". The number of atoms whose energies lie between "A and "B is thereforeZ "B

"A

gð"Þ d"

and the total number of atoms is given by

N ¼
Z 1

0

gð"Þ d"

I can give a very simple explanation of Figure 12.4, on the assumption that the sample

of particles is constrained to a cubic three-dimensional infinite well. My explanation

depends on the continuum approximation and so will only work for ordinary tem-

peratures, for at low temperatures the spacing between quantum states will be com-

parable with kBT and so the continuum approximation will not apply. Also, it will not

work for anything but an atom since molecules have rotational and vibrational en-

ergies in addition to translational kinetic energy.

Apart from the density of states mentioned above, D(")¼ B"1=2, we have to consider

the average occupancy of each quantum state. This is given by the Boltzmann factor

AN exp

�
� "

kBT

�

where A is a constant and N the number of atoms. Combining the two expressions we

get

1

N

dN

d"
¼ A exp

�
� "

kBT

�
B"1=2

We can eliminate the constants A and B in terms of N by use of the equations above

and we find, after rearrangement,

1

N

dN

d"
¼ 2ffiffiffi

�
p ðkBTÞ3=2

exp

�
� "

kBT

�
"1=2 ð12:11Þ

which gives exact agreement with the experimental curves. It can be established by

differentiation of Equation (12.11) that the peak occurs at " ¼ 1
2
kBT, and it can also be

established by integration that the average energy per particle h"i is 3
2
kBT, in accord

with the equipartition of energy principle.

12.4 Black Body Radiation

A study of black body radiation was a milestone in the path to our modern theory of

quantum mechanics. The term black body radiation refers to the electromagnetic radia-
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tion emitted by a ‘perfect emitter’ (usually a heated cavity). The curves in Figure 12.5

relate to the energy U emitted by a black body of volume V per wavelength l at

temperatures of 1000K, 1500K and 2000K. The top curve relates to the highest tem-

perature and the bottom curve relates to the lowest. The quantity plotted on the y-axis is

1

V

dU

dl

and it is observed that

� each of the curves has a peak at a certain maximum wavelength lmax,

� lmax moves to a shorter wavelength as the temperature increases.

These curves have a quite different functional form to the atomic kinetic energy

curves shown in Figure 12.4. Max Planck studied the problem and was able to deduce

the following expression that gives a very close fit to the experimental data

1

V

dU

dl
¼

�
8�hc0

l5

�
1

exp
�

hc0
lkBT

�� 1
ð12:12Þ

Figure 12.5 Black body radiation
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For present purposes, it proves profitable to think of the problem in the following

way: we know that the heated cavity contains photons, and that the energy of a photon

of wavelength l is hc0=l. We also know that dU¼ " dN¼ " g(") d". The experiment

actually gives a distribution function g(") such that the number of photons with en-

ergies between " and "þ d" is g(") d". Equation (12.12) can be developed to give

gð"Þ ¼ 8�V

h3c30
"2

1

exp
�
"

kBT

�� 1
ð12:13Þ

If we interpret this expression as

gð"Þ ¼ ðdensity of statesÞ � ðaverage occupancy of a stateÞ

we see that the density of states for photons is proportional to "2 whilst the average

occupancy of a state is proportional to

1

exp
�
"

kBT

�� 1

rather than the Boltzmann factor. This factor is referred to as the Bose factor after

S. N. Bose.

I can explain the density of states quite easily; photons have zero mass and so the

energy formula (12.1) for a particle in a three-dimensional infinite well

"n;k;l ¼ h2

8mL2
ðn2 þ k2 þ l2Þ

cannot apply. The correct formula turns out to be

"n;k;l ¼ hc0

2L
ðn2 þ k2 þ l2Þ1=2 ð12:14Þ

There are still three quantum numbers, but the formula does not include a mass. As

the energy increases, the quantum states become numerous and cram together. We

can evaluate the density of states just as before by taking a narrow range of energies "
and "þ d", and counting the number of quantum states. We find

Dð"Þ / "2

that is to say, the photon states crowd together more quickly than for a classical

particle in such a well. A detailed calculation gives the proportionality constant

Dð"Þ ¼ 4�V

h3c3o
"2 ð12:15Þ
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where V is the volume of the container. This explains the density of states, but not

why the Bose factor is different from the Boltzmann factor.

12.5 Modelling Metals

We usually divide solids into conductors (materials such as copper that conduct

electricity), insulators (materials such as glass that don’t conduct electricity), and

semiconductors that have properties in between. We visualize metallic conductors as

comprising a rigid array of cations surrounded by a sea of mobile electrons, as shown

in Figure 12.6.

12.5.1 The Drude model

The first attempt to model metals was the free electron model developed inde-

pendently by P. Drude and by Lorentz. According to this model, each metallic

atom in the lattice donates its valence electrons to form a sea of electrons. So a

sodium atom would lose one electron and an aluminium atom three; these conduction

electrons move freely about the cation lattice points, rather like the atoms in an

ideal gas.

The model had some early successes; electrical conduction can be explained be-

cause the application of an electric field to the metal will cause the conduction

electrons to move from positions of high to low electrical potential and so an electric

Figure 12.6 Simple model of a metallic conductor
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current can be established. In fact, Ohm’s Law can be recovered from the Drude

model with a little analysis.

Eventually, the Drude model gradually fell into disrepute. An obvious failing was

its inability to explain the heat capacity of metals. If the model of solid aluminium is

correct and each aluminium atom loses three valence electrons, we might expect that

these valence electrons would make a contribution to the internal energy of 3� 3
2
RT,

with a corresponding molar heat capacity of 9
2
R (i.e. 32 JK�1mol�1). In fact, Al

obeys the Dulong–Petit rule with a molar heat capacity of about 25 JK�1mol�1,

so the equipartition of energy principle seems to overestimate the contribution from

the conduction electrons.

The electrons are of course in motion, and we should ask about their energy

distribution just as we did in earlier sections. There is no experimental technique

that can measure the spread with the same accuracy, as can be done with photons in

the black body experiment, or with particles in the kinetic theory experiments. A

variation on the theme of the photoelectric effect (called high-energy photoemission)

can however be used to probe electron kinetic energies in a metal. If I write the

familiar expression for the distribution function g(") as

gð"Þ ¼ ðdensity of states;Dð"ÞÞ � ðaverage occupancy of a state; pð"ÞÞ

then it turns out that the density of states is proportional to "1=2, just as it was for the
spread of kinetic energies in an ideal gas. The average occupancy factor is quite

different to anything we have met so far

pð"Þ ¼ 1

exp
�ð"�"FÞ

kBT

�þ 1
ð12:16Þ

"F is a parameter called the Fermi energy, and I have illustrated the factor for the case

of a Fermi energy of 2.5 eV at 600K and 6000K in Figure 12.7. The lower tempera-

ture shows a factor of 1 for all energies until we reach the Fermi level, when the

factor becomes zero. The lower the temperature, the sharper the cut-off. The corre-

sponding Boltzmann factors are shown in Figure 12.8, from which it is seen that the

two sets of results are radically different.

The experimental distribution function is therefore

gð"Þ ¼ B"1=2
1

exp
�ð"�"FÞ

kBT

�þ 1
ð12:17Þ

and the average occupancy of states factor cannot be explained by the Drude model.

On the other hand, it could be argued that the ideal gas model is inappropriate

because charged particles exert tremendous long-range forces on each other. Not

only that, there are frequent collisions between all the charged particles. However,
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Figure 12.7 The Fermi factor

Figure 12.8 Corresponding Boltzmann factors
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analysis shows that the problem lies with the classical Drude treatment, not with the

ideal gas model.

12.5.2 The Pauli treatment

It was W. Pauli who devised a quantum mechanical treatment of the electron gas; in

Pauli’s model, the conduction electrons are still treated as an ideal gas of non-inter-

acting particles, but the analysis is done according to the rules of quantum mechanics.

My starting point is the energy level diagram for a cubic three-dimensional infinite

potential well, Figure 12.9.

Pauli assumed that the metal could be modelled as an infinite potential well, and

that the electrons did not interact with each other. He also assumed that each quantum

state could hold no more than two electrons. At 0K, the N conduction electrons fill up

the N=2 lowest energy quantum states. I have shown 8 conduction electrons on the

figure, for illustration. The highest occupied quantum state corresponds to the Fermi

level, and the Fermi factors are therefore

pð"Þ ¼ 1 for "� "F
0 for " > "F

�

At higher temperatures, the electrons will be spread amongst the available quantum

states, but subject still to the restriction that each quantum state can hold a maximum

Figure 12.9 Electrons in metal
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of two electrons. For electron energies much above the Fermi level so that

"� "F� kBT, the Fermi factor can be approximated by ignoring the 1 in the denomi-

nator to give

pð"Þ � exp

�
� "� "F

kBT

�

which is very similar to the Boltzmann factor. For sufficiently large electron energies,

the Fermi factor reduces to the Boltzmann factor. For electron energies below the

Fermi level, the factor can be written

pð"Þ � 1� exp

�
"� "F
kBT

�

which simply tells us that nearly all the states are fully occupied.

We have therefore reached a point where three different types of particles in the

same three-dimensional infinite potential well show very different behaviour (see

Table 12.2).

I have been able to explain the density of states, but not the average occupancies. It

is now time to tidy up this loose end.

12.6 The Boltzmann Probability

I have made extensive use of Boltzmann factors throughout the text so far, without

giving any justification. Let me now give some insight as to where the formula came

from. I am not trying to give a rigorous mathematical proof, just appealing to your

knowledge gained by studying the text so far.

Consider once again an ideal gas of N non-interacting particles contained in a

thermally insulated container of volume V. This means that N, the volume V and

the total energy U are constant. No energy can flow into or out of the container.

For the sake or argument, I am going to assume energy quantization for the

particles in the potential well, and that there is a particularly simple quantum state

level diagram (Figure 12.10). Each particle can have energy nD, where n¼ 1, 2, 3 . . .
and D is a constant. There are no interactions between the particles and so the total

energy U of the system is given by the sum of the individual particle energies. For the

Table 12.2 Density of states and average occupancies

Particles Density of states proportional to Average occupancy proportional to

‘Classical’ ideal gas "1=2 expð� "
kBT

Þ
Photons in a cavity "2 1=ðexpð "

kBT
Þ � 1Þ

Electrons in a metal "1/2 1=ðexpðð"�"FÞ
kBT

Þ þ 1Þ
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sake of argument, I will take U as 9D and the number of particles N¼ 3. I will label

the particles A, B and C, and we have to enumerate the ways in which three particles

with these simple quantum state energies can achieve a total energy of 9D.

The rows of Table 12.3 indicate every possible combination of integers that make

up 9; to save space, I have only included one of each possible arrangements after the

first; so, for example, particle A could have 7D with particles B and C having 1D,

particle B could have 7D with particles A and C having 1D, or particle C could have

7D with particles A and B having 1D. This is the origin of the integer 3 in the final

column; it is the number of ways we can achieve the total energy with each individual

distinguishable particle having a certain amount of energy. For clarity, I have omitted

the ‘D’ from all entries except the first.

Figure 12.10 Simple quantum state diagram

Table 12.3 Arrangements and probabilities

A B C W¼ no. of ways Probability

7D 1D 1D

1 7 1 3 3=28
1 1 7

6 2 1 6 6=28
5 2 2 3 3=28
5 3 1 6 6=28
4 4 1 3 3=28
4 3 2 6 6=28
3 3 3 1 1=28
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The numbers in the third column are obviously related to factorials; if each particle

has a different energy, then there are 3! ways in which we can allocate the energies

amongst the three particles. If two energies are the same, then we have to divide the 3!

by 2! and so on. If we were to make a spot check of the quantum state occupancy, then

we would find on average a situation where one particle had 7D and the other two 1D,

for 3=28th of our measurements (on the other hand, since this is a quantum system, I

had better be a bit more precise and say that if wewere to prepare a very large number of

such systems and measure the energy distribution in each copy, then wewould find 7D,

1D, 1D in 3=28th of the systems). Each arrangement is known as a configuration.

Consider now a macroscopic system comprising N identical but distinguishable

particles, each of which has a similar quantum state diagram to that shown in Figure

12.10. The particles are non-interacting. We can fix the total energy U and the number

of particles, but we cannot fix how the energy is distributed amongst the available

energy levels (and it doesn’t make much sense to ask about the energy distribution

amongst N individual particles, given that N might be 1023). The most sensible thing

is to say that there are N1 particles with energy "1, N2 with energy "2 and so on.

Suppose also that the highest possible quantum state p has energy "p.
Consideration of our simple example above shows that the number of ways in

which we can allocate the particles to the quantum states is

W ¼ N!

N1!N2! � � �Np!
ð12:18Þ

The fact that a particular quantum state may have no particles (or, in other words, it

has a zero probability) is accounted for by the fact that 0! ¼ 1. It turns out that for

large N there is one particular configuration that dominates, in which case the values

of the Ni are those that maximize W. At first sight they can be found by setting the

gradient of W to zero, but the Ni cannot vary freely; they are constrained by the fact

that the number of particles and the total energy U are both constant

N ¼ N1 þ N2 þ � � � þ Np

U ¼ N1"1 þ N2"2 þ � � � þ Np"p
ð12:19Þ

A standard method for tackling constrained variational problems of this kind is

Lagrange’s method of undetermined multipliers, which is discussed in detail in all the

advanced texts. I will just outline the solution without justification.

The first step in our derivation is to take logs of either side of expression (12.28)

lnW ¼ lnN!�
Xp
i¼1

lnNi!

For large values of n it is appropriate to make use of the Stirling formula for factorials

ln n! ¼ 1
2
ln 2�þ ðnþ 1

2
Þ ln n� nþ 1

12n
þ O

�
1

n2

�
þ � � �
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In practice all terms except n ln n are usually omitted and we have

lnW ¼ lnN!�
Xp
i¼1

ðNi lnNi!� NiÞ ð12:20Þ

We therefore look for a maximum of lnW. We know from elementary differential

calculus that

d lnW ¼
Xp
i¼1

@ lnW

@Ni

dNi ¼ 0 ð12:21Þ

at a stationary point. We cater for the constraints by differentiating Equations (12.19)

0 ¼ dN1 þ dN2 þ � � � þ dNp

0 ¼ dN1"1 þ dN2"2 þ � � � þ dNp"p

multiplying by arbitrary undetermined multipliers that I will call � and � �, and then

adding

d lnW ¼
Xp
i¼1

@ lnW

@Ni

dNi þ �
Xp
i¼1

dNi � �
Xp
i¼1

"i dNi ð12:22Þ

All the dNi can now be treated as independent variables and at a stationary point

@ lnW

@Ni

þ �� �"i ¼ 0 ð12:23Þ

All that remains is to simplify Equation (12.23) using the Stirling formula, and the

final result turns out as

Ni ¼ exp ð�Þ exp ð��"iÞ ð12:24Þ

Next we have to evaluate the undetermined multipliers � and �; if we sum over all the

allowed quantum states then we have

N ¼
Xp
i¼1

Ni ¼ exp ð�Þ
Xp
i¼1

exp ð��"iÞ

THE BOLTZMANN PROBABILITYTHE BOLTZMANN PROBABILITY 187



which gives

exp ð�Þ ¼ N

Pp
i¼1

exp ð��"iÞ
ð12:25Þ

The value of � is not quite as straightforward. What we need to do is to use the

expression to calculate a quantity such as the heat capacity of an ideal monatomic gas

which can be compared with experiment. When this is done we find

Ni ¼
N exp

�� "i
kBT

�
Pp
i¼1

exp
�� "i

kBT

� ð12:26Þ

The formula is correct even when the quantum states are degenerate, as it refers to the

individual quantum states. It also holds in an equivalent integral form when the

energies form a continuum.

12.7 Indistinguishability

Let me now return to the infinite one-dimensional well, with just two non-interacting

particles present. I labelled the particles A and B, and showed in Chapter 11 that the

solutions were

CnA;nB ¼ 2

L
sin

�
nA�xA

L

�
sin

�
nB�xB
L

�

EnA;nB ¼ ðn2A þ n2BÞ
h2

8mL2

nA; nB ¼ 1; 2; 3 . . .

ð12:27Þ

Suppose one particle has a quantum number of 1, whilst the other has a quantum

number of 2. There are two possibilities

C1;2 ¼ 2

L
sin

�
1�xA
L

�
sin

�
2�xB
L

�

C2;1 ¼ 2

L
sin

�
2�xA
L

�
sin

�
1�xB
L

� ð12:28Þ

and they are degenerate (they have the same energy). In such situations it turns out

that any linear combination of degenerate solutions is also an acceptable solution.

This is easily seen by rewriting the problem in Hamiltonian operator form

ĤHC1;2 ¼ EC1;2

ĤHC2;1 ¼ EC2;1

ĤHðaC1;2 þ bC2;1Þ ¼ EðaC1;2 þ bC2;1Þ
In the above equation, a and b are non-zero scalars that could be complex.
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We live in a world of mass production where items that come off a production line

appear to be identical. A shopping trip to the supermarket might yield four tins of dog

food, all with the same label, the same contents and the same price, but on close

examination it usually turns out that there are differences. One tin might have a scratch,

one might be slightly dented, and the label might be peeling from the third and so on. In

the everyday world, objects that seem at first sight to be identical may very well turn out

to be distinguishable. Even if the cans were exactly identical, we could label themA, B,

C and D with an indelible marker and so make them distinguishable.

Things are very different in the world of atoms and molecules. A visit to MolMart�R

for four hydrogen atoms would reveal that all hydrogen atoms are exactly the same;

there is no question of one atom having a scratch or a dent, and it is certainly not

possible to label a hydrogen atom with an indelible marker. We say that the four

hydrogen atoms are indistinguishable. This simple observation has far-reaching con-

sequences.

I mentioned in earlier sections that wavefunctions themselves do not have any

physical interpretation, but that the modulus squared of a wavefunction is an experi-

mentally observable probability density. So if  (x) describes a single particle, then

j ðxÞj2 dx

gives the chance of finding the particle between x and xþ dx and this can be mea-

sured in experiments such as X-ray and neutron diffraction.

The wavefunctions C1,2 and C2,1 above involve the coordinates of two particles,

and in this case the physical interpretation is that, for example,

jCðxA; xBÞj2 dxAdxB

represents the probability of simultaneously finding particle A between xA and

xAþ dxA with particle B between xB and xBþ dxB. If we now add the condition that

the particles are truly indistinguishable, then we should get exactly the same prob-

ability on renaming the particles B and A. So if we consider C2
1;2

ðC1;2Þ2 ¼
�
2

L
sin

�
1�xA
L

�
sin

�
2�xB
L

��2

it is clear that the probability density treats the two particles on a different footing and so

implies that they are distinguishable. The acid test is to write down the probability

density and then interchange the names of the particles. The probability density should

stay the same.

The two wavefunctions C1,2 and C2,1 do not satisfy this requirement and so they are

not consistent with our ideas about indistinguishability. I can illustrate the problem

by plotting the squares of the wavefunctions as density maps, Figures 12.11 and

12.12. The plots are of the square of the wavefunction (the ‘out-of-plane’ axis) versus

the x coordinates of the two electrons along the in-plane axes. The diagrams imply quite
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Figure 12.11 C2
1;2 vs. xA and xB

Figure 12.12 C2
2;1 vs. xA and xB
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different probability densities for an arbitrary choice of the pair of coordinates: the

probability contours ought to be symmetrical about their diagonals. The problem can

be removed if we make use of the degeneracy mentioned above and construct a wave-

function that is either the sum or the difference of the product functions with xA and xB
interchanged. Each of these two combinations gives a probability density that is unaf-

fected by an interchange of the names of the two particles. Allowing for the correct

normalization, these combinations are

Symmetric

CsðxA; xBÞ ¼
ffiffi
1
2

q
ðC1;2ðxA; xBÞ þC2;1ðxA; xBÞÞ ð12:29Þ

Antisymmetric

CaðxA; xBÞ ¼
ffiffi
1
2

q
ðC1;2ðxA; xBÞ �C2;1ðxA; xBÞÞ ð12:30Þ

The labels symmetric and antisymmetric arise from the fact that interchange of the

particle names leaves the first combination unchanged but leads to a reversal of sign

in the second combination. The resulting probability maps are shown in Figures 12.13

and 12.14.

In the symmetric state the maximum probability occurs at the points for which

xA¼ xB¼ L=4 or 3L=4 and quite generally the probability is large only if the differ-

ence between the particles is small.

Figure 12.13 Symmetric wavefunction squared
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The antisymmetric state is quite different; the probability is zero everywhere along

the diagonal (which corresponds to xA¼ xB) and the probability maxima occur at

positions where the two particles are far apart. I must emphasize that this apparent

attraction and repulsion between particles has nothing whatever to do with the forces

between them; indeed, we assumed at the start that the particles did not interact with

each other. It certainly isn’t an additional force in nature; it is simply to do with the

indistinguishability of particles and the symmetry of the wavefunction describing

them. Like the zero-point vibrational energy, this is a purely quantum mechanical

effect and has no ‘explanation’ in classical physics.

12.8 Spin

It turns out to be an experimental fact that many particles have an intrinsic property

called spin, just as they have a mass, a charge and so on. If the particles concerned are

electrons, then we refer to the phenomenon as electron spin. Electron spin is ex-

pressed in two possible configurations usually referred to as spin up and spin down

with respect to a given axis of quantization. I’ll have more to say about electron spin

in a later chapter; it doesn’t appear from the Schr€oodinger treatment, just accept it as

an experimental fact for the minute.

Figure 12.14 Antisymmetric wavefunction squared
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The two states are written conventionally � and � and authors often use the symbol

s for the spin variable. So in the case of electrons, we might write �(sA) to mean that

particle A was in the spin up state and �(sA) to mean that particle A was in the spin

down state. In the case of two electrons we have four possibilities and we label

the quantum states individually �(sA), �(sA), �(sB) and �(sB). The combination

�(sA)�(sB) describes a situation where electron A has spin up and electron B has

spin down and there are four possible combination states

�ðsAÞ�ðsBÞ �ðsAÞ�ðsBÞ �ðsAÞ�ðsBÞ �ðsAÞ�ðsBÞ

The first and the last are automatically symmetric with respect to interchange of the

two electron names, but the middle two are not satisfactory because they imply that

the two electrons can somehow be treated differently. Bearing in mind the discussion

of Section 12.7, we construct two other spin functions that have definite spin sym-

metry properties

Symmetric

�ðsAÞ�ðsBÞffiffi
1
2

q
ð�ðsAÞ�ðsBÞ þ �ðsAÞ�ðsBÞÞ

�ðsAÞ�ðsBÞ

Antisymmetric ffiffi
1
2

q
ð�ðsAÞ�ðsBÞ � �ðsAÞ�ðsBÞÞ

If we had been considering two spinless particles, e.g. two alpha particles, then

there would be no spin states and the above complications would not have arisen.

We now have to combine the space and the spin wavefunctions. We do this by

multiplying together a space part and a spin part, and it should be clear that there

are two possible results (see Table 12.4) and to decide between them we have to

resort to experiment. For many-electron systems, the only states that are ever ob-

served are those that correspond to antisymmetric total wavefunctions. W. Heisenberg

recognized this fact in 1926, and this led to a detailed understanding of the electronic

spectrum and structure of the helium atom [43]. The condition of antisymmetry

Table 12.4 Combining space and spin functions

Space part Spin part Overall wavefunction

Symmetric Symmetric Symmetric

Antisymmetric Symmetric Antisymmetric

Symmetric Antisymmetric Antisymmetric

Antisymmetric Antisymmetric Symmetric
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eliminates half of the possible states that would otherwise be possible. (When con-

sidering more than two particles, we have to consider all possible permutations

amongst the space and spin functions).

12.9 Fermions and Bosons

Not all wavefunctions for identical particles are antisymmetric, but detailed studies

show that, for a given kind of particle, states of only one overall symmetry exist; the

states are either all symmetric or all antisymmetric with respect to interchange of

particle names. Particles whose overall wavefunction is antisymmetric are called

fermions (after E. Fermi), and particles whose overall wavefunction is symmetric

are called bosons (after S. N. Bose). Typical fermions and bosons are shown in

Table 12.5.

12.10 The Pauli Exclusion Principle

The famous Pauli Exclusion Principle is a statement of our discussion above; in its

general form it says that fermion wavefunctions must be antisymmetric to exchange

the names of two fermions, whilst boson wavefunctions must be symmetric. The

principle is stated in different ways in different books, for example the world’s most

popular physical chemistry text [44] says: ‘No more than two electrons may occupy

any orbital, and if two do occupy it their spin directions must be opposite.’

In principle we must invoke the symmetry or antisymmetry of a wavefunction

when dealing with systems of two or more identical particles. For example, if we

wish to describe two ground-state hydrogen atoms, then the total wavefunction must

be antisymmetric to exchange the names of the two electrons, even if an infinite

distance separates the two atoms. Common sense suggests that this is not necessary,

and the criterion is to ask by how much the two wavefunctions overlap each other. If

the overlap is appreciable, then we must worry about the exclusion principle. If the

overlap is negligible, then we can disregard the symmetry or otherwise of the total

wavefunction.

Table 12.5 Fermions and bosons

Fermion Boson

Electron Photon

Proton Deuteron

Neutron Alpha particle
3He atom 4He atom
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12.11 Boltzmann’s Counting Rule

We must now return to the three probabilities discussed in Section 12.5. Consider a

simple case of three particles A, B and C, each of which has a different energy. Figure

12.15 shows three of the six possible arrangements of the three distinguishable

particles, and according to the Boltzmann counting procedure, we take account of

all six and they are all weighted equally when we calculate the number of ways, W.

This procedure is not consistent with the principles of quantum mechanics dis-

cussed above. We certainly cannot label particles and make them distinguishable, and

it is not meaningful to enquire which particle is in one particular state. All we can do

is to say how many particles are in each state, and instead of six possibilities there is

just one (with one particle in each state).

We then have to consider whether the particles are fermions or bosons; if they are

fermions with spin 1
2
(like electrons), then each quantum state can hold no more than 2

particles, one of � and one of � spin. If they are bosons, then the exclusion principle

does not apply and all the particles can crowd together in any one state, should they

so wish. This is the basis of the three different probabilities discussed in Section 12.5.

That leaves just one loose end; if all particles are either fermions or bosons, why

does the Boltzmann distribution work so well in explaining the properties of ‘ordin-

ary’ gases? The overwhelming experimental evidence is that the particles in an

ordinary gas can be treated as if they were distinguishable particles, subject to the

Boltzmann probability law. The answer is quite simply that under many normal

circumstances the quantum states are very sparsely occupied and so fermions do

not need to be aware of the exclusion principle, whilst bosons cannot display their

ability to all crowd together into the lowest state.

Figure 12.15 Boltzmann’s counting method
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13 One-Electron Atoms

The hydrogen atom occupies an important place in the history of molecular model-

ling and quantum theory. It is the simplest possible atom, with superficially simple

properties, yet it was a thorn in the side of late nineteenth- and early twentieth-

century science. Rutherford had discovered the nucleus by 1911, and had a rough

idea of its size from his scattering studies and so people pictured the hydrogen atom

as a negative charge (the electron) making a circular orbit with constant angular

velocity round the nucleus (a positive charge). This is shown in Figure 13.1.

I should mention a small technical point: if we want to eliminate the overall

translational motion of the atom from our discussion, the atomic system, nucleus

plus electron, actually rotates round the centre of gravity. This rotational motion of

the electron (mass me) and the nucleus (mass M) is equivalent to rotation of a single

particle with reduced mass � about the origin. Here

1

�
¼ 1

M
þ 1

me

On account of its circular motion, the electron is accelerating. According to

Maxwell’s classical electromagnetic theory, accelerating electric charges emit energy

as electromagnetic radiation and so the atom ought not to be stable since it should

lose all its energy as it orbits the nucleus and emits radiation. Also, the frequency of

this emitted radiation should equal the frequency of revolution.

13.1 Atomic Spectra

The problems were that atoms are certainly stable, and that a hydrogen atom can emit

or absorb electromagnetic radiation having only certain specific wavelengths. For

example, Balmer had discovered in 1885 that a series of five spectral lines in the

visible region with wavelengths l¼ 656, 486, 434, 410 and 397 nm fitted the formula

ln ¼ 364:6
n2

n2 � 4
nm ð13:1Þ



It was eventually realized that the reciprocal of the wavelength was the more funda-

mental quantity and that the equation was better written

1

ln
¼ RH

�
1

22
� 1

n2

�
ð13:2Þ

where RH is the Rydberg constant for hydrogen. Similar series of spectral lines were

observed for Heþ where the proportionality constant is (very nearly) 1
4
RH, for Li

2þ

(with a proportionality constant of almost 1
9
RH) and so on. The important point is that

the value of 1=l for every spectral line is the difference between two terms that we

now know correspond directly to particular energy levels in the atom.

13.1.1 Bohr’s theory

Neils Bohr is reputed to have said that once he saw the Balmer formula, the whole

problem of the hydrogen atom became clear to him. In any event, in 1913 he was able

to devise a spectacularly successful theory that could account for the spectral lines.

He equated the centrifugal force for circular motion with the attractive electrostatic

force between the nucleus (charge Ze) and the electron (charge�e)

Ze2

4��0r2
¼ �v2

r
ð13:3Þ

This gives two unknowns, r and the speed v. He assumed that the orbital angular

momentum was quantized in units of h=2�

�vr ¼ n
h

2�
ð13:4Þ

where the quantum number n could take values 1, 2, 3 . . . . This assumption is exactly

equivalent to requiring that the circumference of the orbit is just the right value to

Figure 13.1 A one-electron atom
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permit the electron to behave as a standing wave (i.e. a de Broglie wave). In other

words, the circumference has to be an integral number n of de Broglie wavelengths,

that is to say

2�r ¼ n
h

p
ð13:5Þ

where p is the momentum¼ �v. Simultaneous solution of Equations (13.3) and (13.4)

gives allowed values for the radius and the speed

rn ¼ �0h
2n2

��Ze2

vn ¼ Ze2

2�0hn

ð13:6Þ

and also quantized energies given by

"n ¼ � Ze2

4��0rn
þ 1

2
�v2n

¼ ��Z2e4

8h2�20

1

n2

ð13:7Þ

Bohr referred to these orbits as stationary states because, according to his theory, the

electron did not radiate when it was in any one such state. When the electron passed

from one state (the initial state) to another (the final state), radiation was emitted or

absorbed according to the Planck–Einstein formula

j"f � "ij ¼ hc0

l
ð13:8Þ

Bohr’s theory predicted the existence of many series of spectral lines for the H atom

(for which Z¼ 1) whose wavelengths fitted the generic formula

1

lif
¼ RH

�
1

n2f
� 1

n2i

�

nf ¼ 1; 2; 3 . . .

ni > nf

The Balmer series corresponds to nf¼ 2, and the series corresponding to nf¼ 3 had

already been observed in the infrared region of the electromagnetic spectrum by

Paschen. Soon after Bohr published his theory, Lyman identified the series with

nf¼ 1 in the ultraviolet. The nf¼ 4 (Brackett) and nf¼ 5 (Pfund) series were also

identified. Bohr’s theory also predicted a first ionization energy (given by RHhc0,

approximately 2.16806� 10�18 J or 13.5 eV) that agreed well with experiment, and a

physically reasonable value (52.9 pm) for the radius of the lowest energy orbit.
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Many series with high values of n have since been observed. For example, radio

astronomers are very interested in the ni¼ 167 to nf¼ 166 emission that occurs at a

wavelength of 21.04 cm.

Bohr’s theory gives the following expression for RH, in agreement with experiment

RH ¼ �e4

8�20h
3c0

13.2 The Correspondence Principle

Bohr made much use of the Correspondence Principle discussed in Chapter 11, which

says that quantum mechanical results must tend to those obtained from classical

physics, in the limit of large quantum numbers. For example, if we consider the

transition from level n to level n� 1, the emitted frequency is

� ¼ �e4Z2

8�20h
3

�
1

ðn� 1Þ2 �
1

n2

�

For large n this approximates to

� ¼ �e4Z2

8�20h
3

2

n3
ð13:9Þ

According to Maxwell’s electromagnetic theory, an electron moving in a circular

orbit should emit radiation with a frequency equal to its frequency of revolution

v=2�r. Using the Bohr expressions for v and r we deduce an expression in exact

agreement with the frequency (13.9) above.

Despite its early successes, Bohr’s theory had many failings. For example, it could

not explain the structure and properties of a helium atom. Many ingenious attempts

were made to improve the model, for example by permitting elliptic orbits rather than

circular ones, but the theory has gradually faded into history. It is sometimes referred

to as the old quantum theory.

13.3 The Infinite Nucleus Approximation

I started the chapter by correctly considering the motion of a one-electron atom about

the centre of mass, and pointed out that this was equivalent to the motion of a single

particle of reduced mass

1

�
¼ 1

M
þ 1

me
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Because the mass of the nucleus is so much greater than that of the electron, the

reduced mass of the atom is almost equal to (and slightly less than) the mass of the

electron. For that reason, workers in the field often treat the nucleus as the centre of

coordinates and the electron as rotating round the nucleus, which is taken to have

infinite mass; this is called the infinite nucleus approximation. It’s just a small cor-

rection, the two masses � and me are equal to 1 part in 104 which is usually good

enough, but as we have seen, atomic spectroscopic data are known to incredible

accuracy and it is sometimes necessary to take account of this difference. We write,

for an infinite mass nucleus,

"n ¼ � mee
4

8h2�20

1

n2

R1 ¼ mee
4

8�20h
3c0

and a0 ¼ �0h
2

�mee2

ð13:10Þ

where a0 is called the first Bohr radius and R1 is ‘the’ Rydberg constant, with value

R1 ¼ 10 973 731:568 5458m�1

13.4 Hartree’s Atomic Units

One problem we encounter in dealing with atomic and molecular properties is that

large powers of 10 invariably appear in equations, together with complicated combi-

nations of physical constants such as those in Equations (13.10). For simplicity, we

tend to work in a system of units called the Hartree units, or atomic units (we will

soon come across the two Hartrees in Chapter 14). The ‘atomic unit of length’ is the

bohr and is equal to a0 above. The ‘atomic unit of energy’ is the hartree and is equal

to 2 R1 hc0. It is written Eh and it is also equal to the mutual potential energy of a

pair of electrons separated by distance a0

Eh ¼ 1

4��0

e2

a0

Other atomic units can be defined, as Table 13.1 shows.

The Born interpretation of quantum mechanics tells us that C�(r) C(r) d� repre-

sents the probability that we will find the particle whose spatial coordinate is r within

the volume element d� . Probabilities are real numbers and so the dimensions of the

wavefunction must be (length)�3=2. In the atomic system of units, the unit of

wavefunction is therefore a0
�3=2 (or bohr�3=2).
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13.5 Schrödinger Treatment of the H Atom

The wavefunction of a hydrogen atomCtot depends on the coordinates of the electron

x, y, z and the nucleus X, Y, Z. The time-independent Schrödinger equation is

� h2

8�2me

�
@2Ctot

@x2
þ@

2Ctot

@y2
þ@

2Ctot

@z2

�
� h2

8�2M

�
@2C
@X2

þ@
2C
@Y2

þ@
2C
@Z2

�
þUCtot¼ "totCtot

ð13:11Þ

where me is the electron mass, M the nuclear mass and U the mutual electrostatic

potential energy of the nucleus and the electron

U ¼ �Ze2

4��0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� XÞ2 þ ðy� YÞ2 þ ðz� ZÞ2

q ð13:12Þ

I have temporarily added a subscript ‘tot’ to show that we are dealing with the total

atom, nucleus plus electron, at this stage. The equation is not at all simple in this

coordinate system and it proves profitable to make a change of variable. We take the

coordinate origin as the centre of gravity of the atom (coordinates xc, yc, zc) and use

spherical polar coordinates for the nucleus and the electron. If the spherical polar

coordinates of the electron are a, �, � and those of the nucleus b, �, � where

a ¼ M

M þ me

r

b ¼ � me

M þ me

r

Table 13.1 Hartree’s atomic units

Physical quantity Symbol X Value of X

Length l, x, y, z, r a0 5.2918� 10�11m

Mass m me 9.1094� 10�31 kg

Energy " Eh 4.3598� 10�18 J

Charge Q e 1.6022� 10�19 J

Electricdipole moment pe ea0 8.4784� 10�30 Cm

Electric quadrupole moment �e ea0
2 4.4866� 10�40 Cm2

Electricfield E Eh e
�1 a0

�1 5.1422� 1011Vm�1

Electricfield gradient � Vzz Eh e
�1 a0

�2 9.7174� 1021Vm�2

Magnetic induction B (h=2�)e�1a0
�2 2.3505� 105 T

Electricdipole polarizability � e2a0
�2E�1

h 1.6488� 10�41 C2m2 J�1

Magnetizability 	 e2a0
�2me

�1 7.8910� 10�29 J T�2
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then, if � is the reduced mass

� ¼ meM

me þM

X ¼ xc � �

M
r sin � cos�; x ¼ xc þ �

me

r sin � cos�

Y ¼ yc � �

M
r sin � sin�; y ¼ yc þ �

me

r sin � sin�

Z ¼ zc � �

M
r cos �; z ¼ zc þ �

me

r cos �

ð13:13Þ

With this change of variable we find

� h2

8�2ðme þMÞ
�
@2Ctot

@x2c
þ @2Ctot

@y2c
þ @2Ctot

@z2c

�
ð13:14Þ

� h2

8�2�

�
1

r2
@

@r

�
r2
@Ctot

@r

�
þ 1

r2 sin �

@

@ �

�
sin �

@C
@ �

�
þ 1

r2 sin 2�

@2Ctot

@�2

�

þ UCtot ¼ "totCtot ð13:15Þ

and also in this coordinate system

U ¼ � 1

4��0

Ze2

r

It is apparent that we can separate the wave equation into two equations, one referring

to the centre of mass and involving the total mass of the atom, and the other contain-

ing r, � and �. We put Ctot¼ e c and follow through the separation of variables

argument to obtain

� h2

8�2ðme þMÞ
�
@2 c

@x2c
þ @2 c

@y2c
þ @2 c

@z2c

�
¼ ð"tot � "eÞ c ð13:16Þ

� h2

8�2�

�
1

r2
@

@r

�
r2
@ e

@r

�
þ 1

r2 sin �

@

@ �

�
sin �

@ e

@ �

�
þ 1

r2 sin 2�

@2 e

@�2

�

þ U e ¼ "e e ð13:17Þ

The first equation relates to the translation of the atom as a whole, and I have dealt

with such equations in earlier chapters. The second equation is usually called the

electronic equation.

It should be clear from this discussion that in the treatment of any atomic or

molecular system the translational degree(s) of freedom may always be separated

from the internal degrees of freedom and so need not be considered in general. Also,

from now on, I will drop the subscript ‘e’ from the electronic equation.

In the special case of a one-electron atom, the electronic wavefunction depends

only on the coordinates of (the) one electron and so it is technically described as an
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atomic orbital. In view of the spherical symmetry, we might expect that it would

prove profitable to consider a further separation of variables

 ðr; �; �Þ ¼ RðrÞYð�; �Þ ð13:18Þ

This proves to be the case and R(r) usually is called the radial function (although I

should warn you that many authors call P(r)¼ rR(r) the radial function; we will see

why this proves a useful choice shortly). The Ys turn out to be eigenfunctions of the

orbital angular momentum, and again we will see why in due course.

It turns out that most of the wavefunction solutions of Equation (13.18) are not

spherically symmetrical, and you may find this odd given that the mutual potential

energy U depends only on the scalar distance r (we call such fields central fields). The

fact is that U(r) being spherically symmetrical does not imply that the solutions are

also spherical; the gravitational field is also a central field, and you probably know

that planetary motion is not spherically symmetrical.

13.6 The Radial Solutions

Before launching into a discussion of the full solutions, I want to spend a little time

considering just those solutions that depend only on r. That is, those solutions that

have a constant angular part; this is not the same thing as finding R(r) for the general

case. I will also make the infinite nucleus approximation from this point on.

A little rearrangement and manipulation of Equation (13.17) above gives, for

functions that depend only on r,

� h2

8�2me

d2ðrRÞ
dr2

� Ze2

4��0r
ðrRÞ ¼ "ðrRÞ ð13:19Þ

The form of this equation suggests that we make the substitution P¼ rR, which

explains why some authors focus on P(r) rather than R(r) and refer to P(r) as the

radial function. This substitution gives

� h2

8�2me

d2P

dr2
� Ze2

4��0r
P ¼ "P

It is usual in many scientific and engineering applications to try to simplify such

complicated equations by use of ‘reduced variables’. In this case we divide each

variable by its atomic unit, so for example

rred ¼ r=a0

"red ¼ "=Eh

d2

dr2red
¼ a20

d2

dr2
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and simplify to give

� 1

2

d2Pred

dr2red
� Z

rred
Pred ¼ "redPred

It gets a bit tedious writing the subscript ‘red’, so most authors choose to state their

equations in dimensionless form such as

� 1

2

d2P

dr2
� Z

r
P ¼ "P ð13:20Þ

with the tacit understanding that the variables are reduced ones and therefore dimen-

sionless. Sometimes authors say (incorrectly) that the equation is written ‘in atomic

units’, and occasionally we come across statements of the impossible (for example

me¼ 1 and h=2�¼ 1, etc.).

We therefore have to solve the differential equation, Equation (13.20), and we

follow standard mathematical practice by first examining the limiting behaviour for

large r

d2P

dr2
¼ �2"P

If we limit the discussion to bound states (for which " is negative), then we note that

PðrÞ � expð�
rÞ ð13:21Þ

where 
 is a positive real constant. This suggests that we look for a wavefunction of

the form

PðrÞ ¼ FðrÞ expð�
rÞ ð13:22Þ

where F(r) is a polynomial in r. Substitution of (13.22) into the radial equation,

Equation (13.20), then gives

d2F
dr2

� 2

dF
dr

þ
�

2 þ 2"þ 2Z

r

�
F ¼ 0 ð13:23Þ

Suppose for the sake of argument we choose

FðrÞ ¼ �2r
2 þ �1r þ �0 ð13:24Þ

where the coefficients � have to be determined. Substitution of (13.24) into (13.23)

gives

2�2 � 2
ð2�2r þ �1Þ þ
�

2 þ 2"þ 2Z

r

�
� ð�2r

2 þ �1r þ �0Þ ¼ 0
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For this equation to hold for all values of the variable r, the coefficients of all powers

of r must separately vanish; thus

ð
2 þ 2"Þ�2 ¼ 0

ð
2 þ 2"Þ�1 þ 2ðZ � 2
Þ�2 ¼ 0

ð
2 þ 2"Þ�0 þ 2ðZ � 
Þ�1 þ 2�2 ¼ 0

2Z�0 ¼ 0

It follows that

" ¼ �
2

2


 ¼ Z

2

Z�1 þ 2�2 ¼ 0

�0 ¼ 0

The first two equations give an energy of � Z2=8 and because " is actually the energy

divided by an atomic unit of energy Eh we have

" ¼ �Z2

8
Eh

¼ � 1

2

Z2

22
Eh

The third and fourth equations determine all the coefficients but one, which we are

free to choose. If we take �1¼ 1, then �2¼ � Z=2 and we have

FðrÞ ¼ � Z

2
r2 þ r ð13:25Þ

13.7 The Atomic Orbitals

We must now examine the general case where the wavefunction depends on three

variables. Substitution of

 ðr; �; �Þ ¼ RðrÞYð�; �Þ ð13:26Þ

into the electronic Schrödinger equation, Equation (13.17), gives

1

R

@

@r

�
r2
@R

@r

�
þ 8�2me

h2
ð"� UÞr2 ¼ � 1

Y sin �

@

@�

�
sin �

@Y

@�

�
� 1

Y sin 2�

@2Y

@�2

ð13:27Þ
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By our usual argument, both sides of this equation must be equal to a constant that we

will call l. We then have two equations

1

r2
d

dr

�
r2
dR

dr

�
þ
�
8�2me

h2
ð"� UÞ � l

r2

�
R ¼ 0

1

sin �

@

@�

�
sin �

@Y

@�

�
þ 1

sin 2�

@2Y

@�2
þ lY ¼ 0

ð13:28Þ

I discuss the second equation in the Appendix when considering angular momentum;

the allowed solutions are the spherical harmonics Yl;ml
ð�; �Þ where l ¼ lðlþ 1Þ and l

and ml integers. Introducing the value for l into the first equation of (13.28) and

expanding the first term gives

d2R

dr2
þ 2

r

dR

dr
þ
�
8�2me

h2
ð"� UÞ � lðlþ 1Þ

r2

�
R ¼ 0 ð13:29Þ

or, in terms of P(r) introduced above (where P(r)¼ rR(r))

d2P

dr2
þ
�
8�2me

h2
ð"� UÞ � lðlþ 1Þ

r2

�
P ¼ 0 ð13:30Þ

The term in l (lþ 1) is called the centrifugal potential; it adds to the Coulomb term to

give an effective potential.

The radial equation, Equation (13.30), is more complicated than Equation (13.17)

because of the l (lþ 1)=r2 term, but in essence the samemethod of solution can be used.

The details are given in standard traditional quantum chemistry texts such as Eyring,

Walter and Kimball. The radial solutions are a set of functions from mathematical

physics called the associated Laguerre polynomials. (The Laguerre polynomial L�(x)

of degree � in x is defined as

L�ðxÞ ¼ expðxÞ d�

dx�
ðx� expð�xÞÞ

and the 
th derivative of L�(x) is called an associated Laguerre polynomial.)

13.7.1 l50 (s orbitals)

The atomic orbitals are given names depending on the three quantum numbers. The

first three s orbitals are given in Table 13.2; they are conventionally written in terms

of the variable �¼ Zr=a0 (where Z¼ 1 for hydrogen). They are often presented as

plots of  vs. � or of 4�r2 2 vs. �. The latter is known as the radial distribution

function and it gives the probability of finding the electron in between two shells or

radii r and rþ dr surrounding the nucleus. Representative plots for hydrogen are
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shown in Figures 13.2 and 13.3. The dimension of  is (length)�3=2 and so the

quantities plotted are, respectively, a0
3=2 and a0(4� r2  2) vs. r=a0.

All the curves are asymptotic to the horizontal axis at infinity. The 2 s curve crosses

the axis once (it has a single radial node), the 3s curve crosses the axis twice and so

on. There is nothing else particularly remarkable about such plots of decreasing

exponential functions. The radial distribution curves are a little more interesting.

The radial distribution curve shows a maximum at the first Bohr radius for the 1s

orbital. Bohr’s theory stated that the electron would be in a fixed circular orbit around

the centre of mass with exactly this radius! As the principal quantum number in-

creases, so does the average value of the radial distribution function. Elementary

chemistry texts attach much importance to diagrams of these kinds.

There are other ways to visualize the atomic orbitals. Figures 13.4 and 13.5 show

contour diagrams for the 1s and 2s hydrogen atomic orbitals. The particular software

package I used marks the axes with somewhat arbitrary units depending on the range

Table 13.2 First few s-orbitals

n, l, m Symbol Normalized wavefunction

1, 0, 0 1s 1ffiffi
�

p ðZ
a0
Þ3=2 expð��Þ

2, 0, 0 2s 1

4
ffiffiffiffi
2�

p ðZ
a0
Þ3=2ð2� �Þ expð� �

2
Þ

3, 0, 0 3s 2

81
ffiffiffiffi
3�

p ðZ
a0
Þ3=2ð27� 18�þ 2�2Þ expð� �

3
Þ

Figure 13.2 Hydrogen 1s, 2s and 3s orbital plots
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Figure 13.3 Radial distribution curves for the hydrogen 1s, 2s and 3s orbitals

Figure 13.4 Hydrogen 1s contour diagram (nucleus at centre)
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of points chosen, although the contour values themselves are correct and the nucleus

is at the centre of the plane.

13.7.2 The p orbitals

For angular momentum quantum number l¼ 1, there are three possible values of ml,

namely �1, 0 and þ1. The angular factors for ml¼�1 are complex (they involve

the square root of � 1 in an exponential factor) and it is usual to make use of the

de Moivre theorem in order to visualize the orbitals

cos� ¼ 1
2
ðexpðj�Þ þ expð�j�ÞÞ

sin� ¼ 1

2j
ðexpðj�Þ � expð�j�ÞÞ ð13:31Þ

The real equivalent p orbitals are therefore taken as linear combinations of the

ml¼þ1 and �1. Despite the name, they are not completely equivalent to the

complex orbitals because only the latter are eigenfunctions of the z component of

the angular momentum. Luckily, this only matters in the presence of an external

magnetic field. The real equivalent 2p and 3p orbitals are shown in Table 13.3. These

are usually represented as contour diagrams; the orbital shapes are memorable

Figure 13.5 Hydrogen 2s contour diagram
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because they are equivalent and point along the appropriate axes. Figure 13.6 shows a

hydrogenic 2pz orbital, which points along the vertical z-axis.

13.7.3 The d orbitals

Similar comments apply to the l¼ 2 orbitals. There are five in all, four of which come

in complex pairs. We combine the corresponding values of ml and �ml just as for the

Table 13.3 The first few p orbitals

n, l, m Symbol Normalized wavefunction

2, 1, �1 2px
1

4
ffiffiffiffi
2�

p ðZ
a0
Þ3=2� sin ��� cos ð�Þ exp �� �

2

�

2py
1

4
ffiffiffiffi
2�

p
�
Z
a0

�3=2
� sin

�
�
�
sin ð�Þ exp �� �

2

�

2, 1, 0 2pz
1

4
ffiffiffiffi
2�

p
�
Z
a0

�3=2
� cos ð�Þ exp �� �

2

�

3, 1, �1 3px
2

81
ffiffi
�

p
�
Z
a0

�3=2ð6�� �2Þ sin ð�Þ cos ð�Þ exp �� �
3

�

3py
2

81
ffiffi
�

p
�
Z
a0

�3=2ð6�� �2Þ sin ð�Þ sin ð�Þ exp �� �
3

�

3, 1, 0 3pz
2

81
ffiffi
�

p
�
Z
a0

�3=2ð6�� �2Þ cos ð�Þ exp �� �
3

�

Figure 13.6 H atom 2pz orbital
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p orbitals to give real equivalents. Table 13.4 records the 3d orbitals. Once again these

are usually represented as contour diagrams, see Figures 13.7 and 13.8.

13.8 The Stern–Gerlach Experiment

If we suspend a compass needle in the earth’s magnetic field, then it aligns itself

along the magnetic field lines. A compass needle is an example of a magnetic dipole,

and the strength of the interaction between the compass needle and this external

magnetic field is determined by the magnetic dipole moment, pm. This is a vector

Table 13.4 The 3d orbitals

n, l, ml Symbol Normalized wavefunction

3, 2, 0 3dzz
1

81
ffiffiffiffi
6�

p
�
Z
a0

�3=2
�2 3 cos 2ð�Þ � 1Þ exp �� �

3

��
3, 2, �1 3dxz

ffiffi
2

p
81

ffiffi
�

p
�
Z
a0

�3=2
�2 sin ð�Þ cos ð�Þ cos ð�Þ exp �� �

3

�
3dyz

ffiffi
2

p
81

ffiffi
�

p
�
Z
a0

�3=2
�2 sin ð�Þ cos ð�Þ sin ð�Þ expð� �

3
Þ

3, 2, �2 3dx2 � y2
1

81
ffiffiffiffi
2�

p
�
Z
a0

�3=2
�2 sin 2ð�Þ cos ð2�Þ exp �� �

3

�
3dxy

1

81
ffiffiffiffi
2�

p
�
Z
a0

�3=2
�2 sin 2ð�Þ sin ð2�Þ exp �� �

3

�

Figure 13.7 Hydrogen 3dzz orbital
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quantity pointing by convention from the south pole of the needle to the north pole.

The interaction between the dipole and the field is determined by the magnetic

potential energy

Um ¼ �pm BðrÞ ð13:32Þ

where the position vector r is the position of the dipole and B the magnetic induction.

If B is uniform and so does not depend on r, then the gradient is zero and so the force

is also zero, in accord with experiment.

Around 1820, Oersted discovered experimentally that electric currents could exert

forces similar to those exerted by permanent magnets, for example on a compass needle.

Figure 13.9 shows a simple current loop located in the xz plane and carrying a steady

current I.

If the loop is flat, then the dipole is perpendicular to the plane, and if we consider

points on the axis far away from the loop, then it turns out that the magnitude of pm is

pm ¼ IA

where A is the area of the loop (which need not be circular).

It is easy to demonstrate from classical physics that a particle with mass M, charge

Q and angular momentum l is a magnetic dipole

pm ¼ Q

2M
l ð13:33Þ

According to Bohr’s model of the hydrogen atom, the allowed electron orbits each

had an angular momentum that was an integral multiple of h=2�. Since magnetic

dipoles are linked to angular momentum, the possibility arises that if we could

�

Figure 13.8 Hydrogen 3dxz orbital
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measure the magnetic dipole moments of individual atoms, then we could investigate

the quantization of angular momentum. In the presence of an external magnetic field,

the bar magnet will take up one of its possible alignments with the axis of quantiza-

tion (the direction of the magnetic field lines).

O. Stern and W. Gerlach [45] performed the first and most famous experiment de-

signed to investigate the quantization of angular momentum. Whilst the force on a

magnetic dipole is zero in a uniform magnetic field, the force is not zero for a non-

uniform field. It is difficult to hang a single atombetween the poles of amagnet, so a beam

of atoms was passed through such a field and the deflection of the beam measured. A

schematic diagram of the Stern–Gerlach equipment is shown in Figure 13.10.

A beam of atoms is produced in an oven, and passes through a collimating slit and

often a velocity selector in order to form a monoenergetic beam. The beam then

travels in the x-direction through a long, powerful electromagnet whose pole pieces

are deliberately shaped to give a non-uniform magnetic field in the z-direction.

Figure 13.9 Current loop

Figure 13.10 Stern–Gerlach experiment
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Detailed analysis shows that the force on the magnetic dipoles in the z-direction is

given by a force proportional to the z-component of the magnetic dipole moment (and

hence the z-component of the angular momentum vector)

Fz ¼ pm;z
@Bz

@z
ð13:34Þ

It is a difficult experiment to perform satisfactorily, for the atoms collide with each

other in the beam and so distort the result. An essential part of such an atomic beam

apparatus is that there should be a good vacuum system, and very low beam inten-

sities have to be used. Despite the experimental difficulties, the findings were posi-

tive; the atom beam was shown to split on passage through the magnetic field and this

confirmed the quantization of angular momentum.

13.9 Electron Spin

The first experiments were made with silver atoms. The surprising result of the

Stern–Gerlach experiment was not that the beam split, but that it split into two

components, with a different separation than that expected. Similar results were

obtained for copper and gold, and in later work for the alkali metals and for hydrogen

atoms. The point is that an atomic dipole moment characterized by quantum number l

should show 2lþ 1 orientations with the magnetic field. Since the quantum number

takes values 0, 1, 2, . . . there should always be an odd number of orientations and

hence the atom beam should split into an odd number of components.

The explanation came in 1925 when S. Goudsmit and G. Uhlenbeck [46] analysed the

splittings of spectral lines occurring when atoms are subjected to an external magnetic

field (the Zeeman effect). They showed that the measured splittings could be explained if

electrons were postulated to have an intrinsic magnetic moment, in addition to the one

they acquired by motion about the atomic nucleus. In order to explain the experimental

results, they assumed the existence of a spin angular momentum vector s, which had

similar properties to l above. In order to account for the splitting into two beams, they

postulated a spin quantum number for electrons s of 1
2
and so a spin magnetic quantum

number ms of � 1
2
. The spin wavefunctions are usually written � (corresponding to the

þ 1
2
spin quantum number) and 
 (corresponding to the ms ¼ � 1

2
quantum number). So

we write, just as for ordinary angular momentum

ŝs2� ¼ 1

2

�
1

2
þ 1

�
h2

4�2
�

ŝs2
 ¼ 1

2

�
1

2
þ 1

�
h2

4�2



ŝsz� ¼ 1

2

h

2�
�

ŝsz
 ¼ � 1

2

h

2�



ð13:35Þ
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A problem appeared once the splittings were analysed; according to classical theory,

the spin magnetic moment of an electron should be

pspin ¼
�e

2me

s ð13:36Þ

whilst to get agreement with the splittings, an extra factor of (almost) 2 was needed.

The solution to the problem was the introduction of the g-factor, an experimentally

determined quantity that made Equation (13.36) above, correct. Thus we write

pspin ¼ �ge
e

2me

s

The electronic ge factor is another of physical science’s very accurately known con-

stants, having a value of

ge ¼ 2:0023193043787� ð82� 10�12Þ

13.10 Total Angular Momentum

When orbital angular momentum and spin angular momentum both exist in the same

atom, the magnetic moments that result from these two angular momenta interact to

cause a splitting of the energy level. The interaction that leads to this splitting is

called spin–orbit coupling and it couples the two into a resultant total angular

momentum. A simple vector model that is very similar to the model used to describe

orbital angular momentum can describe this. According to this model, the total

angular momentum of an electron is characterized by a quantum number j. For

any given non-zero value of l the possible values of j are given by

j ¼ l� s

(The use of j as an atomic quantum number is not to be confused with the use of j for

the square root of �1.) The rule is that the quantum number j must always be

positive, so if l¼ 1, then j ¼ 3
2
and 1

2
, but if l¼ 0, then we only have j ¼ 1

2
.

I emphasized earlier the interplay between spectroscopic data and theoretical de-

velopments; even before Schrödinger’s time many highly precise spectroscopic data

had been obtained experimentally. The traditional reference source for such data are

the three volumes of tables in the Atomic Energy Levels series [47]. In the past few

years, the National Institute of Standards and Technology (NIST) atomic spectro-

scopists have made available a unified comprehensive Atomic Spectra Database on

the World Wide Web, which contains spectral reference data for 91 000 wavelengths

ðhttp:==www.nist.govÞ. The sample in Table 13.5 is taken from the database.
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Note that the data contain spectroscopic term symbols for each level, which are

discussed in all elementary physical chemistry undergraduate texts. Spectroscopists

traditionally deal with term values rather than energies; these are just "=hc0.

13.11 Dirac Theory of the Electron

There is no mention of electron spin from the Schrödinger equation, and certainly no

clue as to why the classical equation for magnetic moments is in error by (roughly) a

factor of 2 when applied to electron spin, Equation (13.36). If we consider the time-

dependent Schrödinger equation for a free electron

� h2

8�2me

�
@2

@x2
þ @2

@y2
þ @2

@z2

�
Cðr; tÞ ¼ j

h

2�

@

@t
Cðr; tÞ ð13:37Þ

(where j is the square root of �1), it is seen to be a second-order partial differential

equation with respect to the spatial coordinates and a first-order partial differential

equation with respect to time. It therefore is not consistent with the Special Theory of

Relativity, which requires that time and space should enter such equations on an equal

footing. If the equation is second order in space, it should also be second order in time.

Table 13.5 Internet search for hydrogen term values

Configuration Term symbol j Term value (cm�1)

1s1 2S 1
2

0

2p1 2P 1
2

82 258.9206
3
2

82 259.2865

2s1 2S 1
2

82 258.9559

3p1 2P 1
2

97 492.2130
3
2

97 492.3214

3s1 2S 1
2

97 492.2235

3d1 2D 3
2

97 492.3212
5
2

97 492.3574

4p1 2P 1
2

102 823.8505
3
2

102 823.8962

4s1 2S 1
2

102 823.8549

4d1 2D 3
2

102 823.8961
5
2

102 823.9114

4f1 2F 5
2

102 823.9113
7
2

102 823.9190
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Erwin Schrödinger decided that the way ahead was to abandon the classical energy

expression and start again with the relativistically correct equation

"2 ¼ m2
ec

4
0 þ c20p

2 ð13:38Þ

He then made the operator substitutions

"! j
h

2�

@

@t
; px ! �j

h

2�

@

@x
; etc:

to arrive at the Klein–Gordan equation

�
@2

@x2
þ @2

@y2
þ @2

@z2
� 1

c20

@2

@t2
� 4�2m2

ec
2
0

h2

�
Cðr; tÞ ¼ 0 ð13:39Þ

In discussing relativistic matters, it is usual to write equations such as this in four-

vector notation. We define a four-vector with components

x1
x2
x3
x4

0
BB@

1
CCA ¼

x

y

z

jc0t

0
BB@

1
CCA

so that Equation (13.39) becomes

�
@2

@x21
þ @2

@x22
þ @2

@x23
þ @2

@x24
� 4�2m2

ec
2
0

h2

�
Cðx1; x2; x3; x4Þ ¼ 0 ð13:40Þ

The Klein–Gordan equation is more satisfactory in that it has the desirable sym-

metry but it turns out that it cannot describe electron spin. In the limit of low energy,

it is equivalent to the familiar Schrödinger equation.

Paul Dirac had the ingenious idea of working with a relativistic equation that was

linear in the vector components. He wrote

�
�1

@

@x1
þ �2

@

@x2
þ �3

@

@x3
þ �4

@

@x4
� 2�mec0

h

�
Cðx1; x2; x3; x4Þ ¼ 0 ð13:41Þ

where the multipliers �i have to be determined. This equation is called the Dirac

equation. Both the Schrödinger and the Klein–Gordan equation are second order, and

it is usual to manipulate the Dirac equation in order to give a corresponding second-

order equation. This can be done by operating on Equation (13.41) with the operator

�1
@

@x1
þ �2

@

@x2
þ �3

@

@x3
þ �4

@

@x4
þ 2�mec0

h

A little operator algebra shows that the multipliers have to satisfy

�i�j þ �j�i ¼ 2 if i ¼ j

0 if i 6¼ j

�
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It can be shown that any particle whose wavefunction satisfies the Dirac equation

must be a spin-1
2
particle. Not only that, the Dirac treatment gives the correct value for

the magnetic moment in that it gives

pspin ¼ �2
e

2me

s

13.12 Measurement in the Quantum World

The process of measurement in quantum mechanics is subtler than in classical me-

chanics. As discussed in the Appendix, the possible results of measurements depend

on the eigenvalues of the appropriate operators. Also, if we wish to make simulta-

neous measurements of two observables (such as the linear momentum and position,

or two components of an angular momentum vector), we have to take account of

Heisenberg’s uncertainty principle. Certain pairs of observables can be measured

simultaneously to arbitrary precision, certain other pairs cannot.

The word ‘measurement’ gets used in two different ways in quantum mechanics.

Suppose we have a one-electron atom as discussed above; we know that the energies

are found from Schrödinger’s equation, which I will write in Hamiltonian form as

ĤH i ¼ "i i

If the atom is in state  i, then repeated energy measurements on the same atom will

always yield the same result, "i (we say that the system is in a pure state).

If, on the other hand, we pass a beam of electrons through a Stern–Gerlach

apparatus, then the magnet separates the beam into two components that correspond

to the two spin eigenvalues ms¼þ1
2
and ms¼�1

2
. This kind of measurement is

referred to as state preparation, for if we pass the ms¼þ1
2
beam through a further

Stern–Gerlach apparatus oriented in the same way as the first, we simply observe the

one beam. I have shown this schematically in Figure 13.11.

However, electrons in the incident beam are not in pure states, and their spin

wavefunction can be written as linear combinations of the two spin functions �
and 


 ¼ a�þ b


They are said to be in mixed states. Here, a and b are scalar (complex) constants. The

question is: How do we interpret the measurement process? For example, does a

given electron in some sense know which spin state it should be in, before passage

through the apparatus? Similar questions puzzled Schrödinger and his contempor-

aries, and led Schrödinger to state the famous cat paradox. In a version of this
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thought experiment, a cat is placed in a closed box together with, (for example), a

radioactive atom that releases a deadly poison when it decays. If the wavefunction of

the living cat is  L and that of a dead cat  D, then the state of the cat at time t can be

described by

 catðtÞ ¼ cLðtÞ L þ cDðtÞ D

The coefficients are time dependent, as is the wavefunction. Before the box is closed,

the cat is alive. Once the box is closed, the cat is apparently neither dead nor alive; it

is in a mixed state. On opening the box at a certain time, the cat is either dead or

alive, but is it the act of measurement that has forced the cat into one state or the

other?

There are whole rafts of similar questions that can be asked. Most of the difficulties

can be resolved by recognizing that we are asking a statistical question, not one about

a specific cat. If we prepare a large number of identical experiments, with identical

cats and amounts of radioactive isotopes, close the lids on the boxes and then ex-

amine a statistically significant number of boxes, we will find that a fraction jcDðtÞj2
will have died and a fraction jcLðtÞj2 will be alive, but no prediction can be made as to

the state of a given cat in a given box.

Figure 13.11 Repeated Stern–Gerlach measurements
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14 The Orbital Model

Our next step is to consider a many-electron atom, such as that illustrated in Figure

14.1. I am going to make the ‘infinite nuclear mass’ approximation, and only con-

sider the electronic problem. The atom is therefore fixed in space with the nucleus

at the centre of the coordinate system. The n electrons are at position vectors r1,

r2, . . . , rn and the scalar distance between (say) electrons 1 and 2 is r12 in an obvious

notation. The electronic wavefunction will depend on the coordinates of all the

electrons, and I will write it Cðr1; r2; . . . ; rnÞ. If the nuclear charge is Ze, then we

have to consider three contributions to the electronic energy: the kinetic energy of

each electron, the Coulomb attraction between the nucleus and the electrons, and

finally the Coulomb repulsion between pairs of electrons. We therefore write the

Hamiltonian operator as

ĤH ¼
Xn
i¼1

�
� h2

8�2me

�
@2

@x2i
þ @2

@y2i
þ @2

@z2i

�
� Ze2

4��0ri

�

þ
Xn�1

i¼1

Xn
j¼iþ1

e2

4��0rij
ð14:1Þ

14.1 One- and Two-Electron Operators

In order to stop the notation becoming unwieldy, I will group these terms as

follows. Each term in the first bracket refers to the coordinates of the individual

electrons, and gives the kinetic energy of each electron together with its attraction

to the nucleus. I will call such terms one-electron operators and authors normally

write them as

ĥhð1ÞðriÞ ¼ � h2

8�2me

�
@2

@x2i
þ @2

@y2i
þ @2

@z2i

�
� Ze2

4��0ri
ð14:2Þ



Each term in the second double summation gives the Coulomb repulsion of a pair of

electrons; I will refer to them as two-electron operators and write

ĝgðri; rjÞ ¼ e2

4��0rij
ð14:3Þ

The Hamiltonian is then, in our compact notation

ĤH ¼
Xn
i¼1

ĥhð1ÞðriÞ þ
Xn�1

i¼1

Xn
j¼iþ1

ĝgðri; rjÞ ð14:4Þ

and we wish to investigate the solutions of the Schr€oodinger equation

ĤHCðr1; r2; . . . ; rnÞ ¼ "Cðr1; r2; . . . ; rnÞ ð14:5Þ

14.2 The Many-Body Problem

The many-electron atom is an example of a so-called many-body problem. These are

not unique to quantum theory; a familiar example is planetary motion. Newton’s

equations of motion can be solved exactly for the motion of any one of the planets

around the sun individually, but the planets also attract each other. During the eight-

eenth and nineteenth centuries a great deal of effort was expended trying to find an

exact solution to planetary motion, but all efforts failed and it is generally accepted

that exact solutions do not exist, even for just three bodies. Astronomers are lucky

in the sense that the gravitational force depends on the product of two masses and

the mass of the sun is much greater than the masses of the individual planets.

Ingenious techniques were developed to treat the inter-planetary attractions as small

perturbations, and the planetary problem can be solved numerically to any accuracy

required.

Figure 14.1 Many-electron atom
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To continue with the planetary motion analogy, chemists are less lucky in one

sense because the electrostatic force depends on the product of two charges, and in

the case of an electron and a proton these forces are roughly equal in magnitude. It

will therefore come as no surprise when I tell you that an exact solution of the many-

electron atomic Schr€oodinger problem seems to be impossible, because of the

electron–electron repulsions, and that we are apparently in a weaker position than

the astronomers. On the positive side, I have stressed the Born interpretation of

quantum mechanics. Here we do not focus attention on the trajectories of the indi-

vidual particles, but rather we ask about the probability that a region of space is

occupied by any one of the particles. The quantum mechanical problem therefore

seems to be more hopeful than the astronomical one.

14.3 The Orbital Model

Let me now investigate the Schr€oodinger equation that would result from an atom

consisting of electrons that did not repel each other. We can think of this as some

‘zero-order’ approximation to a true many-electron atom, just as the astronomers

might have investigated their simple model of planetary motion. We therefore write

ĤHCðr1; r2; . . . ; rnÞ ¼ "Cðr1; r2; . . . ; rnÞ�Xn
i¼1

ĥhð1ÞðriÞ
�
Cðr1; r2; . . . ; rnÞ ¼ "Cðr1; r2; . . . ; rnÞ

and this appears to be a candidate for separation of variables; I write

Cðr1; r1; . . . ; r1Þ ¼  1ðr1Þ 2ðr2Þ � � � nðrnÞ ð14:6Þ

Substitution and separation gives n identical one-electron atom Schr€oodinger equa-
tions, and so the total wavefunction is a product of the familiar 1s, 2s and 2p atomic

orbitals discussed in Chapter 13 (with nuclear charge Ze). The energy is given by the

sum of the orbital energies.

We then have to take account of electron spin and the Pauli Principle, as discussed

in Chapter 13. I can remind you of the principles by writing down some of the lowest

energy solutions for helium, in particular those that formally involve the 1s and 2s

orbitals. I will label the atomic orbitals 1s and 2s for obvious reasons, and I will adopt

the habit of writing s for the spin variable (sorry about the double use of the same

symbol s) as in Chapter 13.

The allowed wavefunctions are given in Table 14.1, where C1 describes the spec-

troscopic ground state, giving energy 2"1s. The remaining wavefunctions describe

excited states. C2 is the first excited singlet state whilst C3, C4 and C5 are the three

components of the first triplet state. We refer to C2 through C5 as singly excited
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wavefunctions because they have been formally produced from the ground state

wavefunction by exciting a single electron. Owing to my neglect of electron repul-

sion, the energies of C2 through C5 are the same. C6 is a doubly excited wavefunc-

tion and so on.

Our zero-order model predicts that the singlet and triplet excited states derived

from a 1s1 2s1 orbital configuration will have energy

"2s � "1s ¼ Z2mee
4

8h2�20

�
1

12
� 1

22

�

above the ground state. Since Z¼ 2 for helium we calculate a wavenumber of

329 212 cm�1 Experimental data can be found at the NBS=NIST website

http:==www.nist.gov as in Table 14.2.

I should explain that the J quantum number is similar to the j quantum number we

met in our study of one-electron atoms in Chapter 13; for light atoms such as helium

it is determined by combining the individual electron orbital and spin angular

momentum quantum numbers, according to a set of well-known rules called the

Russell–Saunders scheme. We combine the l quantum numbers for the two electrons;

since l¼ 0 for an s electron, the allowed resultant L is also 0. The electronic states are

therefore S states. We also combine the spin quantum numbers s. Since s ¼ 1
2
for an

electron, the allowed values of the resultant S are 1
2
þ 1

2
and 1

2
� 1

2
and the spin multi-

plicities 2Sþ 1 are 1 and 3. We then combine the L’s and the S’s in the same way to

get J.

The zero-order model is not even qualitatively correct; it overestimates the energy

difference between the ground state and the excited states, and has nothing at all to

Table 14.1 Some electronic states for helium

State Spatial part Spin part Energy, "

C1 1sðr1Þ1sðr2Þ 1ffiffi
2

p ð�ðs1Þ�ðs2Þ � �ðs2Þ�ðs1ÞÞ 2"1s

C2
1ffiffi
2

p ð1sðr1Þ2sðr2Þ þ 1sðr2Þ2sðr1ÞÞ 1ffiffi
2

p ð�ðs1Þ�ðs2Þ � �ðs2Þ�ðs1ÞÞ "1s þ "2s

C3 �ðs1Þ�ðs2Þ "1s þ "2s

C4
1ffiffi
2

p ð1sðr1Þ2sðr2Þ � 1sðr2Þ2sðr1ÞÞ 1ffiffi
2

p ð�ðs1Þ�ðs2Þ þ �ðs2Þ�ðs1ÞÞ "1s þ "2s

C5 �ðs1Þ�ðs2Þ "1s þ "2s

C6 2sðr1Þ2sðr2Þ 1ffiffi
2

p ð�ðs1Þ�ðs2Þ � �ðs2Þ�ðs1ÞÞ 2"2s

Table 14.2 Experimental data for helium

Configuration Term J Term value (cm�1)

1s2 1S 0 0

1s12s1 3S 1 159 856.07760

1s12s1 1S 0 166 277.542
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say about the experimentally interesting difference between the singlet and the triplet

excited states. This poor agreement with experiment is mostly due to our neglect of

electron repulsion but is in part due to the fact that each electron shields the other

electron from the Coulomb attraction due to the nucleus.

14.4 Perturbation Theory

There are very few physically interesting problems that we can solve exactly by the

standard methods of quantum theory. The great majority of problems, including those

of atomic and molecular structure, must therefore be tackled by approximate meth-

ods. Suppose that our problem is to solve (for example), the helium atom electronic

Schr€oodinger equation

ĤHiCiðr1; r2Þ ¼ "iCiðr1; r2Þ ð14:7Þ

We might suspect that this problem is similar to that of two superimposed hydrogen

atoms, for which we can find exact solutions to the zero-order Schr€oodinger equation

ĤHð0ÞCð0Þ
i ðr1; r2Þ ¼ "

ð0Þ
i Cð0Þ

i ðr1; r2Þ ð14:8Þ

The aim of perturbation theory is to relate the solutions of problem (14.7) to the exact

zero-order solutions of (14.8). To simplify the notation, I will drop all references to

two electrons; perturbation theory is a general technique, not one that is specific to

helium. It is also general in that it can be applied to every solution not just the lowest

energy one. There are two technical points; first I am going to assume that the state of

interest is not degenerate. There is a special version of perturbation theory that is

applicable to degenerate states, and if you are interested I can refer you to the classic

texts such as Eyring, Walter and Kimball. Second, I am going to assume that the

wavefunctions are real rather than complex. It makes the equations look a bit easier

on the eye.

We proceed as follows: first we write the Hamiltonian as

ĤH ¼ ĤHð0Þ þ lĤHð1Þ ð14:9Þ

where l is called the perturbation parameter. The second term in (14.9) is called the

perturbation. We assume that the energies and wavefunctions for our problem can be

expanded in terms of the zero-order problem as

Ci ¼ Cð0Þ
i þ lCð1Þ

i þ l2Cð2Þ
i þ � � �

"i ¼ "
ð0Þ
i þ l"ð1Þi þ l2"ð2Þi þ � � �

ð14:10Þ
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The superscript (k) refers to the order of perturbation theory, and the equation should

demonstrate why the perturbation parameter l is added; it is a formal device used to

keep track of the ‘orders’ of the perturbation. It might physically correspond to an

applied electric field (as in the Stark effect) or an applied magnetic induction (as in

the Zeeman effect, in which case we need to use complex wavefunctions). If we

substitute the expansions into our problem we find

ĤHð0ÞCð0Þ
i þ lðĤHð1ÞCð0Þ

i þ ĤHð0ÞCð1Þ
i Þ þ l2ðĤHð1ÞCð1Þ

i þ ĤHð0ÞCð2Þ
i Þ þ � � �

¼ "
ð0Þ
i Cð0Þ

i þ lð"ð1Þi Cð0Þ
i þ "

ð0Þ
i Cð1Þ

i Þ
þ l2ð"ð2Þi Cð0Þ

i þ "
ð1Þ
i Cð1Þ

i þ "
ð0Þ
i Cð2Þ

i Þ þ � � � ð14:11Þ

In order that Equation (14.11) may be true for all values of l, the coefficients of l on

either side of the equation must be equal. Equating and rearranging we find

ĤHð0ÞCð0Þ
i ¼ "

ð0Þ
i Cð0Þ

i

ðĤHð0Þ � "
ð0Þ
i ÞCð1Þ

i ¼ ð"ð1Þi � ĤHð1ÞÞCð0Þ
i

ðĤHð0Þ � "
ð0Þ
i ÞCð2Þ

i ¼ "
ð2Þ
i Cð0Þ

i þ "
ð1Þ
i Cð1Þ

i � ĤHð1ÞCð1Þ
i

ð14:12Þ

Solution of these equations gives

"i ¼ "
ð0Þ
i þ lHð1Þ

ii þ l2
X
j 6¼i

H
ð1Þ
ij H

ð1Þ
ji

"
ð0Þ
i � "

ð0Þ
j

þ � � �

Ci ¼ Cð0Þ
i þ l

X
j 6¼i

H
ð1Þ
ji

"
ð0Þ
i � "

ð0Þ
j

Cð0Þ
j þ � � �

ð14:13Þ

I have used the following shorthand for the integrals

H
ð1Þ
ij ¼

Z
Cð0Þ

i ĤHð1ÞCð0Þ
j d� ð14:14Þ

The first-order correction to the energy can therefore be calculated from the unper-

turbed wavefunction and the perturbing Hamiltonian

"
ð1Þ
i ¼ H

ð1Þ
ii

¼
Z

Cð0Þ
i ĤHð1ÞCð0Þ

i d�

On the other hand, the second-order correction to the energy requires knowledge of

the remaining states

"
ð2Þ
i ¼

X
j 6¼i

�R
Cð0Þ

i ĤHð1ÞCð0Þ
j d�

�2

"
ð0Þ
i � "

ð0Þ
j

ð14:15Þ
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If we return to the helium atom where the zero-order problem is two non-interacting

atomic electrons, the zero-order wavefunctions and energies are shown in Table 14.1.

The perturbation is the Coulomb repulsion between the two electrons

ĤHð1Þ ¼ e2

4��0

1

r12

and the first-order correction to the ground state energy is

"ð1Þ ¼
Z

C1

�
e2

4��0

1

r12

�
C1d�

where C1 is given in Table 14.1.

Evaluation of the integral is far from easy, since it involves the coordinates of both

electrons (it is therefore a six-dimensional integral), and it has a singularity (it tends

to infinity as the two electrons approach each other). It is shown in the classic texts

such as Eyring, Walter and Kimball that

"ð1Þ ¼ 5Z

8

e2

4��0a0

"ð1Þ

hc0
¼ 5Z

8hc0

e2

4��0a0

¼ 274 343 cm�1

and my revised estimate of the first ionization energy is now 164 606 cm�1, in better

agreement with experiment.

14.5 The Variation Method

Another, completely different method of finding approximate solutions to the

Schr€oodinger equation is based on the following theorem:

Theorem 14.1 If the lowest eigenvalue of a Hamiltonian ĤH is " and F is a function

with the correct boundary conditions, then

R
F�ĤHFd�R
F�Fd�

� "

Once again the proof is given in all the classical texts such as Eyring, Walter and

Kimball. I can illustrate the use of this technique by reference to the helium atom.
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The spatial part of the zero-order wavefunction is

Cðr1; r2Þ ¼ Z3

�a30
exp

�
�Z

ðr1 þ r2Þ
a0

�

where Z is the atomic number (2 in this case). We now allow for the possibility that

one electron partially screens the nucleus and so the second electron sees a reduced

nuclear charge Z0. This suggests that we use a trial wavefunction that comprises a

product of modified helium 1s orbitals with effective nuclear charge Z0e

Fðr1; r2Þ ¼ ðZ 0Þ3
�a30

exp

�
�Z 0 ðr1 þ r2Þ

a0

�

We would expect Z0 to lie between 1 and 2 and we look for the value of Z0 that makes

the variational integral

"0 ¼
R
Fðr1; r2Þðĥhð1Þðr1Þ þ ĥhð1Þðr2Þ þ ĝgðr1; r2ÞÞFðr1; r2Þd�1d�2R

F2ðr1; r2Þd�1d�2
ð14:16Þ

a minimum. I have dropped the complex conjugate signs � because of the real nature

of the wavefunction. The denominator is

Z
F2ðr1; r2Þd�1d�2 ¼

Z
1s2ðr1Þd�1

Z
1s2ðr2Þd�2

¼ 1

The numerator is

"0¼
Z

Fðr1;r2Þĥhð1Þðr1ÞFðr1;r2Þ d�1d�2þ
Z

Fðr1;r2Þĥhð1Þðr2ÞFðr1;r2Þ d�1d�2

þ
Z

Fðr1;r2Þĝgðr1;r2ÞFðr1;r2Þd�1d�2

"0¼
Z

1sðr1Þĥhð1Þðr1Þ1sðr1Þd�1
Z

1s2ðr2Þd�2þ
Z

1sðr2Þĥhð1Þðr2Þ1sðr2Þd�2
Z

1s2ðr1Þd�1

þ e2

4��0

Z
1sðr1Þ1sðr2Þ 1

r12
1sðr1Þ1sðr2Þ d�1d�2 ð14:17Þ

The first two integrals are related to the energy of a 1s orbital Heþ; each integral

is equal because of the indistinguishability of the two electrons, and I can write
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each one as

Z
1sðr1Þ

�
� h2

8�2me

�
@2

@x21
þ @2

@y21
þ @2

@z21

�
� Z 0e2

4��0r1

�
1sðr1Þ d�1

þ
Z

1sðr1Þ
�ðZ 0 � ZÞe2

4��0r1

�
1sðr1Þ d�1

¼ �1
2
ðZ 0Þ2Eh þ

Z
1sðr1Þ

�ðZ 0 � ZÞe2
4��0r1

�
1sðr1Þ d�1

¼ �1
2
ðZ 0Þ2Eh þ Z 0ðZ 0 � ZÞEh

Adding the two-electron integral from above we find a variational energy of

" ¼ ððZ 0Þ2 � 2ZZ 0 þ 5
8
Z 0ÞEh ð14:18Þ

We obtain the best approximation to the true energy by giving Z0 the value that will

make the energy a minimum. This means

d"

dZ 0 ¼ ð2Z 0 � 2Z þ 5
8
ÞEh

¼ 0

and so the best energy results when we take

Z 0 ¼ Z � 5
16

This leads to an improved ground state energy of

" ¼ �
�
27

16

�2

Eh

By introducing more and more parameters like Z0 into the wavefunction F we can

approach more and more closely the experimental result. E. Hylleraas [48] experi-

mented with wavefunctions that were explicit functions of the inter-electron coordi-

nate r12. His first attempt was to write

F ¼ Aðexpð�Z 0ðr1 þ r2ÞÞð1þ cr12ÞÞ ð14:19Þ

where A is the normalization constant and Z0 and c are adjustable parameters. In later

work he made use of expansions such as

F ¼ Aðexpð�Z 0ðr1 þ r2ÞÞðpolynomial in r1; r2; r12ÞÞ ð14:20Þ

and was able to demonstrate impressive agreement with experiment. We refer to

such wavefunctions as correlated wavefunctions; as we will soon see, the most

sophisticated orbital models average over the electron interactions whilst correlated

wavefunctions allow for the ‘instantaneous’ interaction between electrons.
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Some of Hylleraas’s results are shown in Table 14.3; the most accurate theoretical

value known is that of K. Frankowski and C. L. Pekeris [49]. Hylleraas’s approach,

whereby we write the interelectron distances explicitly in the wavefunction (and so

abandon the orbital model), gives by far the most accurate treatment of atomic

systems, but like most attractive propositions there is a catch. I glossed over calcula-

tion of the two-electron integral in the discussion above, but this causes a major

problem for molecular systems. Any attempt to use hydrogenic orbitals for a mole-

cular system leads to two-electron integrals that are impossibly hard to evaluate.

Despite many attempts, Hylleraas’s method has never been successfully applied to

a large polyatomic molecule.

14.6 The Linear Variation Method

The variation principle as stated above applies only to the lowest energy solution of

any given symmetry (spatial and spin). A special kind of variation function widely

used in molecular structure theory is the linear variation function. For the sake of

argument, suppose we try to improve the helium atom ground state wavefunction C1

by adding C2 through C6 (given in Table 14.1) and so write

F ¼ c1C1 þ c2C2 þ � � � þ c6C6

We keep the effective nuclear charge Z0 constant throughout the calculation (since it

is a non-linear parameter), but seek the values of the linear parameters c1 through c6
that minimize the variational integral

" ¼
R
F�ĤHF d�R
F�F d�

For neatness, I will recast the problem in matrix notation and treat the general case

with n rather than 6 Cs. We write

F ¼ C1 C2 � � �Cnð Þ
c1
c2
. . .
cn

0
BB@

1
CCA ¼ Cc ð14:21Þ

Table 14.3 Hylleraas’s variational results for helium

Approximate wavefunction "=Eh
expð�kðr1 þ r2ÞÞ � 2.8478

expð�kðr1 þ r2ÞÞ expð�c1r12Þ � 2.8896

expð�kðr1 þ r2ÞÞ expð�c1r12Þ cosh ðcðr1 � r2ÞÞ � 2.8994

expð�ðr1þr2
2

ÞÞðc0 þ c1r2 þ c2ðr1 � r2Þ2 þ c3ðr1 þ r2Þ þ c4ðr1 þ r2Þ2 þ c5r
2
12Þ � 2.9032

‘Exact’ � 2.90372437703

230 THE ORBITAL MODELTHE ORBITAL MODEL



I will also collect integrals such as

Hij ¼
Z

C�
i ĤHCj d� and Sij ¼

Z
C�

iCj d�

into the n� n matrices H and S. I will generally work with real rather than complex

wavefunctions, so we can drop the complex conjugate sign � and the variational

integral becomes

" ¼ cTHc

cTSc

We now let c change by a small amount �c and find the change in " (which we will

then set to zero for a stationary point). We have

"þ �" ¼ ðcþ �cÞTHðcþ �cÞ
ðcþ �cÞTSðcþ �cÞ

¼ cTHcþ ð�cÞTHcþ cTH�cþ ð�cÞTH�c
cTScþ ð�cÞTScþ cTS�cð�cÞTS�c

¼ cTHcþ ð�cÞTHcþ cTH�cþ ð�cÞTH�c
cTSc

�
1þ ð�cÞTSc

cTSc
þ cTS�c

cTSc
þ ð�cÞTS�c

cTSc

�

Expanding the denominator by the binomial theorem and retaining only the first order

in �c we find

"þ �" ¼ ðcTHcþ ð�cÞTHcþ cTH�cþ � � �Þ
cTSc

�
1� ð�cÞTScþ cTS�c

cTSc
þ � � �

�
ð14:22Þ

and after multiplying out

ð"þ �"ÞcTSc ¼ ð�cÞTðHc� "ScÞ þ ðcTH� "cTSÞ�cþ � � � ð14:23Þ

The two terms on the right-hand side are simply matrix transposes of each other, they

carry the same information. I didn’t place any requirements on �c; it is quite arbitrary
and so for a stationary point we must have

Hc ¼ "Sc

This is called a generalized matrix eigenvalue problem and there are exactly n

possible solutions c1, "1; c2, "2; . . . ; cn, "n. Each of the n solutions is an upper bound

to n electronic states (including the ground state), and so the linear variation method

has the added bonus of giving approximations to each of n states simultaneously. Not

only that, but if we add furtherCs and repeat the calculation, each of the energies will

at worst stay the same or possibly get closer to the true energy. I have illustrated
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MacDonald’s Theorem for the case n¼ 6 in Figure 14.2. The addition of C7 has had

no effect on the n¼ 6 approximation forC3 but has (for example) lowered the energy

of the C1 approximation.

I have stressed the special property of atoms; they are spherical and their electronic

Hamiltonian commutes with the square of the angular momentum operator, together

with the z-component. The Schr€oodinger equation makes no mention of electron spin

and so the Hamiltonian also commutes with the square of the spin angular momentum

operator and the z-component. In Table 14.4, I have summarized the relevant quan-

tum numbers for the six states of helium considered.

It can be shown (see, for example, Eyring, Walter and Kimball) that if Ci and Cj

are eigenfunctions of an operator ÂA that commutes with the Hamiltonian ĤH, and that

the eigenvalues are different

ÂACi ¼ aiCi

ÂACj ¼ ajCj

ai 6¼ aj

Figure 14.2 MacDonald’s Theorem

Table 14.4 Angular momentum quantum numbers for helium

states

L ML S MS

C1 0 0 0 0

C2 0 0 0 0

C3 0 0 1 1

C4 0 0 1 0

C5 0 0 1 � 1

C6 0 0 0 0

232 THE ORBITAL MODELTHE ORBITAL MODEL



then

Z
CiĤHCj d� ¼ 0

This means that the Hamiltonian matrix will have a simple form

H11 H12 0 0 0 H16

H21 H22 0 0 0 H26

0 0 H33 0 0 0

0 0 0 H44 0 0

0 0 0 0 H55 0

H61 H62 0 0 0 H66

0
BBBBBB@

1
CCCCCCA

so instead of a 6� 6 matrix eigenvalue problem, we have a 3� 3 and 3 at 1� 1.

There is nothing particularly hard about solving a 6� 6 matrix eigenvalue prob-

lem, but this simple example demonstrates how angular momentum can be used to

help with atomic calculations. In the case of polyatomic molecules, things are not so

easy. Angular momentum operators do not generally commute with molecular

Hamiltonians and so molecular problems are much harder than atomic ones. Spin

operators commute with molecular Hamiltonians, as do symmetry operators.

14.7 Slater Determinants

Solving the appropriate electronic Schr€oodinger equation is only one aspect of a

calculation; we also have to take account of electron spin and, because electrons

are fermions, the electronic wavefunction has to satisfy the Pauli Principle. Neither

electron spin nor the Pauli Principle appears from the Schr€oodinger treatment. As I

mentioned in Chapters 12 and 13, Pauli’s Principle can be stated in a number of

different ways; I am going to restate it as

Electronic wavefunctions must be antisymmetric to exchange of electron names.

I produced the helium orbital wavefunctions in Table 14.1 by a somewhat ad hoc

method; I constructed suitable spatial parts and spin parts, which I combined in such

a way that the Pauli Principle was satisfied. A more systematic method for construct-

ing antisymmetric orbital wavefunctions is needed.

Electron spin can be conveniently treated by combining spatial orbitals with the

spin functions � and �; for a given spatial orbital  (r) we work with two space and

spin wavefunctions that we write  (r)�(s) and  (r)�(s); these are usually called

spinorbitals and electrons are allocated to spinorbitals. A spinorbital can hold a

maximum of one electron. Suppose then that we have four electrons that we wish
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to allocate to the four spinorbitals  A(r)�(s),  B(r)�(s),  A(r)�(s) and  B(r)�(s).
One possible allocation is

 Aðr1Þ�ðs1Þ Aðr2Þ�ðs2Þ Bðr3Þ�ðs3Þ Bðr4Þ�ðs4Þ

but we must now allow for the indistinguishability of the electrons and take account

of all the remaining 4!� 1 permutations of electrons through the spinorbitals, for

example

 Aðr2Þ�ðs2Þ Aðr1Þ�ðs1Þ Bðr3Þ�ðs3Þ Bðr4Þ�ðs4Þ

which has been obtained from the original allocation by permuting the names of

electrons 1 and 2. All the 4! permutations have to appear with equal weight in the

total wavefunction, and in order to satisfy the Pauli Principle we multiply each of

them by the sign of the permutation. This is �1 if we permute an even number of

electrons, and þ 1 if we permute an odd number. A total orbital wavefunction that

satisfies the Pauli Principle will therefore be

C ¼  Aðr1Þ�ðs1Þ Aðr2Þ�ðs2Þ Bðr3Þ�ðs3Þ Bðr4Þ�ðs4Þ
�  Aðr2Þ�ðs2Þ Aðr1Þ�ðs1Þ Bðr3Þ�ðs3Þ Bðr4Þ�ðs4Þ þ � � �

John C. Slater is credited with having noticed that these terms could be written as a

determinant (of order 4, in this case), which we construct as

C ¼
 Aðr1Þ�ðs1Þ  Aðr1Þ�ðs1Þ  Bðr1Þ�ðs1Þ  Bðr1Þ�ðs1Þ
 Aðr2Þ�ðs2Þ  Aðr2Þ�ðs2Þ  Bðr2Þ�ðs2Þ  Bðr2Þ�ðs2Þ
 Aðr3Þ�ðs3Þ  Aðr3Þ�ðs3Þ  Bðr3Þ�ðs3Þ  Bðr3Þ�ðs3Þ
 Aðr4Þ�ðs4Þ  Aðr4Þ�ðs4Þ  Bðr4Þ�ðs4Þ  Bðr4Þ�ðs4Þ

��������

��������
ð14:24Þ

Some authors write the determinants with rows and columns interchanged, which of

course leaves the value of the determinant unchanged

C ¼
 Aðr1Þ�ðs1Þ  Aðr2Þ�ðs2Þ  Aðr3Þ�ðs3Þ  Aðr4Þ�ðs4Þ
 Aðr1Þ�ðs1Þ  Aðr2Þ�ðs2Þ  Aðr3Þ�ðs2Þ  Aðr4Þ�ðs2Þ
 Bðr1Þ�ðs1Þ  Bðr2Þ�ðs2Þ  Bðr3Þ�ðs3Þ  Bðr3Þ�ðs3Þ
 Bðr1Þ�ðs1Þ  Bðr2Þ�ðs2Þ  Bðr3Þ�ðs3Þ  Bðr4Þ�ðs4Þ

��������

��������
It is an attractive property of determinants that they change sign if we interchange

two rows (or columns), and this is formally equivalent to interchanging the name of

two of the electrons. Also, if two columns are the same, then the determinant is zero,

which is formally equivalent to letting two electrons occupy the same spinorbital.

Not every electronic state of every atom or molecule can be written as a single

Slater determinant and linear combinations are then needed. For example, of the

wavefunctions shown in Table 14.1, we see by inspection thatC1, C3, C5 and C6 can
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be written as single Slater determinants, for example

C1 ¼
ffiffiffi
1

2

r
1sðr1Þ�ðs1Þ 1sðr1Þ�ðs1Þ
1sðr2Þ�ðs2Þ 1sðr2Þ�ðs2Þ
����

����; C3 ¼
ffiffiffi
1

2

r
1sðr1Þ�ðs1Þ 2sðr1Þ�ðs1Þ
1sðr2Þ�ðs2Þ 2sðr2Þ�ðs2Þ
����

����
but C2 and C4 have to be written as a sum of two determinants, for example

C2 ¼ 1

2

1sðr1Þ�ðs1Þ 2sðr1Þ�ðs1Þ
1sðr2Þ�ðs2Þ 2sðr2Þ�ðs2Þ
����

����
	

� 1sðr1Þ�ðs1Þ 2sðr1Þ�ðs1Þ
1sðr2Þ�ðs2Þ 2sðr2Þ�ðs2Þ
����

����



14.8 The Slater–Condon–Shortley Rules

Slater determinants are compact summaries of all possible permutations of electrons

and spin orbitals, but the way I have written them down is unwieldy, and many

authors adopt simplified notations. Suppose, for example, we have a many-electron

system whose electronic configuration can be written

ð AÞ2ð BÞ2 � � � ð MÞ2

This is chemical shorthand for 2M spinorbitals  A�  A�  B�  B� � � � M�  M�
occupied by 2M electrons. One convention is to write A for  A�A and �AA for  A�A
with the Slater determinant represented by

D ¼ jA�AAB�BB � � �M �MMj

From time to time we need to know the expectation values of sums of certain one-

electron operators and certain two-electron operators. Suppose that there are n elec-

trons; these are indistinguishable and so any sum of operators must include all of

them on an equal footing. Expectation values are typically the electronic contribution

to the molecular electric dipole moment

�e

Z
C
�Xn

i¼1

ri

�
Cd�

and the electron repulsion in a polyatomic system with n electrons is

e2

4��0

Z Z
C
�Xn�1

i¼1

Xn
j¼iþ1

1

rij

�
Cd�1d�2

C has to be a linear combination of Slater determinants D1, D2, . . . so we need a

systematic set of rules for working out such expectation values between single Slater
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determinants that I will call D1 and D2 which are, in the simplified notation

D1 ¼ jUVW � � �Zj
D2 ¼ jU0V 0W 0 � � �Z 0j

The first step is to rearrange one of the determinants to make as many of the spin-

orbitals equal as possible. This may introduce a sign change. The algebra is easier if

we assume that the individual orbitals are normalized and orthogonal. Consider the

overlap integral

Z
D1D2d�

where the integration is over the space and spin coordinates of all the electrons. Each

determinant expands into n! terms, and the product has (n!)2 terms. On integration,

orthonormality of the individual spinorbitals means that there will be just n! non-zero

terms each equal to 1 with all remaining terms zero. If at least one of the spinorbitals

is different, say U 6¼U0, then the complete overlap integral is zero. Thus

Z
D1D2d� ¼ n! if D1 ¼ D2

0 otherwise

�

This gives a Slater determinant normalizing factor of 1=
ffiffiffiffi
n!

p
.

The rules for sums of one- and two-electron operators can be found in more

advanced texts such as Eyring, Walter and Kimball; all we need to note are the

following results:

1. If two or more spin orbitals are zero, then the expectation value of a sum of one-

electron operators is zero.

2. If three or more spin orbitals are different, then the expectation value of a sum of

two-electron operators is zero.

14.9 The Hartree Model

We now return to the problem of the helium atom. We have established that the

electronic wavefunction would be exactly a product of hydrogenic orbitals in the

absence of electron repulsion. We have also seen that neglect of electron repulsion

leads to impossibly poor agreement with experiment. The orbital model is an ex-

tremely attractive one, so the question is how can we both allow for electron repulsion

in some average way, whilst retaining the orbital picture. D. R. Hartree’s solution to

the problem was to allow each electron to come under the influence of an average

potential due to the other electron and the nucleus. Suppose, for the sake of argument,
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that electrons 1 and 2 occupy orbitals  A and  B (which might be the same, but are to

be determined). We could have a guess that the  s might be hydrogenic, to get the

calculation started.

According to the familiar Born interpretation,  B
2d� is a probability and so we can

regard the second electron as a charge distribution, with density �e B
2. Electron 1

therefore sees a potential due to the nucleus and the smeared out electron 2, as shown

in Figure 14.3.

The electronic Schr€oodinger equation for electron 1 is

�
� h2

8�2me

r2 � Ze2

4��0r1
þ e2

4��0

Z
 2
B

r12
d�B

�
 A ¼ "A A ð14:25Þ

That gives us  A. We now focus on electron 2, for which

�
� h2

8�2me

r2 � Ze2

4��0r2
þ e2

4��0

Z
 2
A

r12
d�A

�
 B ¼ "B B ð14:26Þ

and calculate  B then back to electron 1 and so on. The calculation is an iterative one

and we stop once the change between iterations is sufficiently small. Each electron

experiences a field due to the remaining electrons, and at the end of the calculation

the average electron density derived from the field must be the same as the field and

so D. R. Hartree coined the phrase self consistent field (SCF for short) in 1927 [50].

William Hartree and his son Douglas R. Hartree did much of the early work and so

we speak of the Hartree self consistent field method.

The theory of atomic structure is dominated by angular momentum considerations,

since the square of the orbital angular momentum operator and its z-component

commute both with each other and the electronic Hamiltonian. This simplifies the

problem considerably and the Hartrees wrote each atomic orbital as

 ðrÞ ¼ 1

r
Pðnl; rÞYl;ml

ð�; �Þ ð14:27Þ

Figure 14.3 The Hartree model
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where P(nl; r) is a radial function and Ylm a spherical harmonic. Their notation for P

should be clear; each shell has a different radial function. From now on I am going to

make the notation more consistent with previous chapters and write

 ðrÞ ¼ 1

r
PnlðrÞYl;ml

ð�; �Þ

Thus, for fluorine we would expect three different radial functions, P1s(r), P2s(r) and

P2p(r). Because of the spherical symmetry of atoms, all the 2p solutions have the

same radial part.

Details of the method are given in D. R. Hartree’s 1957 book The Calculation of

Atomic Structures [51] and essentially the radial functions are determined from the

variation principle. That is to say, they are chosen so as to minimize the variational

energy

R
F�ĤHFd�R
F�Fd�

14.10 The Hartree–Fock Model

Hartree’s calculations were done numerically. It soon became apparent that these

early calculations gave energies that were in poor agreement with experiment; V.

Fock [52] pointed out that Hartree had not included the Pauli principle in his method.

Essentially, the Hartree model considered a simple orbital product such as

CHartree ¼  Aðr1Þ�ðs1Þ Aðr2Þ�ðs2Þ Bðr3Þ�ðs3Þ Bðr4Þ�ðs4Þ ð14:28Þ

whilst the Hartree–Fock (HF) model uses a fully antisymmetrized wavefunction such

as

CHartree�Fock ¼
 Aðr1Þ�ðs1Þ  Aðr1Þ�ðs1Þ  Bðr1Þ�ðs1Þ  Bðr1Þ�ðs1Þ
 Aðr2Þ�ðs2Þ  Aðr2Þ�ðs2Þ  Bðr2Þ�ðs2Þ  Bðr2Þ�ðs2Þ
 Aðr3Þ�ðs3Þ  Aðr3Þ�ðs3Þ  Bðr3Þ�ðs3Þ  Bðr3Þ�ðs3Þ
 Aðr4Þ�ðs4Þ  Aðr4Þ�ðs4Þ  Bðr4Þ�ðs4Þ  Bðr4Þ�ðs4Þ

��������

��������
ð14:29Þ

In the simplest version, HF theory concentrates on electronic states that can be

represented as a single Slater determinant. We find an extra term in the energy

expression called the exchange energy, discussed earlier in Chapter 12. Evaluation

of the energy needs a more complicated numerical procedure then the simpler Hartree

theory. Inclusion of electron exchange by the numerical methods used in their day
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proved more and more difficult for atoms towards the bottom right-hand corner of the

Periodic Table. The Hartrees were able to study a wide range of atoms in different

electronic states, together with their ions. To give a flavour of systems studied, I have

reproduced in Table 14.5 the systems that D. R. Hartree reports in his book, which

cover the period 1948 through 1957. The author mentions that all up to Mn2þ and

also Fe16þ and Zn2þ have exchange terms included in the calculations.

14.11 Atomic Shielding Constants

Hartree–Fock wavefunctions are the best wavefunctions that are possible within the

orbital model, as shown in Figure 14.4. Wavefunctions A and B are simple orbital

wavefunctions, perhaps hydrogenic or improved hydrogenic. The difference between

the HF energy and experiment is called the correlation energy.

Output from an atomic HF program consists of the radial function, together with

data for each shell such as that shown in Table 14.6.

It is usual to work with normalized radial functions, and this determines the func-

tions apart from their sign (for if Pnl(r) is a solution, so is �Pnl(r)). Hartree used a

Table 14.5 Selection of atoms treated in D. R. Hartree’s book

Atom Atom Atom Atom

H� Ne2þ Cl� Fe16þ

Heþ Na Cl Zn2þ

Liþ Naþ Ca Zr4þ

Be Mg Ti2þ Moþ

B Al2þ Vþ In3þ

C Al3þ Mn Sb3þ

Oþ6 S� Mnþ Auþ

F� S Fe13þ Tlþ

Tl2þ

Table 14.6 Properties output from an atomic HF study

" The orbital energy

A The initial slope PnlðrÞ=rlþ1; r ! 0

s The screening parameter

h1=R3i Expectation value of 1=R3

h1=Ri Expectation value of 1=R
hRi Expectation value of R

hR2i Expectation value of R2

Virial ratio hPotentiali=hKinetici
Spin–orbit coupling 	nl
Orbit–orbit coupling Mk (nl, nl)
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convention that the radial function should be positive near the nucleus, whilst other

authors use a convention that it should be positive for large r.

Several authors pointed out that it was often desirable to have simple approxima-

tions to the wavefunctions and energy levels of atoms and ions. For an atom of n

electrons, there are 3n independent variables in the Schr€oodinger equation (plus spin).

Douglas R. Hartree expressed the need most dramatically as follows:

One way of representing a solution quantitatively would be by a table of its

numerical values, but an example will illustrate that such a table would be far too

large ever to evaluate, or to use if it were evaluated. Consider, for example, the

tabulation of a solution for one stationary state of Fe. Tabulation has to be at

discrete values of the variables, and10 values of each variablewouldprovide only a

very coarse tabulation; but even this would require 1078 entries to cover the whole

field; and even though this might be reduced to, say, 578ffi 1053 by use of the

symmetry properties of the solution, thewhole solar systemdoes not contain enough

matter toprint sucha table. And, even if it could be printed, sucha tablewouldbe far

too bulky to use. And all this is for a single stage of ionization of a single atom.

14.11.1 Zener’s wavefunctions

In Section 14.5 we addressed ways of improving the analytical 1s orbital for He,

especially by treating the effective nuclear charge Z0 as a variational parameter. In his

1930 keynote paper entitled ‘Analytic Atomic Wave Functions’, C. Zener [53] ex-

tended this simple treatment to first row atoms. As usual, I will let the author tell the

story in his own words through the Abstract:

The wave functions for the atoms Be, B, C, N, O, F and Ne are written as

simple analytic expressions with several parameters. The best values of these

parameters are then determined by the variation method. In the final wave

functions the effective quantum number is very nearly two, the radial node is so

small as to have little effect upon the charge distribution, the coefficient in the

exponential is related to an empirical ‘mean effective charge’.

Figure 14.4 Hartree–Fock energy
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14.11.2 Slater’s rules

Finally we turn to the work of J. C. Slater [54], and once again you might like to read

his 1930 Abstract:

In analogy with the method of Zener for the atoms Li to F, simple rules are set

up giving approximate analytical atomic wavefunctions for all the atoms, in any

stage of ionization. These are applied to X-ray levels, sizes of atoms and ions,

diamagnetic susceptibility etc. In connection with ferromagnetism, it is shown

that if this really depends on the existence of incomplete shells within the atoms,

rather far apart in the crystal, then the metals most likely to show it would be

Fe, Co, Ni and alloys of Mn and Cu (Heuser alloys).

Slater extended Zener’s shielding constants for Li to F to the other atoms by

adjusting the values until he got agreement with experimental results of stripped atom

and X-ray levels, atom sizes and the other quantities mentioned. He noticed that

Zener’s wavefunctions had radial nodes but argued that they were unimportant since

they come much closer to the nucleus than for hydrogen. Consequently, he decided to

ignore them altogether and wrote a radial part as

rn
��1 exp

�
�
�
Z � s

n�

�
r

�
ð14:30Þ

where n� is an effective quantum number and s the shielding constant. n� and s are found
by simple rules (that have become known as Slater’s rules) as shown in Table 14.7 and

below.

To determine Z� s, the electrons are divided into the following groups, each

having a different shielding constant: 1s; 2s, 2p; 3s, 3p; 3d; 4s, 4p; 4d; 4f; 5s, 5p;

etc. That is, the s and p of a given n are grouped together but the d and f are separated.

The shells are considered to be arranged from inside out in the order named.

The shielding constant s is formed, for any group of electrons, from the following

contributions:

1. Nothing from any shell outside the one considered.

2. An amount 0.35 from each other electron in the group considered (except the 1s

group, where 0.30 is used instead).

3. If the shell considered is an s, p shell, then an amount 0.85 from each electron with

total quantum number less by one, and an amount 1.00 from every electron still

farther in. But if the shell is a d or f, then an amount 1.00 from every electron

inside it.

Slater gives three examples, reproduced in Table 14.8, which are worth quoting; C,
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Fe and Fe cations lacking a K-electron so that there is only one 1s electron. Slater’s

rules are still widely quoted in atomic and molecular structure theory.

14.12 Koopman’s Theorem

Consider the ionization process

Neð1s22s22p6Þ ! Neþð1s22s12p6Þ

where I have ionized a 2s electron from neon (Figure 14.5). Suppose that the energy

level diagram represents a HF calculation on neon before ionization, and that

the orbitals do not relax in any way after ionization. That is, the neutral atom and

the ionized cation have the same HF orbitals. According to Koopmans’ theorem, the

ionization energy for the process is the negative of the HF orbital energy. The

theorem holds for all HF orbitals.

Koopmans’ theorem

Ionization from HForbital  i

Ionization energy ¼ �orbital energy

Table 14.7 Slater n� values

n n�

1 1

2 2

3 3

4 3.7

5 4.0

6 4.2

Table 14.8 Slater Z� s values

C Fe Feþ (1s1)

1s 5.70¼ 6� 0.30 25.70¼ 26� 0.30 26.00

2s, 2p 3.25¼ 6� 3(0.35)� 2(0.85) 21.85¼ 26� 7(0.35)� 2(0.85) 22.70

3s, 3p 14.75¼ 26� 7(0.35)� 8(0.85)� 2(1.00) 15.75

3d 6.25¼ 26� 5(0.35)� 18(1.00) 7.25

4s 3.75¼ 26� 1(0.35)� 14(0.85)� 18(0.85)

� 10(1.00)

4.75
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Ionization energies can be measured accurately by modern-day versions of the

photoelectric effect. For valence shell ionization we use UltraViolet PhotoElectron

Spectroscopy (UVPES). As the name suggests, ultraviolet photons are the ionizing

source. Inner shell electrons need X-rays for ionization.

Figure 14.5 Ionized neon
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15 Simple Molecules

It is time to progress to the quantum theory of molecules, and it should come as no

surprise when I tell you that the orbital model is a good starting point for many of the

calculations we professionals do today.

Molecules are more complicated than atoms because:

1. Whilst angular momentum considerations dominate the theory of atomic structure

(it is amazing what can be done with pencil and paper before any nasty integrals

have to be evaluated) the L̂L2 and L̂Lz operators do not commute with molecular

Hamiltonians (except for linear molecules; if the molecular axis is the z-axis, then

Lz does commute). To a certain extent, molecular symmetry operators help us

since they commute with molecular Hamiltonians, but most molecules of any real

chemical interest have no symmetry apart from the identity operation. So we are

stuck with the Hamiltonian, and nothing to help us simplify the eigenvalue

problem apart from electron spin. The Schr€oodinger equation for a free molecule

in the absence of an applied field does not contain spin and so both ŜS2 and ŜSz
inevitably commute with molecular Hamiltonians.

2. Molecules aren’t spherical, and the great simplifying feature of atomic Hartree–

Fock (HF) theory

 ðrÞ ¼ 1

r
PnlðrÞYl;ml

ð�; �Þ

is no longer appropriate. This statement follows from the one above.

3. The HF limit is attainable for atoms by direct numerical integration of the

HF equations. This limit is unattainable for molecules except in a few simple

cases of high symmetry, and numerical integration techniques that are fine for

atoms are inapplicable for molecules. In any case, we have to concern ourselves

with calculations that are beyond the HF limit if we want to study chemical

reactions.



15.1 The Hydrogen Molecule Ion H2
1

The simplest molecule is the hydrogen molecule ion H2
þ shown in Figure 15.1. It is

formed by passing an electric discharge through dihydrogen, and it has been well

studied experimentally. Its dissociation energy is known to be De¼ 269.6 kJmol�1

and it has an equilibrium bond length of 106 pm. There is only one well-established

electronic state, namely the ground state.

First of all, in quantum mechanics just as in classical mechanics, we can rigorously

separate off the translational motion of the molecule. That leaves us to concentrate on

the two nuclei (each of mass mp¼ 1.673� 10�27 kg) and the electron (of mass

me¼ 9.109� 10�31 kg) about the centre of mass. The wavefunction therefore de-

pends on the coordinates of the electron (r) and the two nuclei (RA and RB)

Ctot ¼ CtotðRA;RB; rÞ

If we regard such a system from the viewpoint of classical mechanics, we would be

tempted to try to separate the motions of the nuclei and the electron, because of the

great difference in their masses (a factor of 1 : 1836). This doesn’t mean that the

motions are truly separable like the molecular translational motion of the centre of

mass and the relative motion of the nuclei and electrons within the molecule, more

that the separation can be done with only a small error.

M. Born and J. R. Oppenheimer [55] first investigated this possibility and wrote

CtotðRA;RB; rÞ ¼ CnucðRA;RBÞ eðRA;RB; rÞ

I am using the convention that lower case  refers to one electron, whilst upper case

C refers to many electrons. In this case there is only one electron and so the electro-

nic wavefunction is technically an orbital; in this case a molecular orbital (MO).

Born and Oppenheimer showed that the approximation was good to almost (but not

exactly) the ratio of the particle masses and so we normally glue the nuclei to fixed

Figure 15.1 Hydrogen molecule ion
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positions in space and concentrate on the electron(s) when investigating many prob-

lems in molecular electronic structure theory.

We treat the nuclei separately; if we want to know about vibrational and rotational

motion, then we have to solve the relevant nuclear vibrational Schr€oodinger equation
and the relevant nuclear rotational Schr€oodinger equation. This is not the same as

doing a molecular mechanics (MM) calculation for the nuclei because there are

proper quantum mechanical vibrational and rotational Schr€oodinger equations as we
saw in Chapter 11.

The separation of electronic and nuclear motions allows us to specify a molecular

geometry; the electrons experience an electrostatic potential energy due to the nuclei,

which are fixed at positions in space for the purpose of calculating the electronic

wavefunction. Just as for MM, molecular geometries can be found by investigating

stationary points on the potential energy surface.

The electronic wavefunction is given as the solution of an electronic Schr€oodinger
equation

� h2

8�2me

�
@2

@x2
þ @2

@x2
þ @2

@x2

�
 eðRA;RB; rÞ þ U eðRA;RB; rÞ ¼ "e eðRA;RB; rÞ

ð15:1Þ

where the electrostatic potential energy is

U ¼ �e2

4��0

�
1

jr� RAj þ
1

jr� RBj
�

We solve the electronic equation and the total energy is given by adding on the fixed

nuclear repulsion

"tot ¼ "e þ e2

4��0jRA � RBj ð15:2Þ

The hydrogen molecule ion is unique amongst molecules in that we can solve the

electronic Schr€oodinger equation exactly (by numerical methods) to any required accu-

racy, within the Born–Oppenheimer approximation. The first step is to make a change

of variable to so-called elliptic coordinates that are definedwith reference to Figure 15.2

� ¼ rA þ rB

RAB

; � ¼ rA � rB

RAB

; �

In this system of coordinates the electronic Schr€oodinger equation is

� h2

8�2me

4

R2
ABð�2 � �2Þ

�
@

@�

�
ð�2 � 1Þ @

@�

�
þ @

@�

�
ð1� �2Þ @

@�

�

þ �2 � �2

ð�2 � 1Þð1� �2Þ @2

@�2

�
 e þ U e ¼ "e e ð15:3Þ
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and we look for a separation of variables solution

 eð�; �; �Þ ¼ Mð�ÞNð�ÞFð�Þ

Since � only enters the equation in the @2

@�2
term, it is at once apparent that we can

factor off the � term. If we call the separation parameter �l2 we have

d2F
d�2

¼ �l2F

and so

Fð�Þ ¼ 1ffiffiffiffiffiffi
2�

p exp ðjl�Þ ð15:4Þ

where l can take on positive and negative values, and j is the square root of �1. In the

limit as RAB! 0, the quantum number l becomes equivalent to the atomic quantum

number ml.

Separation into a � and a � equation also proves possible, and the equations have

been solved by E. Teller [56], by O. Burrau [57] and by others leading to results in

complete agreement with experiment. Solution of the differential equations is far

from easy and the best references are D. R. Bates et al. [58], H. Wind [59] and of

course Eyring, Walter and Kimball (EWK).

15.2 The LCAO Model

The hydrogen molecule ion is unusual amongst molecules in that we can solve the

electronic problem exactly (by numerical methods). Once we consider polyelectron

systems, we have to seek approximate methods. Any chemist would argue that

molecules are built from atoms and so we should capitalize on this chemical knowl-

edge by attempting to build molecular wavefunctions from atomic ones.

Suppose we build the hydrogen molecular ion starting from a hydrogen atom and a

proton initially separated by a large distance. The electronic wavefunction will be a

Figure 15.2 Elliptic coordinates
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hydrogen 1s orbital until the proton is close enough to make any significant perturba-

tion and so we might guess that the molecular wavefunction should resemble an

atomic 1s orbital, at least near the appropriate nucleus.

We therefore guess that the low energy molecular orbitals of H2
þ might be

represented

 ¼ cA1sA þ cB1sB

where the coefficients cA and cB have to be determined. This technique is called the

linear combination of atomic orbitals (LCAO) and I have used the shorthand that 1sA
is a hydrogen 1s orbital centred on nucleus A. In this particular case we can deduce

the coefficients from symmetry. According to the Born interpretation,  2d� gives the

chance that an electron can be found in the volume element d� . We have

 2d� ¼ ðc2A1s2A þ 2cAcB1sA1sB þ c2B1s
2
BÞ d�

Electron densities around the two H atoms have to be the same by symmetry, and the

nuclear labels A and B can be used interchangeably, which means that

c2A ¼ c2B; cA ¼ �cB

This gives two possibilities, that I will label  þ and  �, and we usually write them in

normalized form as

 þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ SÞp ð1sA þ 1sBÞ

 � ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� SÞp ð1sA � 1sBÞ ð15:5Þ

where

S ¼
Z

1sA1sBd�

¼ expð�RAB=a0Þ
�
1þ RAB

a0
þ R2

AB

3a20

�

We can test these approximate wavefunctions by calculating the variational energies,

which can be written

"� ¼ "Hð1sÞ þ e2

4��0RAB

� "AA � "AB
1� S

"AA ¼ e2

4��0

Z
1s2A
rA

d�

¼ e2

4��0a0

a0

RAB

�
1�

�
1þ RAB

a0

�
exp

�
�2

RAB

a0

��
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"AB ¼ e2

4��0

Z
1s2A
rB

d�

¼ e2

4��0a0

�
1þ RAB

a0

�
exp

�
�RAB

a0

�
ð15:6Þ

The analytical solution of these integrals together with the overlap integral S (in Equation

(15.5) is covered by the classic texts such as EWK; I have simply quoted the results. This

gives us the two potential energy curves shown in many elementary quantum chemistry

textbooks (Figure 15.3). There is a subtle point; they are often called molecular potential

energy curves because the nuclei experience just this potential.

The ground state energy of a hydrogen atom is � 1
2
Eh and the curves tend asymp-

totically to the correct limit. The upper curve describes an excited state whilst the

lower curve describes the ground state. The calculated binding energy is in poor

agreement with experiment (Table 15.1), whilst the equilibrium bond length is in

modest agreement with experiment.

A hydrogenic 1s orbital has the form

1s ¼
ffiffiffiffiffiffiffiffi
�3

�a30

s
exp

�
� �r

a0

�
ð15:7Þ

where the orbital exponent � ¼ 1 for a hydrogen atom, 2 for Heþ and so on. The next

step is to find the best value of � that is appropriate for a hydrogen atom within a

Figure 15.3 Potential energy curves for lowest states of H2
þ
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molecule. The best value turns out to be 1.238, showing that the 1s orbital contracts a

little on molecule formation. Table 15.1 shows better agreement with experiment.

15.3 Elliptic Orbitals

The best orbitals that have been obtained for H2
þ were found by a different approach;

the natural coordinates to use are the elliptic coordinates �, � and �, and H. M. James

[60] found that a good approximation to the lowest orbital is

 ¼ expð�	�Þð1þ c�2Þ ð15:8Þ

His results are shown in Table 15.1.

The hydrogen molecular ion is interesting in that it doesn’t have an electron pair,

and yet it is stable. The obvious question is: Can we give a hand-waving explanation

for this stability, one that doesn’t rely on the presence of electron pairs?

The obvious place to look is the electron density. The electron density plots by

themselves are not particularly informative; the ground state wavefunction shows a

region of apparently enhanced electron density between the nuclei, whilst the excited

state wavefunction has less electron density in this region. It is more interesting to look

at the difference between the electron density in the molecule and two ground state

hydrogen atoms, each of which contains half an electron. Such plots are called density

differences, and they are shown in Figure 15.4. Positive contours correspond to a gain of

electron density (in units of e) compared with two overlapped half hydrogens; negative

contours correspond to a loss. The molecule lies along the horizontal axis.

The density difference plot for the ground state illustrates an electron density en-

hancement in the region between the nuclei and so gives a stable molecule. Electron

density has to be redistributed, it can’t appear from nowhere and we see that the bond

region gains at the expense of regions beyond the nuclei. The excited statewavefunction

shows the opposite effect (see Figure 15.5); there is a depletion of electron density in the

bond region and a gain of electron density beyond the nuclei. This explains the instabil-

ity of this state, so we can give a simple electrostatic explanation for the stability of the

molecule in its ground state, and its instability in the excited state.

It is a general principle that, once we have calculated an electron density from the

laws of quantummechanics, we can analyse it using the laws of classical electrostatics.

Table 15.1 Hydrogen molecule ion results

De (eV) Re (pm)

Experiment 2.791 106

Simple LCAO with � ¼ 1 1.76 132.3

Simple LCAO, best � ¼ 1.238 2.25 106

James, elliptic 2.772 106
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15.4 The Heitler–London Treatment of Dihydrogen

The simplest molecule of any true chemical importance is dihydrogen (see Table

15.2). The methods discussed above for the hydrogen molecule ion are not applicable

to dihydrogen, because of the extra electron and the electron–electron repulsion. The

Figure 15.4 Density difference for the ground state

Figure 15.5 Density difference for the excited state
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first successful treatment of dihydrogen was that of W. Heitler and F. London [61].

They argued as follows: consider a ‘reaction’

HA þ HB ! H2

where the left-hand side hydrogen atoms labelled A and B are initially at infinite

separation. Each H atom is in its lowest electronic state and there are two spin orbitals

per atom, giving four in total: 1sA
, 1sA�, 1sB
 and 1sB�. As we bring the atoms closer

and closer together, eventually their orbitals will overlap significantly and we have to

take account of the Pauli Principle. We need to make sure that the total wavefunction is

antisymmetric to exchange of electron names. There are (4!=2!)¼ 12 possible ways of

distributing two electrons amongst four atomic spin orbitals but not all such distribu-

tions satisfy the Pauli Principle. Analysis along the lines given for helium in Chapter 14

gives the following unnormalized building blocks (Slater determinants)

D1 ¼
1sAðr1Þ
ðs1Þ 1sBðr1Þ�ðs1Þ
1sAðr2Þ
ðs2Þ 1sBðr2Þ�ðs2Þ

����
����; D2 ¼

1sAðr1Þ�ðs1Þ 1sBðr1Þ
ðs1Þ
1sAðr2Þ�ðs2Þ 1sBðr2Þ
ðs2Þ

����
����

D3 ¼
1sAðr1Þ
ðs1Þ 1sBðr1Þ
ðs1Þ
1sAðr2Þ
ðs2Þ 1sBðr2Þ
ðs2Þ

����
����; D4 ¼

1sAðr1Þ�ðs1Þ 1sBðr1Þ�ðs1Þ
1sAðr2Þ�ðs2Þ 1sBðr2Þ�ðs2Þ

����
����

D5 ¼
1sAðr1Þ
ðs1Þ 1sAðr1Þ�ðs1Þ
1sAðr2Þ
ðs2Þ 1sAðr2Þ�ðs2Þ

����
����; D6 ¼

1sBðr1Þ
ðs1Þ 1sBðr1Þ�ðs1Þ
1sBðr2Þ
ðs2Þ 1sBðr2Þ�ðs2Þ

����
����

It is useful to combine the Ds into spin eigenfunctions, since the spin operators

commute with the molecular Hamiltonian. The advantage is that we only need take

combinations of those wavefunctions having the same spin quantum numbers when

seeking to improve our description of the electronic states. The combination C1¼
D1�D2 is a singlet spin state and is said to represent the covalent bond, since it gives

an equal sharing to the two equivalent 1s orbitals by the two electrons.C2 throughC4

correspond to the first excited state, which is a triplet spin state. They have the same

energy in the absence of an external magnetic field. C5 and C6 are called ionic terms,

because they represent an electron density distribution in which both electrons are

associated with the same nucleus. Heitler and London included C1 (for the electronic

ground state) and C2 through C4 (for the excited triplet state) in their original

Table 15.2 Dihydrogen elementary valence bond (Heitler–London) calculation

C Combination S MS Comment

C1 D1 � D2 0 0 Covalent ground state

C2 D1 þ D2 1 0 Excited triplet state

C3 D3 1 1 Excited triplet state

C4 D4 1 �1 Excited triplet state

C5 D5 0 0 Ionic term

C6 D6 0 0 Ionic term
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calculation. The necessary integrals needed for a variational calculation are given in

Heitler and London’s paper, and in the paper by Y. Sugiura [62]. We often refer to the

Heitler–London approach as the valence bond (VB) method and I will use the two

descriptors interchangeably. It was the first successful treatment of an electron pair

bond.

The energy corresponding to C1 is sometimes written

" ¼ J þ K

1þ S2

J ¼
Z

1sAðr1Þ1sBðr2ÞĤH1sAðr1Þ1sBðr2Þ d�1d�2

K ¼
Z

1sAðr1Þ1sBðr2ÞĤH1sAðr2Þ1sBðr1Þ d�1d�2

S ¼
Z

1sAðr1Þ1sBðr1Þ d� ð15:9Þ

and early ‘explanations’ of chemical bonding focused on the Coulomb (¼J=1þ S2),

and Exchange (¼K=1þ S2) contributions to molecular energies. Several improve-

ments were made to the simple VB treatment of dihydrogen, for example treating

the orbital exponent as a variational parameter, and inclusion of the ionic terms once

again correctly weighted by use of the variation principle. This latter procedure is

referred to as configuration interaction (CI).

15.5 The Dihydrogen MO Treatment

The molecular orbital treatment was given by H. Hellmann [64] amongst others.

He took the lowest energy MO as a combination of hydrogen 1s orbitals, as

for H2
þ

 þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ SÞp ð1sA þ 1sBÞ

and wrote

D7 ¼
ffiffiffiffi
1

2!

r
 þðr1Þ
ðs1Þ  þðr1Þ�ðs1Þ
 þðr2Þ
ðs2Þ  þðr2Þ�ðs2Þ
����

����
The calculated bond length and dissociation energy are in poorer agreement with

experiment than those obtained from the simple VB treatment (Table 15.3), and this

puzzled many people at the time. It also led them to believe that the VB method was

the correct way forward for the description of molecular structure; in the event,
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advances in computer technology and numerical linear algebra have proved them

wrong, but that’s for a later chapter.

But why is the simple MO treatment of dihydrogen so poor? If we expand D7

in terms of the atomic orbitals 1sA and 1sB we find (apart from the normalizing

constant)

D7 ¼ ð1sAðr1Þ1sBðr2Þ þ 1sBðr1Þ1sAðr2Þ þ 1sAðr1Þ1sAðr2Þ þ 1sBðr1Þ1sBðr2ÞÞ
� ð
ðs1Þ�ðs2Þ � 
ðs2Þ�ðs1ÞÞ

which is equal to the simple VB wavefunction but with ionic terms included and

weighted equally to the covalent terms. The solution to the problem is to include

excited states in the wavefunction, just as we did for helium, but with a variable

weight. This process is CI. In the limit, once all the refinements are made, the two

refined treatments (VB with CI and MO with CI) give exactly the same results and so

Figure 15.6 Simple dihydrogen calculations

Table 15.3 Dihydrogen calculations

Comment De (eV) Re=a0

Experiment 4.72 1.40

Simple valence bond 3.14 1.64

Simple MO 2.65 1.60

James and Coolidge [63] 4.698 1.40
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there is no particular reason to prefer one rather than the other. The starting points are

different, but not the refined end results.

To summarize, Figure 15.6 shows the potential energy curves for the VB, LCAO

and the CI treatments. The full curve is the VB calculation, the dotted curve the MO

and the dashed curve is a CI treatment.

15.6 The James and Coolidge Treatment

Just as for H2
þ, it is again found that an accurate value of the binding energy can be

obtained by writing the wavefunction in terms of elliptic coordinates. H. James and

M. Coolidge [63] wrote such a wavefunction that included the interelectron distance

r12 explicitly

 ¼ expð�	ð�1 þ �2ÞÞ
X
klmnp

cklmnpð�k1�l2�m1 �n2up þ �l1�
k
2�

n
1�

m
2 u

pÞ

�1 ¼ rA;1 þ rB;1

RAB

; �1 ¼ rA;1 � rB;1

RAB

; u ¼ 2r12

RAB

ð15:10Þ

Here k, l, m, n and p are integers and the form of the function is that it is symmetric to

the interchange of electron names. 	 is the orbital exponent. In order to make the

wavefunction symmetric in the nuclear coordinates, the authors included only those

terms having (mþ n) as an even integer. They found that a 13-term function gave

essentially complete agreement with experiment.

15.7 Population Analysis

Our simple treatment of the hydrogen molecule ion was based on the bonding orbital

 þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ SÞp ð1sA þ 1sBÞ

which corresponds to a charge distribution of density �e þ2. We normally use the

symbol � for volume charge densities and to emphasize that it depends on positions in

space we write

�ðrÞ ¼ �eð þðrÞÞ2

Substituting and expanding we have

�ðrÞ ¼ � e

2ð1þ SÞ ðð1sAðrÞÞ
2 þ ð1sBðrÞÞ2 þ 2� 1sAðrÞ � 1sBðrÞÞ
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which we can write formally in matrix language as

�ðrÞ ¼ �eð1sAðrÞ 1sBðrÞÞ
1

2 1þ Sð Þ
1

2 1þ Sð Þ
1

2 1þ Sð Þ
1

2 1þ Sð Þ

0
BB@

1
CCA 1sAðrÞ

1sBðrÞ
� �

ð15:11Þ

Chemists often forget about the �e since they tend to think in positive numbers of

electrons, and they write the middle symmetric matrix P. It is referred to as the charge

density matrix, or the matrix of charges and bond orders. In this case we have

P ¼
1

2ð1þ SÞ
1

2ð1þ SÞ
1

2ð1þ SÞ
1

2ð1þ SÞ

0
BB@

1
CCA

From the early days of molecular quantum theory, authors have tried to divide up

the electron density in chemically appealing ways by allocating parts of the density to

atom regions and parts to bond regions. If we integrate the electron density

Z
�ðrÞ d� ¼ � e

2ð1þ SÞ
�Z

ð1sAðrÞÞ2 d� þ
Z

ð1sBðrÞÞ2 d�

þ 2

Z
1sAðrÞ � 1sBðrÞ d�

�

which must come to the number of electrons (1 in the case of hydrogen molecule ion)

times �e. We therefore have, on doing the integrals and keeping the terms in order

Z
�ðrÞ d� ¼ � e

2ð1þ SÞ ð1þ 1þ 2SÞ

We interpret this by saying that the electron charge fractions

�e

2ð1þ SÞ ;
�e

2ð1þ SÞ and
�2Se

2ð1þ SÞ

are associated with atom A, with atom B and with the bond region between atoms A

and B. These fractions are referred to as the net atom and bond (or overlap) popula-

tions. Robert S. Mulliken introduced the idea of population analysis in his 1955 paper

[65], but the ideas had already been around for a very long time. He had the idea to

divide each overlap population into equal parts and allocate part to each atom formally
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contributing to the bond. Here is the Abstract of his famous 1955 paper, entitled

‘Electronic Population Analysis on LCAO–MO Molecular Wave Functions I’:

With increasing availability of good all-electron LCAO–MO wavefunctions

for molecules, a systematic procedure for obtaining maximum insight from such

data has become desirable. An analysis in quantitative form is given here in

terms of breakdowns of the electronic population into partial and total

‘gross atomic populations’ or into partial and total ‘net atomic populations’

together with ‘overlap populations’. ‘Gross atomic populations’ distribute the

electrons almost perfectly among the various AOs of the various atoms in the

molecule. From these numbers, a definite figure is obtained for the amount of

promotion (e.g., from 2s to 2p) in each atom; and also for the gross charge Q on

each atom if the bonds are polar. The total overlap population for any pair of

atoms in a molecule is in general made up of positive and negative

contributions.

Mulliken’s aim was to give rough-and-ready indices that characterize a molecular

charge distribution and that can be used for comparisons between molecules. The

Mulliken gross atom populations in our case are

1

2ð1þ SÞ þ
S

2ð1þ SÞ ¼
1

2

15.7.1 Extension to many-electron systems

A more careful analysis is needed when dealing with multi-electron wavefunctions.

Suppose C is an m-electron wavefunction, then it will depend on spatial coordinates

and spin coordinates

C ¼ Cðr1; s1; r2; s2; . . . ; rmsmÞ

If I use the convention that d� is a spatial differential volume element (equal to dx, dy,

dz in Cartesian coordinates) and ds refers to the spin variable, then the Born inter-

pretation is that

jCðr1; s1; r2; s2; . . . ; rmsmÞj2 d�1ds1d�2ds2 � � � d�mdsm

gives the probability of finding simultaneously electron 1 in d�1ds1, electron 2 in

d�2ds2, . . . electron m in d�mdsm. Many simple physical properties such as the electric

dipole moment depend only on the occupancy of an arbitrary space–spin differential

element d� ds by any electron. We can find this by averaging over all electrons except

electron number 1. Indeed, the electric dipole moment doesn’t depend on electron
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spin and so we can also average over the electron spin. I can illustrate with reference

to dihydrogen LCAO

D7 ¼
ffiffiffiffi
1

2!

r
 þðr1Þ
ðs1Þ  þðr1Þ�ðs1Þ
 þðr2Þ
ðs2Þ  þðr2Þ�ðs2Þ

����
����

¼
ffiffi
1
2

q
 þðr1Þ þðr2Þf
ðs1Þ�ðs2Þ � �ðs1Þ
ðs2Þg

D2
7 ¼ 1

2
f þðr1Þ þðr2Þg2f
2ðs1Þ�2ðs2Þ þ �2ðs1Þ
2ðs2Þ � 2
ðs1Þ
ðs2Þ�ðs1Þ�ðs2Þg

If we average over electron 2 (i.e. integrate with respect to its space and spin co-

ordinates) we get Z
D2

7 d�2ds2 ¼ 1
2
 þðr1Þ2f
2ðs1Þ þ �2ðs1Þg

and if we are not particularly interested in the spin variable we find, then on integra-

tion over the spin of electron 1Z
D2

7 d�2ds2ds1 ¼ f þðr1Þg2 ð15:12Þ

I have of course assumed that all the wavefunctions are real rather than complex; it

wouldn’t have made any difference to my argument.

This latter quantity, Equation (15.12) times d�1, gives the probability of finding

electron 1 in d�1 with either spin, and the other electrons anywhere, again with either

spin. Since there are two indistinguishable electrons in dihydrogen, the total electron

density must be twice my result

�ðrÞ ¼ �2ef þðrÞg2

The charges and bond orders matrix is therefore just twice what we found for the

hydrogen molecular ion

PLCAO ¼
1

1þ S

1

1þ S

1

1þ S

1

1þ S

0
BB@

1
CCA ð15:13Þ

A corresponding analysis for the VB function gives

PVB ¼
1

1þ S2
S

1þ S2

S

1þ S2
1

1þ S2

0
BB@

1
CCA ð15:14Þ

and the gross Mulliken population for each hydrogen nucleus is once again 1
2
, just as it

should be.
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There is a nice way to remember the result, provided you are happy with matrices.

If we write an overlap matrix S for the two atomic orbitals 1sA and 1sB as

S ¼
R
1sA1sA d�

R
1sA1sB d�R

1sB1sA d�
R
1sB1sB d�

� �

then a little analysis shows thatXX
PijSij ¼ number of electrons

This can be restated in terms of the trace of the matrix product

trðPSÞ ¼ number of electrons ð15:15Þ
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16 The HF–LCAO Model

In this chapter I want to explain how we progress the Hartree–Fock (HF) orbital

model to more complicated molecules. The HF model encompasses the Born–

Oppenheimer approximation and so we glue the nuclei into place before trying to

calculate the electronic wavefunction. Each electron experiences an average field due

to the remaining electrons, together with the field due to the fixed nuclei. If we are

interested in geometry optimization, then we have to perform HF calculations at each

point on the molecular potential energy surface.

We can solve the relevant HF equation numerically for atoms to whatever accuracy

we require, because of their high symmetry. In the case of a molecule, we have to

resort to the LCAO approximation, as discussed in Chapter 15.

In the case of dihydrogen and the hydrogen molecular ion, we were able to deduce

simple forms for the lowest energy molecular orbitals

 � ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� SÞp ð1sA � 1sBÞ

just on the basis of symmetry considerations, assuming that only the hydrogenic 1s

orbitals had a role to play. We have to use very many atomic orbitals (basis functions,

to use the correct jargon) for polyatomic molecules and it is not possible to deduce

the LCAO coefficients by hand waving symmetry considerations. The ‘form’ of the

resulting orbitals, by which I mean the LCAO coefficients, is determined by the

variation principle. We therefore have to find a variational expression for the electron-

ic energy.

There is a third issue, namely which basis functions should we use for a polyatomic

molecule; we have already met hydrogenic and Slater orbitals, but it turns out that

neither of these is suitable by itself for molecular calculations. The reason is one of

pragmatism, and has to do with the difficulty of calculating certain two-electron

integrals that appear in our orbital model. There will be more on this later in the

chapter.



16.1 Roothaan’s Landmark Paper

Our next landmark paper is ‘New Developments in Molecular Orbital Theory’ by C.

C. J. Roothaan [66]. It’s an old paper (1951), and in those days they didn’t always

have a synopsis. We can learn a great deal from the first paragraph of the Introduc-

tion, as follows:

For dealing with the problems of molecular quantum mechanics, two methods of

approximation have been developed which are capable of handling many-

electron systems. The Heitler–London–Pauling–Slater or valence bond (VB)

method originated from a chemical point of view. The atoms are considered as

the material from which the molecule is built; accordingly, the molecular wave

function is constructed from the wave functions of the individual atoms. The

Hund–Mulliken or molecular orbital (MO) method is an extension of the Bohr

theory of electron configurations from atoms to molecules. Each electron is

assigned to a one-electron wave function or molecular orbital, which is the

quantum mechanical analog of an electron orbit . . . It is the purpose of this

paper to build a rigorous mathematical framework for the MO method.

Within the Born–Oppenheimer approximation we consider a molecule as a set

of N point charges of magnitudes eZ1, eZ2, . . . , eZN at fixed position vectors R1,

R2, . . . ,RN. Their mutual potential energy is

Unuc ¼ e2

4��0

XN�1

i¼1

XN
j¼iþ1

ZiZj

Rij

ð16:1Þ

Assume for the moment that we have chosen n basis functions, which could be the

Slater orbitals from Chapter 13. Basis functions usually are real quantities in the

mathematical sense, but complex basis functions have to be used in difficult cases

such as when we have to deal with molecular magnetic properties. I will assume that

we have chosen a set of real basis functions written �1(r), �2(r), . . . ,�n(r). The HF–
LCAO method seeks to express each orbital  1(r),  2(r), . . . , M(r) as a linear com-

bination of the basis functions

 i ¼ ci;1�1 þ ci;2�2 þ � � � þ ci;n�n ð16:2Þ

and the process gives n LCAO–MO orbitals in total.

Roothaan’s original treatment only applies to molecular electronic states where

each HF–LCAO is doubly occupied (so-called ‘closed shell states’). This covers the

case of the vast majority of organic molecules in their electronic ground state, and we

think of the electronic configuration as

ð 1Þ2ð 2Þ2 � � � ð MÞ2
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as shown in Figure 16.1. Also, the treatment is restricted to the lowest energy state of

each allowed symmetry type; for most organic molecules, which have no symmetry,

this means that only the electronic ground state can be treated. The HF–LCAO

wavefunction is a single Slater determinant, and we can assume without any loss

of generality that the HF–LCAO orbitals are normalized and orthogonal. It is rarely

the case that the basis functions are orthogonal, but this can be dealt with very simply.

Each orbital is doubly occupied and there are therefore m¼ 2M electrons.

We now need to find the variational energy, which for a real wavefunction is

"el ¼
R
CĤHC d�R
C2 d�

It is neatest if I express the Hamiltonian as the sum of one-electron and two-electron

operators as in Chapter 14

ĤH ¼
Xm
i¼1

ĥhð1ÞðriÞ þ
Xm�1

i¼1

Xm
j¼iþ1

ĝgðri; rjÞ ð16:3Þ

I also discussed the Slater–Condon–Shortley rules in Chapter 14. Application of

these rules to our wavefunction gives

"el ¼ 2
XM
i¼1

Z
 iðr1Þĥhð1Þðr1Þ iðr1Þ d�1

þ
XM
i¼1

XM
j¼1

2

ZZ
 iðr1Þ iðr1Þĝgðr1; r2Þ jðr2Þ jðr2Þ d�1d�2

�
XM
i¼1

XM
j¼1

ZZ
 iðr1Þ jðr1Þĝgðr1; r2Þ iðr2Þ jðr2Þ d�1d�2 ð16:4Þ

The one-electron term represents the kinetic energy of the 2M electrons and the

mutual electrostatic potential energy of the electrons and the nuclei. The first of

Figure 16.1 Electronic closed shell with 2M electrons
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the two-electron terms is the Coulomb term; it represents the mutual electrostatic

repulsion of a pair of electrons whose charge densities are �e R
2 and �e S

2. The

second of the two-electron terms is the exchange term, which arises because of the

fermion nature of the electrons. These equations apply for any single determinant

closed shell, they do not yet contain any reference to the LCAO procedure.

16.2 The Ĵ and K̂ Operators

It is sometimes useful to recast the equation as the expectation value of a sum of one-

electron and certain pseudo one-electron operators

"e ¼ 2

Z XM
i¼1

 iðr1Þðĥhð1Þðr1Þ þ ĴJðr1Þ � 1
2
K̂Kðr1ÞÞ iðr1Þ d�1 ð16:5Þ

The operator ĥhð1Þ represents the kinetic energy of an electron and the nuclear attrac-

tion. The operators ĴJ and K̂K are called the Coulomb and the exchange operators. They

can be defined through their expectation values as follows

Z
 Rðr1ÞĴJðr1Þ Rðr1Þ d�1 ¼

XM
i¼1

ZZ
 2
Rðr1Þĝgðr1; r2Þ 2

i ðr2Þ d�1d�2 ð16:6Þ

and

Z
 Rðr1ÞK̂Kðr1Þ Rðr1Þ d�1 ¼

XM
i¼1

ZZ
 Rðr1Þ iðr1Þĝgðr1; r2Þ Rðr2Þ iðr2Þ d�1d�2

ð16:7Þ
The HF Hamiltonian is a one-electron operator, defined by

ĥhFðrÞ ¼ ĥhð1ÞðrÞ þ ĴJðrÞ � 1
2
K̂KðrÞ ð16:8Þ

where the coordinates r refer to an arbitrary electron. HF orbitals are solutions of the

eigenvalue equation

ĥhFðrÞ ðrÞ ¼ " ðrÞ

16.3 The HF–LCAO Equations

I am going to make use of matrices and matrix algebra for many of the derived

equations, for the simple reason that they look neater than they would otherwise
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do. The n basis functions are usually real and usually overlap each other and so they

are not necessarily orthogonal. Following the arguments of Chapters 13 and 14, we

collect together the basis function overlap integrals into an n� n real symmetric

matrix S that has typically an i, j element

Si; j ¼
Z
�iðr1Þ�jðr1Þ d�1

It is convenient to store the LCAO coefficients in an n� n matrix

U ¼
c1;1 c2;1 � � � cn;1
c1;2 c2;2 � � � cn;2
� � � � � � � � � � � �
c1;n c2;n � � � cn;n

0
BB@

1
CCA ð16:9Þ

so that the first column collects the coefficient of the first occupied HF–LCAO orbital

and so on. If we collect together the m occupied LCAO orbitals into an n�m matrix

Uocc

Uocc ¼
c1;1 c2;1 � � � cm;1
c1;2 c2;2 � � � cm;2
� � � � � � � � � � � �
c1;n c2;n � � � cm;n

0
BB@

1
CCA ð16:10Þ

then the matrix 2Uocc (Uocc)T gives the charges and bond orders matrix P discussed

earlier. The next step is to express the energy in terms of the basis functions and the

matrix P.

The one-electron contribution is

2
XM
R¼1

Z
 Rðr1Þĥhð1Þðr1Þ Rðr1Þ d� ¼ 2

XM
R¼1

Xn
i¼1

Xn
j¼1

cR;icR; j

Z
�iðr1Þĥhð1Þðr1Þ�jðr1Þ d�

If we switch the summation signs on the right-hand side we recognize elements of the

charges and bond orders matrix P

2
XM
R¼1

Xn
i¼1

Xn
j¼1

cR;icR; j

Z
�iðr1Þĥhð1Þðr1Þ�jðr1Þ d�

¼
Xn
i¼1

Xn
j¼1

2
XM
R¼1

cR;icR; j

Z
�iðr1Þĥhð1Þðr1Þ�jðr1Þ d�

( )

¼
Xn
i¼1

Xn
j¼1

�
Pi; j

Z
�iðr1Þĥhð1Þðr1Þ�jðr1Þ d�

�
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Finally, on collecting together the one-electron integrals over the basis functions into

an n� n matrix h1 whose i, jth element is

ðh1Þij ¼
Z
�iðr1Þĥhð1Þðr1Þ�iðr1Þ d�1

then the one-electron term emerges as the trace of the matrix product Ph1

Xn
i¼1

Xn
j¼1

Pijðhð1ÞÞij ¼ trðPh1Þ ð16:11Þ

A corresponding analysis shows that the two-electron terms can be written as
1
2
trðPðJ� 1

2
KÞÞ, where the elements of the matrices J and K depend on those of P

in a more complicated way

Jij ¼
Xn
k¼1

Xn
l¼1

Pkl

ZZ
�iðr1Þ�jðr1Þĝgðr1; r2Þ�kðr2Þ�lðr2Þ d�1d�2

Kij ¼
Xn
k¼1

Xn
l¼1

Pkl

ZZ
�iðr1Þ�kðr1Þĝgðr1; r2Þ�jðr2Þ�lðr2Þ d�1d�2

ð16:12Þ

Many authors collect together these Coulomb and exchange matrices into a compo-

site called the electron repulsion matrix

G ¼ J� 1
2
K

The electronic energy therefore comes out as

"el ¼ trðPh1Þ þ 1
2
trðPJÞ � 1

4
trðPKÞ

¼ trðPh1Þ þ 1
2
trðPGÞ ð16:13Þ

We now examine how the electronic energy changes when P changes by a small

amount �P (equivalent to asking how "el changes as the LCAO coefficients change).

We let

P ! Pþ �P ð16:14Þ

and after a little manipulation find the first-order change in the electronic energy

"el ¼ trðh1�PÞ þ trðG�PÞ
¼ trðhF�PÞ ð16:15Þ

where I have defined the Hartree–Fock Hamiltonian matrix

hF ¼ h1 þG ð16:16Þ
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We want to find �P so that �"el is zero; the trivial solution is when �P equals the zero

matrix, but obviously there have to be restrictions on the allowed form of �P. I noted

above the requirement that the HF–LCAO orbitals be normalized and orthogonal. If

we collect together all the overlap integrals over basis functions into the matrix S,

then a little matrix manipulation will establish that

UTSU ¼ 1

PSP ¼ 4P

The condition that the HF–LCAO orbitals are normalized and orthogonal is equiva-

lent to the matrix equation PSP¼ 4P and the modified P must also satisfy this

condition

ðPþ �PÞSðPþ �PÞ ¼ 4ðPþ �PÞ
A little manipulation shows that, at the energy minimum

hFP ¼ PhF ð16:17Þ
and whilst this doesn’t actually help find the electron density at the minimum, it gives

a condition that has to be satisfied.

Roothaan solved the problem in a different but equivalent way; he let the HF–

LCAO coefficients vary subject only to the condition that the HF–LCAO orbitals

remained normalized and orthogonal. He demonstrated that the coefficients ci are

given by the generalized matrix eigenvalue problem

hFci ¼ "iSci ð16:18Þ
The HF matrix is n� n and there are exactly n solutions to the eigenvalue problem.

The lowest energy m solutions correspond to the occupied HF–LCAO orbitals. The

energy " is called the HF orbital energy, and for each value of " there is a column

vector of HF–LCAO coefficients. Once again, this doesn’t help us to find the coeffi-

cients, because they are contained within hF. So, an iterative procedure is necessary.

16.3.1 The HF–LCAO equations

For the record, since I will need to refer to the HF Hamiltonian many times, here it is

(for the closed shell system as shown in Figure 16.1, and assuming real basis functions)

hFij ¼
Z
�iðr1Þĥhð1Þðr1Þ�jðr1Þ d�

þ
Xn
k¼1

Xn
l¼1

Pkl

ZZ
�iðr1Þ�jðr1Þĝgðr1; r2Þ�kðr2Þ�lðr2Þ d�1d�2

� 1

2

Xn
k¼1

Xn
l¼1

Pkl

ZZ
�iðr1Þ�kðr1Þĝgðr1; r2Þ�jðr2Þ�lðr2Þ d�1d�2 ð16:19Þ
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Over the years, many workers have devised iterative procedures for solving the

problem. The simplest procedure is as follows:

� Choose a molecular geometry.

� Choose a suitable basis set.

� Calculate all integrals over the basis functions and store them.

� Make an educated guess at the HF–LCAO coefficients Uocc.

� Calculate P and hF (the time-consuming step).

� Solve the matrix eigenvalue problem hFc ¼ "Sc to give the new Uocc.

� Check for convergence (test "el and/or P)

� Exit or go back three steps.

There are other procedures. I’ll give you a numerical example later and explain

some of the methods that people use in order to speed up their calculation. Naturally,

having progressed this far in the book you will know that the HF–LCAO calculation

simply gives one point on a molecular potential energy surface, as defined by the

Born–Oppenheimer approximation. If your interest in life is molecular geometry

optimization, then you will have to follow the same kind of procedures as with

molecular mechanics (MM) in Chapter 5; there is a very big difference in that

MM energies can be calculated in almost no time at all, whilst HF–LCAO energies

consume considerable resource.

16.4 The Electronic Energy

As noted in Equation (16.4), the HF–LCAO electronic energy is given by

"el ¼ trðPh1Þ þ 1
2
trðPGÞ

¼ trðPhFÞ � 1
2
trðPGÞ

The HF–LCAO matrix eigenvalue equation is hFc ¼ "Sc, and the lowest energy m

solutions determine the electronic ground state of a closed shell molecule. The sum of

orbital energies "orb is therefore

"orb ¼ 2ð"A þ "B þ � � � þ "MÞ

If

hFcA ¼ "AScA

ðcAÞThFcA ¼ "AðcAÞTScA
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"A ¼ ðcAÞThFcA
ðcAÞTScA

¼ ðcAÞThFcA
then a little manipulation shows that

"el ¼ "orb � 1
2
trðPGÞ ð16:20Þ

Orbital energies do not sum to give the total electronic energy. I have written the

formula in matrix terms for convenience when working in the LCAO approximation.

The result is true for all HF wavefunctions, whether they are numerical atomic ones

(and therefore at the HF limit) or just rough-and-ready ones that have been through

the HF treatment but are nowhere near the HF limit.

16.5 Koopmans’ Theorem

Koopmans’ theorem relates ionization energies to HF orbital energies, as discussed

already for the atomic HF case. It is valid for any closed shell HF wavefunction, no

matter how good or bad. It is subject to the following small print: the orbitals of the

parent molecule and cation must remain unchanged on ionization. The fact is that the

electron density invariably reorganizes on ionization, but Koopmans’ theorem calcu-

lations have been widely used to interpret photoelectron spectra.

16.6 Open Shell Systems

The vast majority of organic molecules have electronic configurations of the type

ð 1Þ2ð 2Þ2 � � � ð MÞ2

that can be described by the closed shell version of the HF–LCAO procedure detailed

above. A good deal of chemistry is concerned with excited triplet states, free radicals,

cations and anions where there is at least one unpaired electron, and the procedure

outlined above is not appropriate because the energy formula is incorrect.

The HF–LCAO procedure is a chemically attractive one since it gives a clear

orbital picture and it turns out that several classes of open shell molecules can still

be treated using modified forms of the basic theory. The simplest case is shown in

Figure 16.2. We have a number n1¼M of doubly occupied orbitals and a number

n2¼ P� (Mþ 1) N of singly occupied orbitals, all with parallel spin electrons. We

refer to this as the restricted open shell (ROHF) model. The closed shell energy

formula, Equation (16.4), has to be modified, and for the sake of neatness I will

introduce the occupation numbers �1 (¼ 2) and �2 (¼ 1) for the two shells. If I use i
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and j as indices for the doubly occupied orbitals and u and v for the singly occupied

orbitals we find

"el ¼ �1

XM
i¼1

Z
 iðr1Þĥhð1Þðr1Þ iðr1Þ d�1

þ 1

2
�1

XM
i¼1

XM
j¼1

�ZZ
 2
i ðr1Þĝgðr1; r2Þ 2

j ðr2Þ d�1d�2

� 1

2

ZZ
 iðr1Þ jðr1Þĝgðr1; r2Þ iðr2Þ jðr2Þ d�1d�2

�

0
BBBBBBBBBB@

1
CCCCCCCCCCA

þ �2

XP
u¼Mþ1

Z
 uðr1Þĥhð1Þðr1Þ uðr1Þ d�1

þ 1

2
�2

XP
u¼Mþ1

XP
v¼Mþ1

�ZZ
 2
uðr1Þĝgðr1; r2Þ 2

vðr2Þ d�1d�2

�
ZZ

 uðr1Þ vðr1Þĝgðr1; r2Þ uðr2Þ vðr2Þ d�1d�2
�

0
BBBBBBBBBB@

1
CCCCCCCCCCA

þ �1�2

�XM
i¼1

XP
u¼Mþ1

�ZZ
 2
i ðr1Þĝgðr1; r2Þ 2

uðr2Þ d�1d�2

� 1

2

ZZ
 iðr1Þ uðr1Þĝgðr1; r2Þ iðr2Þ uðr2Þ d�1d�2

��

ð16:21Þ

In the LCAO variation we introduce n basis functions. We can collect the

HF–LCAO coefficients of the n1 doubly occupied orbitals into columns of a matrix

Figure 16.2 Restricted open shell HF
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U1 (n� n1) and the coefficients of the n2 singly occupied orbitals into columns of

U2 (n� n2) and define the n� n density matrices

R1 ¼ U1U
T
1 ; R2 ¼ U2U

T
2

Repeating the analysis given for closed shell states gives

"el ¼ �1tr

�
R1

�
h1 þ 1

2
G1

��
þ �2tr

�
R2

�
h1 þ 1

2
G2

��
ð16:22Þ

where the two G matrices contain Coulomb and exchange contributions similar to

those defined by Equation (16.12) for the closed shell case. We then allow R1 and R2

to vary, subject to orthonormality, just as in the closed shell case. Once again, C. C. J.

Roothaan [67] showed, in his 1960 paper, how to write a Hamiltonian matrix whose

eigenvectors give the columns U1 and U2 above.

16.7 The Unrestricted Hartree–Fock Model

The methyl radical CH3 can be easily produced by breaking the C–C bond in ethane

C2H6! 2 CH3

It has nine electrons and there are two ways we can progress, as shown in

Figure 16.3. First we can insist that the lowest energy molecular orbitals are doubly

occupied, with the extra electron occupying the highest energy orbital (ROHF). On

the other hand, we can let the � and � spin electrons occupy different spatial orbitals

(the unrestricted Hartree–Fock model, known by the acronym UHF).

Figure 16.3 Methyl radical
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The treatment will be familiar to you by now. We write a single Slater determinant

but allow the p � and the q � spin electrons to have different spatial orbitals.

Application of the Slater–Condon–Shortley rules gives an energy expression in

terms of the HF orbitals as

"el ¼
XP
i¼1

Z
 �i ðr1Þĥhð1Þðr1Þ �i ðr1Þ d�1

XQ
j¼1

Z
 �j ðr1Þĥhð1Þðr1Þ �j ðr1Þ d�1

þ
XP
i¼1

XP
j¼1

ZZ
 �i ðr1Þ �i ðr1Þĝgðr1; r2Þ �j ðr2Þ �j ðr2Þ d�1d�2

� 1

2

XP
i¼1

XP
j¼1

ZZ
 �i ðr1Þ �j ðr1Þĝgðr1; r2Þ �i ðr2Þ �j ðr2Þ d�1d�2

þ
XQ
i¼1

XQ
j¼1

ZZ
 �i ðr1Þ �i ðr1Þĝgðr1; r2Þ �j ðr2Þ �j ðr2Þ d�1d�2

� 1

2

XP
i¼1

XP
j¼1

ZZ
 �i ðr1Þ �j ðr1Þĝgðr1; r2Þ �i ðr2Þ �j ðr2Þ d�1d�2 ð16:23Þ

There are no cross terms between the two sets of orbitals because of the orthogonality

of the spin functions. We now introduce the LCAO concept; we expand each set of

HF orbitals in terms of the same basis set �1,�2, . . . ,�n and form two density

matrices, one for the �-spin electrons P� and one for the � spin electrons P� in

the obvious way. We finally arrive at two linked HF–LCAO Hamiltonian matrices;

the �-spin matrix has elements

h
F;�
ij ¼

Z
�iðr1Þĥhð1Þðr1Þ�jðr1Þ d�

þ
Xn
k¼1

Xn
l¼1

ðP�kl þ P
�
klÞ

ZZ
�iðr1Þ�jðr1Þĝgðr1; r2Þ�kðr2Þ�lðr2Þ d�1d�2

�
Xn
k¼1

Xn
l¼1

P�kl

ZZ
�iðr1Þ�kðr1Þĝgðr1; r2Þ�jðr2Þ�lðr2Þ d�1d�2 ð16:24Þ

with a similar expression for the � electrons. The UHF–LCAO orbitals are found by

any of the standard techniques already discussed, for example repeated construction

of the density matrices, the two Hamiltonians, matrix diagonalization and so on until

consistency is attained. The orbital energies can be associated with ionization en-

ergies using an extension of Koopmans’ theorem.

272 THE HF–LCAO MODELTHE HF–LCAO MODEL



16.7.1 Three technical points

There are three technical points that you should be aware of.

1. I chose the example CH3 with some care to make sure that the electronic ground

state could be written as a single Slater determinant. There are some electronic

states of very simple molecules where this is not possible, and more advanced

considerations apply; for example, the first excited singlet state of dihydrogen

cannot be represented as a single Slater determinant.

2. The UHF method does not generally give wavefunctions that are eigenfunctions of

the spin operator ŜS2. The methyl radical UHF wavefunction will actually be a

mixture of various spin components ranging from the (correct) doublet state (spin

quantum number s ¼ 1
2
) through in steps of 1 to the spin state with s ¼ 9

2

CUHF ¼ c2Cs¼1=2 þ c4Cs¼3=2 þ � � � ð16:25Þ
and very often it happens that the ‘correct’ spin state dominates (c2� 1 in this

case, a doublet) with the largest impurity coming from the next highest spin state

(c4 in this case, a quartet). There are two strategies; the easier option is to run the

UHF calculation and eliminate the largest contaminant after the UHF wavefunc-

tion has been found, whilst the more correct but incredibly more complicated

procedure is to eliminate all spin contaminants from the wavefunction before

performing the UHF calculation. The second option leads to a linear combination

of Slater determinants, such as that given in Equation (16.25), where we have to

find the HF–LCAO coefficients and also the expansion coefficients c2, c4 and so

on. Such extended Hartree–Fock (EHF) calculations are very expensive in

computer resource, and I will return to this idea in Chapter 19.

3. The ‘charges and bond orders matrix’ concept needs to be generalized to cover the

case of open shells, because some orbitals are singly occupied (in the ROHF

model) and because the spatial parts of the spinorbitals can be different (in the

case of the UHF model). We collect the LCAO coefficients for the occupied � and

� spin electrons separately into two matrices that I will call U� and U�. Each

matrix product U�(U�)T and U�(U�)T gives us the charges and bond orders

matrices for the individual �- and �-spin electrons. These matrices are sometimes

referred to as P� and P�. The usual charge density P is the sum of these, and the

difference is called the spin density Q.

16.8 Basis Sets

The stumbling block for molecular HF applications was the very large number of

difficult integrals, especially those of the two-electron kind. A typical two-electron
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integral over basis functions

e2

4��0

ZZ
�iðr1Þ�jðr1Þ 1

r12
�kðr2Þ�lðr2Þ d�1d�2

might involve four different basis functions, all of which might be on different atomic

centres, or not even on atomic centres. Generally there will be a lot of them; there is

no obvious choice of coordinate origin, the integral has a singularity (that is to say, it

becomes infinite as the two electrons approach each other) and it is six-dimensional.

Authors therefore spoke of the integral bottleneck, and the bottleneck was not broken

until the early 1950s.

16.8.1 Clementi and Raimondi

Slater’s atomic orbital rules were the first step to a correct treatment of basis functions

that could be used in molecules. Clementi and Raimondi [68] refined Slater’s em-

pirical ideas in 1963 by performing atomic HF–LCAO calculations on atoms with

atomic number 2 through 36, in order to calculate the variationally correct orbital

exponents. The synopsis is worth reading:

The self-consistent field function for atoms with 2 to 36 electrons are computed

with a minimum basis set of Slater-type orbitals. The orbital exponents of the

atomic orbitals are optimized as to ensure the energy minimum. The analysis of

the optimized orbital exponents allows us to obtain simple and accurate rules

for the 1s, 2s, 3s, 4s, 2p, 3p, 4p and 3d electronic screening constants. These

rules are compared with those proposed by Slater and reveal the need for the

screening due to the outside electrons. The analysis of the screening constants

(and orbital exponents) is extended to the excited states of the ground state

configuration and the positive ions.

What they did, starting from Slater’s ideas of 1s, 2s, 2p . . . atomic orbitals with

modified orbital exponents (effective nuclear charges), was as follows for each atom

in their set (see Table 16.1):

� Decide on the electronic ground state configuration and choose starting values of

the orbital exponents from Slater’s rules.

� Optimize each orbital exponent individually by the HF–LCAO procedure. At the

end of each optimization, the earlier optimized values will have changed and so . . .

� Check for self consistency amongst the orbital exponents and either exit or go back

one step.
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There are better optimization procedures, as you will know from reading earlier

chapters, but that is how the early workers did things.

We call such basis sets single zeta or minimal because they use exactly the same

number of atomic orbitals as in descriptive chemistry. For each atom there is just one

1s orbital, one 2s, three 2p and so on.

16.8.2 Extension to second-row atoms

Clementi extended this treatment to the second row in his 1964 paper [69], and he

wrote the following in his Abstract:

The self-consistent field functions for the ground state of the first and second

row atoms (from He to Ar) are computed with a basis set in which two Slater-

type orbitals (STO) are chosen for each atomic orbital. The reported STOs have

carefully optimized orbital exponents. The total energy is not far from the

accurate Hartree–Fock energy given by Clementi, Roothaan and Yoshimine for

the first row atoms and unpublished data for the second-row atoms. The

obtained basis sets have sufficient flexibility to be a most useful starting set for

molecular computations, as noted by Richardson. With the addition of 3d and 4f

functions, the reported atomic basis sets provide a molecular basis set which

duplicates quantitatively most of the chemical information derivable by the

more extended basis sets needed to obtain accurate Hartree–Fock molecular

functions.

Clementi thus doubled the number of atomic orbitals and so used two slightly different

1s orbitals, two slightly different 2s orbitals and so on. Once again, he optimized the

orbital exponents by systematic variations and a small sample from his results is shown

in Table 16.2. We refer to such a basis set as a double zeta basis set. Where the single

zeta basis set for atomic lithium has a 1s exponent of 2.6906, the double zeta basis set

has two 1s orbitals with exponents 2.4331 and 4.5177 (the inner and outer 1s orbitals).

Table 16.1 Comparison of Slater’s exponents with those of Clementi and Raimondi (CR)

Atom CR 1s Slater value CR 2s CR 2p Slater value
exponent for 1s exponent exponent for 2s/2p

H 1 1

He 1.6875 1.70

Li 2.6906 2.70 0.6396 0.650

Be 3.6848 3.70 0.9560 0.975

B 4.6795 4.70 1.2881 1.2107 1.300

C 5.6727 5.70 1.6083 1.5679 1.625

N 6.6651 6.70 1.9237 1.9170 1.950

O 7.6579 7.70 2.2458 2.2266 2.275

F 8.6501 8.70 2.5638 2.5500 2.600

Ne 9.6241 9.70 2.8792 2.8792 2.925
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The lowest energy HF–LCAO atomic orbital for a Li atomwill be a combination of the

four s-type basis functions, and we call this combination ‘the’ atomic 1s orbital.

16.8.3 Polarization functions

There is a second point to note from Clementi’s paper, where he speaks about

‘the addition of 3d and 4f functions . . .’ with reference to first- and second- row

atoms, respectively. Any chemist would write the fluorine electronic ground state

configuration

F: 1s2 2s2 2p5

and so the d and f orbitals are unoccupied. When atoms combine to form molecules

the atomic charge density may well distort from spherical symmetry and such polar-

ization functions are needed to describe this distortion accurately.

16.9 Gaussian Orbitals

None of these considerations actually broke the integrals bottleneck. There are two

considerations. First of all, the sheer number of integrals that have to be processed.

Table 16.2 A selection from Clementi’s double zeta basis set

1s exponents 2s exponents 2p exponents

He 1.4461

2.8622

Li 2.4331 0.6714

4.5177 1.9781

Be 3.3370 0.6040

5.5063 1.0118

B 4.3048 0.8814 1.0037

6.8469 1.4070 2.2086

C 5.2309 1.1678 1.2557

7.9690 1.8203 2.7263

N 6.1186 1.3933 1.5059

8.9384 2.2216 3.2674

O 7.0623 1.6271 1.6537

10.1085 2.6216 3.6813

F 7.9179 1.9467 1.8454

11.0110 3.0960 4.1710

Ne 8.9141 2.1839 2.0514

12.3454 3.4921 4.6748
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If we run a HF–LCAO calculation with n basis functions, then we have to calculate

p ¼ 1
2
nðnþ 1Þ one-electron integrals of each type (overlap, kinetic energy and

electron-nuclear attraction). If n¼ 100, then we have to calculate 15 150 one-electron

integrals. It is the two-electron integrals that cause the problem, for we have to

calculate at most q ¼ 1
2
pðpþ 1Þ of them; if n¼ 100, then q¼ 1.25� 107. There

are approximately 1
8
n4 integrals (for large n), although this is to be seen as an upper

limit. Many of the integrals turn out to be so tiny that they can be ignored for practical

calculations on large molecules.

The second consideration is the mathematical intractability of the integrals, as

mentioned above. The real breakthrough came in the 1950s with the introduction

of (Cartesian) Gaussian basis functions; these are similar to Slater orbitals but they

have an exponential factor that goes as the square of the distance between the

electron and the orbital centre

�G ¼ NGx
lymzn exp

�
�� r2

a20

�
ð16:26Þ

Here l, m and n can have any integral values and the orbital exponent � is positive. If

all of l, m and n are zero, then we talk about a 1s-type Gaussian-type orbital (GTO).

If one of l, m or n is equal to 1, then we have a 2p-type GTO. Expressions for

normalized 1s and 2px GTO are

G1s ¼
�
2�

�a20

�3=4

exp

�
��r2

a20

�

G2px ¼
�
128�5

�3a100

�1=4

x exp

�
��r2

a20

�

When dealing with d-type (where lþmþ n¼ 2) we note that there are six possibi-

lities, xx, xy, xz, yy, yz and zz, rather than the five combinations we normally en-

counter for STO. The combination (x2þ y2þ z2) actually gives a 3s GTO, but we

normally include all six Cartesian Gaussians in calculations. Similar considerations

apply to the f, g . . . orbitals.
Why use Gaussians? Let me illustrate the answer by considering the two one-

dimensional normal distribution curves (which are one-dimensional Gaussians)

shown in Figure 16.4

GAðxÞ ¼ exp ð��Aðx� xAÞ2Þ
GBðxÞ ¼ exp ð��Bðx� xBÞ2Þ

I have taken �A¼ 0.1, xA¼ 1 (the full curve) and �B¼ 0.3 and xB¼ � 2 (the dotted

curve). It is easily shown that the product GA(x)�GB(x) is another Gaussian GC

GAUSSIAN ORBITALSGAUSSIAN ORBITALS 277



whose centre lies between GA and GB

GCðxÞ ¼ exp

�
� �A�B

�A þ �B

fxA � xBg2
�
exp ð�ð�A þ �BÞðx� xCÞ2Þ

xC ¼ �AxA þ �BxB

�A þ �A

ð16:27Þ

which is shown as the dashed curve. This is a general property of Gaussians.

Credit for the introduction of Gaussian basis functions is usually given to S. F.

Boys [70] for his 1950 paper, and here is the famous synopsis:

This communication deals with the general theory of obtaining numerical

electronic wavefunctions for the stationary states of atoms and molecules. It is

shown that by taking Gaussian functions, and functions derived from these by

differentiation with respect to the parameters, complete systems of functions can

be constructed appropriate to any molecular problem, and that all the necessary

integrals can be explicitly evaluated. These can be used in connection with the

molecular orbital treatment, or localized bond method, or the general method of

linear combinations of many Slater determinants by the variation procedure. This

general method of obtaining a sequence of solutions converging to the accurate

solution is examined. It is shown that the only obstacle to the evaluation of

wavefunctions of any required degree of accuracy is the labour of computation. A

modification of the general method applicable to atoms is discussed and

considered to be extremely practicable

Figure 16.4 Product of two one-dimensional Gaussians
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GTOs have one great advantage over Slater-type orbitals (STOs); the nasty inte-

grals (especially the two-electron integrals) we need for molecular quantum me-

chanics are relatively straightforward because they can be reduced from at most a

four-centre integral to a one-centre integral by repeated application of the principle

above. Consider, for example, an overlap integral between the two s-type GTOs

shown in Figure 16.5. This is a three-dimensional extension to the one-dimensional

problem discussed above.

Gaussian A has exponent �A and is centred at rA; Gaussian B has exponent �B and

is centred at rB. If the position vector of the electron is r, then its position vector

relative to the centre of GA is r� rA, with a similar expression for GB. The overlap

integral (apart from the normalizing constants N and N0) is

SAB ¼ N

Z
exp

�
��A

jr� rAj2
a20

�
exp

�
��B

jr� rBj2
a20

�
d�

¼ N 0
Z

exp

�
��C

jr� rCj2
a20

�
d� ð16:28Þ

The product GTO GC has exponent �C and centre rC given by

�C ¼ �A þ �B

rC ¼ 1

�A þ �B

ð�ArA þ �BrBÞ

The remaining integral is a product of three standard integrals

Z
exp

�
��C

jr� rCj2
a20

�
d� ¼

Z
exp

�
��C

ðx� xCÞ2
a20

�
dx

Z
exp

�
��C

ðy� yCÞ2
a20

�
dy

Z
exp

�
��C

ðz� zCÞ2
a20

�
dz

Figure 16.5 Overlap integral between two GTOs
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One major problem that concerned early workers is that GTOs do not give terribly

good energies. If we try a variational calculation on a hydrogen atom with a single

s-type GTO

Gð�Þ ¼
�
�

�a30

�3=4

exp

�
�� r2

a20

�

and calculate the optimal Gaussian exponent, then we find �opt¼ 0.283 with a varia-

tional energy of �0.424 Eh. The experimental energy is � 1
2
Eh and the error is some

15%. A second problem is that the shapes of GTOs and STOs are quite different.

Figure 16.6 shows the dependences of the STO (with exponent 	 ¼ 1) and the GTO

(with exponent �¼ 0.283) on distance for a hydrogen atom. The plot is of wavefunc-

tion/a
�3=2
0 vs. distance from the nucleus, r/a0.

The full curve is the STO, the dashed curve the best GTO. GTOs show the wrong

behaviour at the nucleus, where they should have a cusp because the mutual potential

energy of the electron and the nucleus becomes infinite as the distance becomes zero.

GTOs also fall off far too quickly with the distance from the nucleus.

16.9.1 STO/nG

The next step was to address the long-distance behaviour, and Hehre, Stewart and

Pople proposed the idea of fitting a fixed linear combination of n GTOs to a given

Figure 16.6 GTO vs. STO for a hydrogen atom
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STO. The GTOs are not explicitly included in a HF–LCAO calculation, they are just

used to give a good fit to an STO for integral evaluation. The resulting HF–LCAO

orbitals can be thought of as minimal basis STOs. The GTOs are called primitive

GTOs, and we say that the resulting atomic (STO) orbital is contracted. So, for

example, we would use least squares fitting techniques to find the best three primitive

GTO exponents �i and contraction coefficients di in the STO/3G fit to a 1s STO

orbital with exponent 1.

STOð	 ¼ 1Þ ¼ d1GTOð�1Þ þ d2GTOð�2Þ þ d3GTOð�3Þ ð16:29Þ

The next keynote paper is ‘Use of Gaussian Expansions of Slater-Type Atomic

Orbitals’ by W. J. Hehre et al. [71]. As usual I will let the authors explain their

ideas:

Least Squares representations of Slater-type atomic orbitals as a sum of

Gaussian-type orbitals are presented. These have the special feature that

commonGaussian exponents are shared between Slater-type 2s and 2p functions.

Use of these atomic orbitals in self-consistent molecular-orbital calculations is

shown to lead to values of atomisation energies, atomic populations, and electric

dipole moments which converge rapidly (with increasing size of the Gaussian

expansion) to the values appropriate for pure Slater-type orbitals. The 	
exponents (or scale factors) for the atomic orbitals which are optimized for a

number of molecules are also shown to be nearly independent of the number of

Gaussian functions. A standard set of 	 values for use in molecular calculations is

suggested on the basis of this study and is shown to be adequate for the

calculation of total and atomisation energies, but less appropriate for studies of

the charge distribution.

As we increase the number of primitive GTOs in the expansion, the resultant

looks more and more like an STO, except at the nucleus where it can never attain

the correct shape (the cusp). I have shown the comparison in Figure 16.7 for the

STO/3G basis set. We therefore regard a minimal molecular basis set as com-

prised of STOs, except for integral evaluation where we use a linear expansion of

n GTOs.

Many molecular properties depend on the valence electrons rather than the shape

of the wavefunction at a nucleus, two exceptions being properties such as electron

spin resonance and nuclear magnetic resonance parameters.

Tables of exponents and expansion coefficients are given in the original reference,

and these all refer to an STO exponent of 1. These original GTO basis sets were

‘universal’ in that they applied to every atom irrespective of the atomic configuration;

to convert from the STO exponent 1 to an exponent 	 you simply multiply the

primitive exponents by 	3/2. For reasons of computational efficiency, all basis func-

tions in a given valence shell are taken to have the same primitive GTOs (but with

different contraction coefficients).
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16.9.2 STO/4–31G

Such STO/nG calculations were common in the literature of the 1970s. It soon

became apparent that they give poor results in a number of circumstances. There

are particular problems for molecules containing atoms toward the end of the first

period, such as oxygen and fluorine, where they give poor bond lengths and just about

every other property you can think of. Eventually it was realized that whilst most of

the energy comes from the inner shell regions, some flexibility ought to be given to

the valence regions. The valence orbitals are therefore split into (n� 1) primitives and

one primitive so we represent a hydrogen atom as two basis functions, as shown in

Table 16.3. We think of an inner (3 GTOs) and an outer (1 GTO) basis function. For

other atoms, the inner shell basis functions are left in an STO/nG contraction. Again,

you might like to read the Synopsis of the keynote paper by R. Ditchfield et al. [72]:

Figure 16.7 The STO/3G expansion

Table 16.3 STO/4–31G hydrogen atom basis functions

Orbital exponent Contraction coefficient

13.00773 0.0334960

1.962079 0.22472720

0.4445290 0.8137573

0.1219492 1
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An extended basis set of atomic functions expressed as fixed linear combinations

of Gaussian functions is presented for hydrogen and the first row atoms carbon to

fluorine. In this set, described as 4–31G, each inner shell is represented by a

single basis function taken as a sum over four Gaussians and each valence

orbital is split into inner and outer parts described by three and one Gaussian

function respectively. The expansion coefficients and Gaussian exponents are

determined by minimizing the total calculated energy of the electronic ground

state. This basis set is then used in single-determinant molecular-orbital studies

of a group of small polyatomic molecules. Optimization of valence-shell scaling

factors shows that considerable rescaling of atomic functions occurs in

molecules, the largest effects being observed for hydrogen and carbon. However,

the range of optimum scale factors for each atom is small enough to allow the

selection of a standard molecular set. The use of this standard basis gives

theoretical equilibrium geometries in reasonable agreement with experiment.

16.9.3 Gaussian polarization and diffuse functions

I mentioned polarization functions briefly in Section 16.8. The best thing is for me to

quote the Synopsis of a keynote paper by J. B. Collins et al. [73] at this point:

Three basis sets (minimal s–p, extended s–p and minimal s–p with d functions

on the second row atoms) are used to calculate geometries and binding energies

of 24 molecules containing second row atoms. d functions are found to be

essential in the description of both properties for hypervalent molecules and to

be important in the calculations of two-heavy-atom bond lengths even for

molecules of normal valence.

The addition of a single set of polarization functions to a heavy atom STO/4-31G basis

set gives the so-called STO/4-31G�, and further addition of (p-type) polarization func-

tions to hydrogen gives STO/4-31G�� in an obvious notation. There are more explicit

conventions when using more than one set of polarization functions per atom. Polariza-

tion functions essentially allow spherical atomic charge distributions to distort on mo-

lecule formation or in the presence of external electric fields. In order to treat species that

carry formal negative charges or deal withmolecular properties that depend on regions of

the valence shells that are far from the nucleus, it is necessary to include diffuse basis

functions (primitives with very small exponents), and they are denoted þ and þþ.

16.9.4 Extended basis sets

Huzinaga’s set of uncontracted GTOs provides the classic example for our next topic.

These large sets of primitive (uncontracted) GTOs comprise 10 primitive s-type

and six primitive p-type, for a first row atom. The orbital exponents were carefully
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optimized for every first-row atom and for hydrogen. There is no reason in principle

why we should not use them as they stand for molecular calculations, but the con-

traction process is found to give great computational efficiency with little cost in

energy. What is needed is a way of effectively grouping them together for a molecular

calculation, i.e. a contraction scheme.

Many authors performed HF–LCAO calculations on atoms and small molecules,

and looked for groupings of the primitive GTOs that did not change their relative

weightings from orbital to orbital and from molecule to molecule. I can illustrate

these ideas by mentioning Dunning’s 1975 work [74], with the by-now inevitable

Synopsis:

Contracted [5s3p] and [5s4p] Gaussian basis sets for the first-row atoms are

derived from the (10s6p) primitive basis sets of Huzinaga. Contracted [2s] and

[3s] sets for the hydrogen atom obtained from primitive sets ranging from (4s)

to (6s) are also examined. Calculations on the water and nitrogen molecules

indicate that such basis sets when augmented with suitable polarization

functions should yield wavefunctions near the Hartree–Fock limit.

Dunning’s notation and ideas can be explained with the example in Table 16.4, an

oxygen atom. The first six primitive GTOs with exponents 1805.0 through 0.2558

contribute mostly to what we call ‘the’ atomic 1s orbital. The two most diffuse s

functions (those with exponents 0.7736 and 0.2558) are the main components of what

we call the 2s STOs, and they are allowed to vary freely in molecular calculations.

Table 16.4 Dunning’s [5s3p] contraction scheme for Huzinaga’s

(10s6p) GTO set

GTO type Exponent Contraction coefficient

s 1805.0 0.000757

2660.0 0.006066

585.7 0.032782

160.9 0.132609

51.16 0.396839

17.90 0.542572

s 17.90 0.262490

6.639 0.769828

s 2.077 1

s 0.7736 1

s 0.2558 1

p 49.83 0.016358

11.49 0.106453

3.609 0.349302

1.321 0.657183

p 0.4821 1

p 0.1651 1
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The 1s primitive with exponent 2.077 turns out to make substantial contributions to

both the atomic 1s and 2s orbitals, so that one is left free as a separate basis function.

A typical package such as GAUSSIAN98 will have very many basis sets as part of

its database; you don’t have to rediscover the wheel. On the other hand, some basis

sets are good for one particular application and some are poor, and there are implica-

tions of cost. The larger the basis set the higher the cost of the calculation, and the

proportionality is far from linear. Choice of basis set is a specialist subject, just like

many others in our study so far; you simply have to take advice and look up recent

literature citations.
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17 HF–LCAO Examples

I am going to start with L-phenylanine, as in Chapters 5–7, to exemplify the

principles discussed so far for the HF–LCAO model. There are a number of com-

mercial packages that perform (amongst other things) HF–LCAO calculations, and

everyone has their favourites. I use GAUSSIAN (http:==www.gaussian.com)

and HyperChem (http:==www.hyper.com), but it’s a matter of personal

choice. Both can start from a Protein Data Bank .pdb file and in the case of

GAUSSIAN we essentially add a few control records to the Cartesian coordinates

as follows:

%chk=c:\g98w\scratch\phenylanine.chk

# HF/6-31G* Pop=Full SCF=Direct

L-phenylanine

0 1
N 0.000 0.000 0.000
H 0.000 0.000 1.010
C 1.366 0.000 20.483
H 20.476 20.825 20.336
H 1.314 0.000 21.572
C 2.120 21.229 0.004
C 2.121 1.233 0.005
O 1.560 22.063 0.714
H 1.586 2.131 20.303
H 2.160 1.142 1.090
C 3.558 1.321 20.449
O 2.904 21.610 20.972
C 4.348 2.410 20.061
C 4.101 0.315 21.257
H 3.398 22.387 20.700
H 3.926 3.194 0.568
H 3.486 20.533 21.557
C 5.681 2.493 20.482
C 5.434 0.397 21.677
H 6.296 3.341 20.181
H 5.856 20.386 22.305
C 6.224 1.487 21.290
H 7.262 1.551 21.617



HF–LCAO calculations are iterative and resource intensive. The first statement

sets up a checkpoint file that is used to store information about the calculation in

hand, together with the results of the calculation. Calculations can be restarted from

checkpoint files.

Next comes the ‘route’ through the package. I have chosen a closed-shell HF–

LCAO calculation using the STO/6-31G� basis set. The major part of resource con-

sumption is concerned with calculating and manipulating the two-electron integrals

of which there a maximum of (about) n4=8, where n is the number of basis functions.

A number of strategies have been developed to deal with them in an efficient manner.

In the early days it was usual to calculate all the integrals once, before the HF

iterations began, and store them on magnetic tape or exchangeable disk storage

(EDS). At each iteration the integrals are read back into computer memory, the HF

matrix constructed and diagonalized. Matrix diagonalization is ‘only’ an n2 process

and even the old-fashioned Jacobi or Householder algorithms are still found in mod-

ern modelling packages.

It usually happens that many of the two-electron integrals are negligibly small, and

it is possible to estimate whether an integral will fall into this category before actually

calculating it. Only the significant ones have to be calculated and stored. It is usual to

store the basis function label i, j, k, l packed as bytes into a 32-bit word, together with

the value of the integral (often multiplied by an appropriate factor of 10 and stored as

an integer).

The maximum number of basis functions determines the amount of storage needed

for the label; using one byte for each index limits us to 28� 1¼ 255 basis functions

(Figure 17.1). R. C. Raffenetti [75] proposed an alternative way of storing the indices

and the integral to make the generation of the HF–LCAO matrix easier.

For molecules with any substantial amount of symmetry, many of the integrals turn

out to be plus or minus each other and many can be shown to be identically zero by

symmetry arguments, without even having to calculate them. Early packages such as

POLYATOM made extensive use of this symmetry feature.

HF–LCAO calculations are usually input–output bound because of the finite time

taken for disk or magnetic tape transfers compared with the time needed to set up the

HF matrix; ideally one would like to calculate the integrals just once and hold them in

RAM rather than store them externally, but early computers had very limited RAM.

Technology has moved on, and I feel apologetic when I say that my humble office

PC has ‘only’ 512 Mbytes of RAM. The motherboard will support a mere 3 Gbytes.

Figure 17.1 Integral storage
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Many packages have a so-called incore option, where the integrals are calculated

once at the start of the HF optimizations, and held in memory. In GAUSSIAN we

would put SCF¼ Incore in the route (usage of the word ‘core’ is historical, and dates

from the time when computer memory was made of magnetized ferrite rings and

people spoke about computer cores). Again, processor speed has also increased

beyond belief, and it was eventually realized that a cost-effective alternative to

calculation of the integrals once and repeated read/write operations involving slow

devices such as disks and magnetic tape was to calculate afresh the integrals as and

when needed on each cycle. That is the meaning of ‘SCF¼Direct’ in the route. The

break-even point between ‘Traditional’ and ‘Direct’ calculations depends on many

factors, but roughly speaking calculations involving more than 100 basis functions

are perhaps best done with the ‘Direct’ option. It is a trade-off between processor

power and disk transfer rate. For the record, my calculation on phenylanine with 202

basis functions gave almost exactly the same execution times when run with the two

options.

The ‘Pop¼ Full’ is simply an option to print out all the LCAO coefficients and

everything else one might possibly need at the end of the calculation. The next two

records are the Title then the charge on the molecule (0 in this case) and the spin

multiplicity (it is a singlet spin state). Then come the Cartesian coordinates in

ångstr€ooms, in the usual manner. I could have also have input the molecular geometry

as a Z matrix.

17.1 Output

The output is straightforward; I will explain it one piece at a time:

Entering Link 1=C:\G98W\11.exe PID=21822917.
Copyright (c) 1988, 1990, 1992, 1993, 1995, 1998 Gaussian, Inc.

All Rights Reserved.
This is part of the Gaussian(R) 98 program. It is based on
the Gaussian 94(TM) system (copyright 1995 Gaussian, Inc.),
the Gaussian 92(TM) system (copyright 1992 Gaussian, Inc.),
the Gaussian 90(TM) system (copyright 1990 Gaussian, Inc.),
the Gaussian 88(TM) system (copyright 1988 Gaussian, Inc.),
the Gaussian 86(TM) system (copyright 1986 Carnegie Mellon
University), and the Gaussian 82(TM) system (copyright 1983
Carnegie Mellon University). Gaussian is a federally registered
trademark of Gaussian, Inc.

Cite this work as:
Gaussian 98, Revision A.7,
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
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M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr.,
R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam,
A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi,
V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo,
S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui,
K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari,
J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul,
B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi,
R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham,
C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe,
P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres,
C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople,
Gaussian, Inc., Pittsburgh PA, 1998.

*********************************************
Gaussian 98: x86-Win32-G98RevA.7 11-Apr-1999

19-Jun-2002
*********************************************

The first part reminds us that packages such as GAUSSIAN have been developed

over a number of years by a large team of people. There was a time in the 1970s when

scientists freely exchanged their software, but large packages now tend to be com-

mercial in nature and generally subject to the laws of copyright. The text above also

serves the purpose of giving the appropriate citation for my calculations in this book.

The next piece of relevant output summarizes the iterative calculations:

Standard basis: 6231G(d) (6D, 7F)
There are 202 symmetry adapted basis functions of A symmetry.
Crude estimate of integral set expansion from redundant integrals=1.000.
Integral buffers will be 262144 words long.
Raffenetti 1 integral format.
Two-electron integral symmetry is turned on.
202 basis functions 380 primitive gaussians
44 alpha electrons 44 beta electrons

nuclear repulsion energy 695.8409407052 Hartrees.
One-electron integrals computed using PRISM.
NBasis=202 RedAO=T NBF=202
NBsUse=202 1.00D204 NBFU=202
Projected INDO Guess.
Warning! Cutoffs for single-point calculations used.
RequestedconvergenceonRMSdensitymatrix=1.00D204within64cycles.
Requested convergence on MAX density matrix=1.00D202.
Requested convergence on energy=5.00D205.
SCF Done: E(RHF)=2551.290681260 A.U. after 7 cycles
Convg=0.2411D204 2V/T = 2.0010
S**2=0.0000
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You should by now know about most things in the text above apart from

INDO. I will explain INDO in Chapter 18; just accept for the minute that it is a

cheap and cheerful way of setting off the HF–LCAO iterative calculations. The S��2
item is the expectation value of the spin operator and it shows that we are

indeed dealing with a pure singlet spin state. This shouldn’t come as a surprise,

since we required pairs of electrons to occupy the same spatial orbital. The virial

ratio �V/T is the ratio of the expectation values of the potential and kinetic energies,

and for an exact wavefunction it would equal 2. It’s a quantity of some historical

interest.

A sensible choice of the initial electron density can make all the difference be-

tween success and failure; one strategy is to allow a few of the highest occupied and

the lowest unoccupied orbitals to be partially occupied, in order to try to sort out the

ground state from the excited states. Most packages make such choices as a matter of

course.

The final energy shown is the total, that is to say electronic plus nuclear repulsion;

the quantity quoted is technically the reduced energy, "/Eh. Next come the orbital

energies (called not surprisingly, ‘EIGENVALUES’ since they are eigenvalues of the

generalized HF–LCAO matrix eigenvalue equation) and LCAO coefficients; a small

subset is shown in the next excerpt.

EIGENVALUES ---- 220.63814 220.57266 215.54941 211.39810 211.28063
1 1 N 1S 0.00000 0.00000 0.99502 20.00001 20.00024
2 2S 0.00000 0.00003 0.02505 20.00010 20.00005
3 2PX 0.00000 0.00000 0.00002 0.00002 20.00004
4 2PY 20.00001 0.00000 0.00115 20.00002 0.00004
5 2PZ 0.00000 0.00001 0.00085 20.00003 0.00002
6 3S 20.00011 20.00011 20.00304 0.00016 0.00431
7 3PX 0.00007 0.00008 0.00046 20.00019 20.00156
8 3PY 0.00002 20.00005 20.00116 20.00022 0.00075
9 3PZ 20.00008 20.00005 20.00065 0.00023 0.00033

10 4XX 20.00001 0.00000 20.00343 0.00000 20.00046
11 4YY 0.00001 0.00000 20.00328 20.00006 20.00031
12 4ZZ 20.00002 0.00000 20.00329 0.00000 20.00007
13 4XY 0.00000 0.00000 0.00009 0.00000 0.00024
. . . etc.

Koopmans’ theorem applies to all HF wavefunctions, no matter whether they are at

the Hartree–Fock limit or just minimal basis set ones. The orbital energies can

therefore be used to predict and rationalize ionization energies.

Next come Mulliken population analysis indices. As explained in earlier chapters,

these give a rough-and-ready decomposition of the molecular charge density, but the

Mulliken partitioning scheme is at best subjective and the numbers have to be treated

with caution. Even at best, the numbers should only be used when comparing similar

molecules calculated with the same basis set.
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Total atomic charges:
1

1 N 20.813293
2 H 0.349031
3 C 20.104570
4 H 0.353108
5 H 0.230505
6 C 0.738642
7 C 20.330255
8 O 20.563670
9 H 0.208910
10 H 0.174735
11 C 20.003026
12 O 20.695939
13 C 20.215109
14 C 20.296860
15 H 0.476022
16 H 0.195021
17 H 0.352644
18 C 20.204224
19 C 20.223956
20 H 0.196201
21 H 0.185426
22 C 20.201527
23 H 0.192182

Sum of Mulliken charges=0.00000

Finally, we have a number of molecular properties, thought for the day and most

important of all, timing for the calculation.

Electronic spatial extent (au): < R**2 > =2207.7382
Charge=0.0000 electrons
Dipole moment (Debye):

X=20.5782 Y=1.3722 Z=0.1690 Tot=1.4986
Quadrupole moment (Debye-Ang):

XX=274.8112 YY=264.5102 ZZ=274.5878
XY=0.9589 XZ=23.7721 YZ=23.7827

Octapole moment (Debye-Ang**2):
XXX=22.9972 YYY=33.1091 ZZZ=20.6338 XYY=21.5751
XXY=20.1467 XXZ=25.5624 XZZ=11.6054 YZZ=2.4320
YYZ=10.4086 XYZ=27.2147

Hexadecapole moment (Debye-Ang**3):
XXXX=21997.2398 YYYY=2551.4398 ZZZZ=2183.6336 XXXY=216.5841
XXXZ=261.2789 YYYX=48.2110 YYYZ=24.8287 ZZZX=21.3817
ZZZY=20.3652 XXYY=2463.2866 XXZZ=2417.5712 YYZZ=2136.5187
XXYZ=252.3198 YYXZ=20.4041 ZZXY=3.5225
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SILVERMAN’S PARADOX 2 IF MURPHY’S LAW CAN GO WRONG, IT WILL.
Job cpu time: 0 days 0 hours 5 minutes 36.0 seconds.
File lengths (MBytes): RWF=27 Int=0 D2E=0 Chk=7

17.2 Visualization

Visualization follows the path discussed in Chapter 15, but naturally there are very

many more HF–LCAOs than in the case of dihydrogen. In any case, the HF–LCAOs

are not uniquely determined by the HF procedure. This is because the electronic

wavefunction has to be written as a Slater determinant; one of the properties of deter-

minants is that we can add multiples of rows and/or columns without changing their

value. This is equivalent to mixing the HF–LCAO orbitals, and at one time it was

fashionable to use this idea in order to produce localized orbitals. Organic chemists

place great emphasis on the highest occupied molecular orbital (HOMO) and the

lowest unoccupied molecular orbital (LUMO). I have shown the HOMO and the

LUMO for L-phenylanine in Figures 17.2 and 17.3 as the three-dimensional objects

that they are. The rendering chosen for the squares of the square of thewavefunctions is

called (in HyperChem) a 3D-isosurface (shaded surface). The plots look very attractive

in colour, unfortunately wasted here in the greyscale illustrations. GAUSSIAN Inc.

market a package called GAUSSVIEW that also produces brilliant images.

The HOMO comprises large contributions from the benzene ring. By contrast, the

LUMO has a nodal plane through the benzene ring as shown, and a much larger

contribution from the remainder of the molecule.

Figure 17.2 The HOMO of L-phenylanine
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17.3 Properties

Once the wavefunction has been determined, then various molecular properties can

be calculated. My final section of standard output shows a selection of molecular

electric moments. The so-called ‘quadrupole moment’ diagonal elements don’t sum

to zero, which gives the game away; they are actually second moments.

Such properties are often called primary properties because their electronic part

can be obtained directly from the wavefunction Cel

hX̂Xi ¼
Z

C�
el

Xn
i¼1

X̂Xi

 !
Cel d� ð17:1Þ

where the operators refer to each of the n electrons. Usually it is necessary to add a

corresponding nuclear contribution, since we work within the Born–Oppenheimer

approximation. For example, the electric dipole moment operator is

p̂pe ¼ e
XN
�¼1

Z�R� � e
Xn
i¼1

ri

where the first sum runs over the N nuclei and the second sum over the n electrons.

All electrons enter the sum on an equal footing, as they should, and the expectation

Figure 17.3 The LUMO of L-phenylanine
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value can be written in terms of the charge density P(r)

hp̂pei ¼ e
XN
�¼1

Z�R� � e

Z
rPðrÞ d� ð17:2Þ

Such electric moments are often reported in non-SI units; the old-fashioned unit of

length is the ångstr€oom and the debye (itself a relic from the days of electrostatic units),

is the dipole moment corresponding to a pair of equal and opposite charges of magni-

tude 10�10 electrostatic units (esu¼ g�1/2 cm3/2 s�1 ) separated by 1 Å (¼ 10�10m).

There are 2.9989� 109 esu per Coulomb, and so 1D¼ 10�10 esu� 10�10m or

3.336� 10�30 Cm. The atomic unit of electric dipole is ea0¼ 8.4784� 10�30 Cm,

which is 2.5418D.

17.3.1 The electrostatic potential

One of the fundamental objectives of chemistry is to predict and rationalize chemical

reactivity. In principle, this involves searching a potential energy surface for saddle

points (i.e. transition states) and minima (reactants and products), and this kind of

detailed investigation has only become possible in the last decade. Most of the

traditional theories of chemical reactivity have concerned themselves with organic

molecules, and the simplest theories have attempted to extract useful information

from the electronic properties of reactants. We can distinguish static theories, which

in essence make use of the electronic wavefunction and/or electronic properties

appropriate to an isolated molecule in the gas phase, and dynamic theories. Dynamic

theories aim (for example) to predict the likely reaction sites for the approach of a

charged reagent, usually modelled as a point charge.

The electrostatic potential gives an index that has been widely used since the 1970s

for just this purpose (see, for example, E. Scrocco and J. Tomasi [76]).

Figure 17.4 shows benzene; within the Born–Oppenheimer approximation, mole-

cules are thought of as point positive charges (the nuclei) surrounded by continuous

distributions of electron charge (shown as a surrounding sphere). I can therefore

calculate the electrostatic potential at points in space around the molecule, using

the methods of classical electromagnetism. I have placed a point charge Q at the

origin; the electrostatic potential � at this point will contain contributions from the

nuclei such as

1

4��0

eZH

RH1

where ZH¼ 1, and a contribution from the electrons, which I can write in terms of the

electron density � eP(r) as

� e

4��0

Z
PðrÞ
r

d�
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It is conventional to record the mutual potential energy of the molecule and a unit

positive charge Q, rather than the electrostatic potential, but authors in the field still

speak of potential energy maps without making the distinction. Again, it is usual to

present the calculations as contour maps, which make beautiful illustrations for text-

books like this one. The electrostatic potential maps are used to give a rough-and-

ready survey of a molecule, and the spirit of the calculation is that one does not need

a particularly sophisticated basis set. Figure 17.5 shows a three-dimensional isosur-

face representation of the electrostatic potential for benzene (calculated with a STO/

6–31G� basis set and geometry optimized).

Figure 17.4 Electrostatic potential due to benzene

Figure 17.5 Benzene electrostatic potential
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Such objects are usually colour-coded. Obviously I can’t show you this in a mono-

chrome illustration, but the important point is that there are no local areas where the

electrostatic function is negative. If we make a similar calculation on pyridine, then we

see a very different story; there is an area around the bottom end of the nitrogen atom

where electrostatic contours are negative and where therefore a positively charged

species would be expected to attack. This isn’t a terribly exciting example, any chemist

would have been able to give the conclusion without having to perform a calculation.

17.4 Geometry Optimization

The next step might well be a geometry optimization. In contrast to MM calculations,

geometry optimization is an expensive business because a HF–LCAO calculation has

to be done for every point investigated on the molecular potential energy surface. I

want to first tell you about an early and interesting attempt at a short-cut.

17.4.1 The Hellmann–Feynman Theorem

Suppose that an electronic wavefunction C depends on a single parameter c such as a

single bond length or an orbital exponent. According to the variation principle, the

best value of c is the one that minimizes the energy

"ðcÞ ¼
Z

C�ðcÞĤHCðcÞ d� ð17:3Þ

subject to the requirement that the wavefunction is normalizedZ
C�ðcÞCðcÞ d� ¼ 1 ð17:4Þ

If I differentiate these two equations with respect to c we have

d"ðcÞ
dc

¼
Z
@C�ðcÞ
@c

ĤHCðcÞ d� þ
Z

C�ðcÞ @ĤH
@c

CðcÞ d� þ
Z

C�ðcÞĤH @CðcÞ
@c

d�Z
@C�ðcÞ
@c

CðcÞ d� þ
Z

C�ðcÞ @CðcÞ
@c

d� ¼ 0

ð17:5Þ
Normally C(c) will be an approximate wavefunction, but suppose that C(c) happens

to be an eigenfunction of the Hamiltonian. A little analysis shows that

d"ðcÞ
dc

¼
Z

C�ðcÞ @ĤH
@c

CðcÞ d� ð17:6Þ
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This result is known as the Hellmann–Feynman Theorem, and it was hoped in the

early days that it could be used to optimize geometries. The first applications were to

isoelectronic processes

X ! Y

such as the internal rotation in ethane, where it was believed that the only non-zero

contributions to the right-hand side of Equation (17.6) would be due to changes in the

nuclear positions and hence in the one-electron integrals. It was hoped that such

calculations would be useful for geometry optimizations, where the changes also

involve two-electron integrals, but enthusiasm vanished once it became clear that

approximate wavefunctions also depend on the parameter(s) contained either explic-

itly or implicitly in the wavefunction and so wavefunction gradient terms such as @C@c
cannot be ignored.

17.4.2 Energy minimization

All the considerations of Chapter 16 apply here, with the added difficulty that the

energy calculation for each point on the molecular potential energy surface is now

much more time consuming than for molecular mechanics because a HF–LCAO

calculation is involved.

I explained in Chapter 16 how the Hartree–Fock energy could be written in terms

of the electron density and various one- and two-electron integrals over the basis

functions �. The HF–LCAO matrix is

hFij ¼
Z
�iðr1Þĥhð1Þðr1Þ�jðr1Þ d�

þ
Xn
k¼1

Xn
l¼1

Pkl

ZZ
�iðr1Þ�jðr1Þĝgðr1; r2Þ�kðr2Þ�lðr2Þ d�1d�2

� 1

2

Xn
k¼1

Xn
l¼1

Pkl

ZZ
�iðr1Þ�kðr1Þĝgðr1; r2Þ�jðr2Þ�lðr2Þ d�1d�2 ð17:7Þ

and the energy gradient will therefore involve terms like

@Pkl

@c
;

Z
@�i r1ð Þ
@c

ĥh r1ð Þ�j r1ð Þ d� andZZ
@�i r1ð Þ
@c

�j r2ð Þĝg r1; r2ð Þ�k r2ð Þ�l r2ð Þ d�1d�2

where c is a parameter to be varied. Advancedmethods of geometry optimization usually

require both the gradient and the hessian, and these can either be calculated numerically

or analytically. Over the years, a great deal of effort has gone into the elucidation of
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analytical expressions for the energy gradient and the hessian and all molecular structure

packages now use analytical gradients wherever these are available; in the case of the

HF–LCAO model, the gradients do not involve the LCAO coefficients directly, just the

electron density matrix P. This speeds up the calculation by a large factor.

Let me use L-phenylanine for my example. We simply modify the control cards

%chk=c:\g98w\scratch\phenylanine.chk
# HF/6231G* Opt Guess=Read Geom=Check

This picks up the single point HF–LCAO results discussed above from the check-

point file, and uses them as the starting points in a geometry optimization using the

default algorithm. In the GAUSSIAN package, this uses analytical expressions for the

gradient and the hessian. Here are some relevant parts of the output file. First of all,

an estimate of the hessian has to be made.

! Initial Parameters !
! (Angstroms and Degrees) !

------------------------------------- ----------------------------------

! Name Definition Value Derivative Info. !
-----------------------------------------------------------------------------------------------------------------

! R1 R(1,2) 1.01 estimate D2E/DX2 !
! R2 R(1,3) 1.4489 estimate D2E/DX2 !
! R3 R(1,4) 1.01 estimate D2E/DX2 !
! R4 R(3,5) 1.0902 estimate D2E/DX2 !
! R5 R(3,6) 1.5219 estimate D2E/DX2 !
! R6 R(3,7) 1.5259 estimate D2E/DX2 !
! R7 R(6,8) 1.2301 estimate D2E/DX2 !
. . . etc.

The first estimate is made numerically. Next, the geometry iterations begin.

Variable Old X 2DE/DX Delta X Delta X Delta X New X
(Linear) (Quad) (Total)

R1 1.90862 20.00885 0.00000 20.00588 20.00588 1.90275
R2 2.73798 20.00371 0.00000 20.00281 20.00281 2.73517
R3 1.90862 20.00961 0.00000 20.00639 20.00639 1.90224
R4 2.06026 20.00681 0.00000 20.00555 20.00555 2.05471
R5 2.87594 0.01442 0.00000 0.01525 0.01406 2.89000
R6 2.88359 0.02351 0.00000 0.02423 0.02220 2.90578
R7 2.32464 20.06282 0.00000 20.02391 20.02391 2.30072
. . . etc.

The calculation proceeds (hopefully) downwards on the molecular potential energy

surface until eventually a stationary point is reached (that is, a point on the molecular
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potential energy surface where the gradient is zero).

Item Value Threshold Converged?
Maximum Force 0.000017 0.000450 YES
RMS Force 0.000004 0.000300 YES
Maximum Displacement 0.000551 0.001800 YES
RMS Displacement 0.00012 0.001200 YES
Predicted change in Energy=25.195054D-09
Optimization completed.

-- Stationary point found.

-----------------------------------------------

! Optimized Parameters !
! (Angstroms and Degrees) !

-------------------------------------- ------------------------------

! Name Definition Value Derivative Info. !
-----------------------------------------------------------------------------------------------------------------

! R1 R(1,2) 1.0026 2DE/DX=0. !
! R2 R(1,3) 1.4505 2DE/DX=0. !
! R3 R(1,4) 1.002 2DE/DX=0. !
! R4 R(3,5) 1.0818 2DE/DX=0. !
! R5 R(3,6) 1.5231 2DE/DX=0. !
! R6 R(3,7) 1.5393 2DE/DX=0. !
! R7 R(6,8) 1.1908 2DE/DX=0. !
. . . etc.

17.5 Vibrational Analysis

It is wise to calculate the force constants at this point on the surface, in order to

characterize the stationary point. Just to remind you, harmonic force constants cor-

respond to the eigenvalues of the hessian, calculated at the stationary point. A mini-

mum on the molecular potential energy curve should have 3N� 6 positive

eigenvalues (3N� 5 for a linear molecule). A transition state of the chemical kind

will have just one negative eigenvalue of the hessian and so on. In this example there

are 23 nuclei and so 69 vibrational coordinates in total. This gives 63 vibrational

coordinates, but because I have chosen to do the calculation in redundant inter-

nal coordinates rather than starting from a Z matrix, there should be six redundant

coordinates corresponding to the three translational coordinates of the centre of mass

and three for the rotations. Each of these should have a force constant of zero, but

there is a question as to how small a number needs to be before it is taken to be non-

zero. This has to do with the optimization cut-off point, the convergence criterion for

the HF–LCAO calculation and so on.
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Here is what I found

Full mass-weighted force constant matrix:
Low frequencies --- 20.9544 20.4840 20.0007 0.0006 0.0008 0.8880
Low frequencies --- 37.1567 46.9121 62.6582

The first six are essentially zero and are therefore taken to represent the redundant

coordinates. The next piece of output gives the normal modes, as discussed in

Chapters 4 and 5.

61 62 63
?A ?A ?A

Frequencies -- 3727.6900 3813.0599 4045.0678
Red. masses -- 1.0506 1.0941 1.0650
Frc consts -- 8.6014 9.3721 10.2671
IR Inten -- 2.6994 4.8499 102.8922
Raman Activ -- 107.7964 71.9141 74.7041
Depolar -- 0.1384 0.6803 0.3093
Atom AN X Y Z X Y Z X Y Z
1 7 20.05 0.02 20.01 0.02 0.02 20.08 0.00 0.00 0.00
2 1 0.22 20.29 0.61 0.24 20.31 0.59 0.00 0.00 0.00
3 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 1 0.49 20.06 20.51 20.50 0.08 0.49 0.00 0.00 0.00
5 1 0.00 0.00 0.01 0.00 0.00 0.02 0.00 0.00 0.00
6 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
7 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
8 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
9 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
11 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
12 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 20.06 0.00
13 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
14 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
15 1 0.00 0.00 0.00 0.00 0.00 0.00 20.07 1.00 20.02
16 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
17 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
18 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
19 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
20 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
21 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
22 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
23 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Output includes the vibration frequencies, reduced masses, force constants, infrared

intensities, Raman activities and depolarization ratios, together with the normal

modes expressed as linear combinations of the Cartesian coordinates of the atoms.
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Normal mode 63, for example, comprises almost entirely the z-component for atom

15, which is a hydrogen atom.

Some packages are more visually friendly than others, and will simulate the infra-

red spectrum. Often it is possible to animate the normal modes of vibration on-screen.

I can illustrate various points by considering a much smaller molecule, carbon

dioxide.

It is a linear molecule and so has four vibrational degrees of freedom. To empha-

size a point already made, vibrational frequencies are defined as the second deriva-

tives calculated at the appropriate minimum of the molecular potential energy curve,

so it is mandatory that the geometry be optimized before evaluation. Figure 17.6

shows the result of a HF/6–31G� calculation using HyperChem.

The top part of the display shows the calculated frequencies, the bottom part their

infrared intensities (given by the integrated molar absorption coefficient). Agreement

with experiment is not particularly good, as Table 17.1 reveals. The intensities are

qualitatively correct; the symmetric stretch is not infrared active because the dipole

Figure 17.6 Vibrational infrared spectrum for carbon dioxide

Table 17.1 Calculated (HF–LCAO) and experimental vibration wavenumbers (cm21)

Mode Expt STO/6–31G� STO-3G STO/6–311G�

Symmetric stretch (�g) 1388.17 1752.5 1656.3 1751.5

Asymmetric stretch (�u) 2349.16 2699.0 2647.4 2683.7

Degenerate bend (�) 667.40 778.5 591.0 778.9
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moment does not change during the vibration, and the doubly degenerate bending

vibration has a lower intensity than the asymmetric stretch.

One decision that has to be made with a HF–LCAO calculation is the choice of

basis set, and this is usually a matter of experience. I repeated the calculation with a

smaller basis set (STO-3G) and a larger one (STO/6–311G�) to give the remaining

two columns of the table. It is a common experience that HF–LCAO calculations

overestimate force constants. Provided the same basis set is used from molecule to

molecule, it is possible to scale by a fixed factor the calculated results with remark-

able success.

17.6 Thermodynamic Properties

In Chapter 8 I discussed the canonical ensemble and the canonical partition function

Q ¼
X
i

exp � E�
i

kBT

� �

I added an asterisk to focus attention on the fact that E� refers to the collection of

particles in each cell of the ensemble. There will be many possible allowed values for

E�, and the N particles in each cell will contribute in some way to make up the total.

So far, I have made no assumptions whatever about these particles, neither have I

made any assumption about the way in which they might interact with each other.

Suppose now that the N particles are identical molecules, but that they form

essentially an ideal gas. One characteristic of an ideal gas is that there is no interac-

tion between the particles, so the total energy E� of the N particles will be a simple

sum of the particle energies. If I label the molecules 1, 2, 3, . . . ,N, then we can write

E� ¼ " 1ð Þ þ " 2ð Þ þ � � � þ " Nð Þ ð17:8Þ

Each molecular energy will contain a kinetic and a potential part, but there are no

intermolecular interactions because of the ideal gas behaviour. So for each possible

value of E� we have

E�i ¼ "
1ð Þ
i þ "

2ð Þ
i þ � � � þ "

Nð Þ
i ð17:9Þ

Each allowed value of E� will correspond to different values of the constituent "s and
a simple rearrangement of Q shows that

Q ¼
X
i

exp � "
1ð Þ
i

kBT

 !X
j

exp � "
2ð Þ
j

kBT

 !
� � �
X
n

exp � " Nð Þ
n

kBT

� �
ð17:10Þ
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I have used a different dummy index i, j, . . . , n but the sums are all the same since

they refer to identical particles. At first sight we should therefore write

Q ¼
X
i

exp � "
1ð Þ
i

kBT

 ! !N

This assumes that the N particles can somehow be distinguished one from another

(we say that such particles are distinguishable). The laws of quantum mechanics tell

us that seemingly identical particles are truly identical, they are indistinguishable and

to allow for this we have to divide Q by the number of ways in which N things can be

permuted

Q ¼ 1

N!

X
i

exp � "i
kBT

� � !N

ð17:11Þ

I have dropped all reference to particle ‘1’, since all N are identical. The summation

q ¼
X
i

exp � "i
kBT

� �
ð17:12Þ

refers only to the energy states of a representative particle, and it is a quantity of great

interest in our theories. It is called the molecular partition function and given the

symbol q (sometimes z).

17.6.1 The ideal monatomic gas

Consider now an even more restricted case, namely a monatomic ideal gas. Each

atom has mass m and the gas is constrained to a cubic container whose sides are a, b

and c (so that the volume V is abc). We will ignore the fact that each atom could well

have different electronic energy, and concentrate on the translational energy. Elemen-

tary quantum mechanics texts (and Chapter 11) show that the available (translational)

energy levels are characterized by three quantum numbers, nx, ny and nz, which can

each take integral values ranging from 1 to infinity. The translational energy is given

by

"nx;ny;nz ¼
h2

8m

n2x
a2

þ n2y

b2
þ n2z

c2

 !
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and so each particle will make a contribution

X
nx

X
ny

X
nz

exp � "nx;ny;nz
kBT

� �

¼
X
nx

X
ny

X
nz

exp � 1

kBT

h2

8m

n2x
a2

þ n2y

b2
þ n2z

c2

 ! !

¼
X
nx

exp � 1

kBT

h2

8m

n2x
a2

� �X
ny

exp � 1

kBT

h2

8m

n2y

b2

 !X
nz

exp � 1

kBT

h2

8m

n2z
c2

� �

ð17:13Þ

to the translational molecular partition function. Each of the three summations can be

treated as follows. A simple calculation shows that, for an ordinary atom such as

argon at room temperature constrained to such a macroscopic container, typical

quantum numbers are of the order of 109, by which time the allowed energy states

essentially form a continuum. Under these circumstances we replace the summation

by an integral and treat nx as a continuous variable. So, for example,

X
nx

exp � 1

kBT

h2

8m

n2x
a2

� �
�
Z 1

0

exp � 1

kBT

h2

8m

n2x
a2

� �
dnx

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�mkBT

p a

h

The translational partition functions are then given by

qtrans ¼ 2�mkBT

h2

� �3=2

V

Qtrans ¼ 1

N!

2�mkBT

h2

� �3=2

V

 !N ð17:14Þ

The thermodynamic functions can be calculated using the equations given in Chapter

8. We have, for example,

U ¼ kBT
2 @ lnQ

@T

� �
V

and so

U ¼ 3
2
NkBT

For a monatomic ideal gas, the translational kinetic energy is the only energy that an

atom will possess. The internal energy is therefore just what we would expect from
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the equipartition of energy principle. In a similar way we find that the entropy is

S ¼ NkB
5

2
þ ln

2�mkBT

h2

� �3=2
V

N

 ! !
ð17:15Þ

and this is called the Sackur–Tetrode equation.

17.6.2 The ideal diatomic gas

Monatomic gas particles can only store translational kinetic energy, whilst we have to

consider

� rotational energy and

� vibrational energy

for a polyatomic molecule. We also need to consider electronic energies. In order to

progress, we make the assumption that the different energy modes are independent,

and that each set has its own Boltzmann distribution. We therefore write for a typical

molecule

" ¼ "trans þ "rot þ "vib þ "elec ð17:16Þ

and it is easily seen that the molecular partition function is the product of a transla-

tional, rotational, vibrational and electronic molecular partition function. These are

related to the canonical partition function by

Q ¼ 1

N!
qtransqrotqvibqelecð ÞN ð17:17Þ

17.6.3 qrot

The rotational energy levels for a rigid diatomic rotator are given by

"J ¼ J J þ 1ð Þ h2

8�2I

¼ Bhc0J J þ 1ð Þ
ð17:18Þ

where the rotational quantum number J takes integral values 0, 1, 2, . . . , I is the

moment of inertia about an axis through the centre of mass of the molecule and c0
the speed of light in vacuo. B is called the rotation constant. Each energy level is

2Jþ 1-fold degenerate, and so all 2Jþ 1 individual quantum states must be counted
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in the Boltzmann formula.

qrot ¼
X1
J¼0

2J þ 1ð Þ exp �Bhc0J J þ 1ð Þ
kBT

� �

The sum cannot be found in a closed form, but we note that for molecules with small

rotational constants, the rotational energy levels crowd together and the summation

can be replaced by an integral, treating J as a continuous variable

qrot ¼
Z 1

0

2J þ 1ð Þ exp �Bhc0J J þ 1ð Þ
kBT

� �
dJ

¼ kBT

hc0B

ð17:19Þ

Equation (17.19) works with complete reliability for all heteronuclear diatomic mol-

ecules, subject to the accuracy of the rotational energy level formula and the appli-

cability of the continuum approximation. For homonuclear diatomics we have to

think more carefully about indistinguishability of the two nuclei which results in

occupancy of either the odd J or the even J levels; this depends on what the nuclei

are, and need not concern us in detail here. It is dealt with by introducing a symmetry

factor � that is 1 for a heteronuclear diatomic and 2 for a homonuclear diatomic. qrot
is written

qrot ¼ 1

�

kBT

hc0B
ð17:20Þ

The so-called rotational temperature �rot is often used in discussions of statistical

mechanics; we re-write Equation (17.20) as

qrot ¼ 1

�

T

�rot
ð17:21Þ

17.6.4 qvib

Vibrational energy levels have separations that are at least an order of magnitude

greater than the rotational modes, which are in turn some 20 orders of magnitude

greater than the translational modes. As a consequence, the spacing is comparable

with kBT for everyday molecules and temperatures. If we consider a single harmonic

vibrational mode for which

"v ¼ hc0!e vþ 1
2

� �
then

!e ¼ 1

2�c0

ffiffiffiffi
ks

	

s
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If we take the energy zero as that of the energy level v¼ 0, then we have

qvib ¼
X1
v¼0

exp � hc0v!e

kBT

� �

This simple geometric series can be summed exactly to give

qvib ¼ 1

1� exp
�� hc0!e

kBT

� ð17:22Þ

and once again it is usually written in terms of the vibrational temperature �vib

qvib ¼ 1

1� exp � �vib
T

� � ð17:23Þ

Finally, we need to know the electronic partition function. This is almost always 1,

unless the electronic ground state is degenerate (in which case it is equal to the

degeneracy) or unless there is a very low-lying excited state.

17.7 Back to L-phenylanine

Let me now return to L-phenylanine. The GAUSSIAN ‘frequency’ calculation also

gives thermodynamic properties, calculated along the lines discussed above. Here is

an abbreviated output. First we have moments of inertia (not shown) and then a

calculation of the rotational and vibrational temperatures.

ROTATIONAL SYMMETRY NUMBER 1.

ROTATIONAL TEMPERATURES (KELVIN) 0.08431 0.02883 0.02602
ROTATIONAL CONSTANTS (GHZ) 1.75683 0.60063 0.54210
Zero-point vibrational energy 537317.4 (Joules/Mol)

128.42193 (Kcal/Mol)

VIBRATIONAL TEMPERATURES: 53.46 67.50 90.15 142.09 281.61
(KELVIN) 410.64 428.42 484.99 496.50 548.48

656.89 715.21 814.98 933.21 964.82
980.06 1013.28 1122.16 1196.52 1225.56

1276.27 1299.48 1380.29 1429.07 1493.75
. . . etc.
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Next come the various contributions to the internal energy U (here called E), the heat

capacity C and the entropy S. The partition functions are also printed.

Zero-point correction=0.204653 (Hartree/Particle)
Thermal correction to Energy=0.215129
Thermal correction to Enthalpy=0.216073
Thermal correction to Gibbs Free Energy=0.166730
Sum of electronic and zero-point Energies=2551.206897
Sum of electronic and thermal Energies=2551.196422
Sum of electronic and thermal Enthalpies=2551.195478
Sum of electronic and thermal Free Energies=2551.244821

E (Thermal) CV S
KCAL/MOL CAL/MOL-KELVIN CAL/MOL-KELVIN

TOTAL 134.995 38.687 103.852
ELECTRONIC 0.000 0.000 0.000
TRANSLATIONAL 0.889 2.981 41.212
ROTATIONAL 0.889 2.981 30.709
VIBRATIONAL 133.218 32.725 31.930
VIBRATION 1 0.594 1.982 5.405
VIBRATION 2 0.595 1.979 4.944
VIBRATION 3 0.597 1.972 4.372
. . . etc.

Q LOG10(Q) LN(Q)
TOTAL BOT 0.204249D276 276.689839 2176.584881
TOTAL V=0 0.277678D+18 17.443541 40.165238
VIB (BOT) 0.213500D290 290.670602 2208.776777
VIB (BOT) 1 0.556962D+01 0.745825 1.717326
VIB (BOT) 2 0.440790D+01 0.644232 1.483398
VIB (BOT) 3 0.329468D+01 0.517813 1.192309
. . . etc.

VIB (V=0) 0.290254D+04 3.462779 7.973343
VIB (V=0) 1 0.609201D+01 0.784761 1.806979
VIB (V=0) 2 0.493617D+01 0.693390 1.596589
VIB (V=0) 3 0.383240D+01 0.583471 1.343492
. . . etc.

17.8 Excited States

Electronic ground states are all well and good, but there is a wealth of experimental

spectroscopic data that relate to the excited states of molecules. One of the simplest and

most widely studied sequence of organic molecules studied by spectrophotometry is

afforded by the set of monocyclic azines, of which pyridine forms the first member. It is

instructive to compare this series with benzene.
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All the molecules have 42 electrons, 21 electron pairs, and I can write their ground

state electronic configurations

C0 :  1ð Þ2  2ð Þ2� � �  21ð Þ2

We refer to C0 as the reference state. Single excitations can be produced by promot-

ing an electron from one of the occupied orbitals to an unoccupied (virtual) one, just

as we did in Chapter 15 for dihydrogen, so the first few single excitations have

configurations

C1 :  
2
1 

2
2 � � � 1

21 
1
22

C2 :  
2
1 

2
2 � � � 1

21 
1
23

C3 :  
2
1 

2
2 � � � 1

20 
2
21 

1
22

C4 :  
2
1 

2
2 � � � 1

20 
2
21 

1
23

Electron spin has to be taken into account, and proper Slater determinants con-

structed. The ground state wavefunction will be a single Slater determinant but there

are four possibilities (say, (a), (b), (c) and (d)) for each of the four excited states. In

our dihydrogen calculation, I grouped the determinants together so that they were

spin eigenfunctions. In modern configuration interaction (CI) calculations, we work

directly with the individual Slater determinants and classify the resulting wavefunc-

tions at the end of the calculation.

We write the CI wavefunction as

CCI ¼ c0C0 þ c1aC1a þ c1bC1b þ � � �

where the CI expansion coefficients have to be determined from a variational calcu-

lation. This involves finding the eigenvalues and eigenvectors of a matrix whose

elements are typically Z
CiCj d�

The matrix elements can be determined from the Slater–Condon–Shortley rules,

giving typically HF–LCAO orbital energies and various two-electron integrals

such as

e2

4��0

Z
 21 r1ð Þ 22 r2ð Þ 1

r12
 21 r1ð Þ 22 r2ð Þ d�1d�2

These have to be calculated from the two-electron integrals over the HF–LCAO basis

functions, at first sight a four-dimensional sum known in the trade as the four-index

transformation.

Two of each of the (a), (b), (c) and (d) Slater determinants correspond to spin

eigenfunctions having spin quantum number Ms¼ 0, one to Ms¼ þ1 and one to
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Ms¼�1 and so need not be considered because states of different spin symmetry do

not mix. In addition, Brillouin’s Theorem [77] tells us that singly excited states

constructed using HF wavefunctions don’t mix with the ground state for a

closed shell system, so don’t need to include the ground state C0 in the variational

calculation.

If we take all possible excited Slater determinants and solve the variational

problem we reach a level of theory known as CI singles (CIS). A keynote

paper is that by J. B. Foresman et al. [78], and their Synopsis puts everything into

perspective.

This work reviews the methodological and computational considerations

necessary for the determination of the ab initio energy, wavefunction and

gradient of a molecule in an electronically excited state using molecular orbital

theory. In particular, this paper re-examines a fundamental level of theory

which was employed several years ago for the interpretation of the electronic

spectra of simple organic molecules: configuration interaction (CI) among all

singly substituted determinants using a Hartree Fock reference state. This

investigation presents several new enhancements to this general theory. First, it

is shown how the CI singles wavefunction can be used to compute efficiently

the analytic first derivative of the energy. . . . Second, a computer program is

described which allows these computations to be done in a ‘direct’ fashion.

You should have picked up the words ‘direct’ and ‘gradient’.

I now return to my example of the azines. In the earliest and necessarily qualitative

treatments, the first four transitions were identified with the single excitations shown

in Figure 17.7. Benzene can be regarded as a special case of the series and the high-

est occupied orbitals are doubly degenerate, as are the lowest unoccupied ones.

Figure 17.7 Simple CI treatment of azines

EXCITED STATESEXCITED STATES 311



The assignment of bands in the benzene spectrum led to considerable discussion in

the primary literature.

Excitation energies and oscillator strengths:

Excited State 1: Singlet-A" 6.0836 eV 203.80 nm f=0.0063
19 --> 22 0.64639
19 --> 29 0.18254

Excited State 2: Singlet-A’ 6.1539 eV 201.47 nm f=0.0638
20 --> 23 20.39935
21 --> 22 0.65904

Excited State 3: Singlet-A’ 6.3646 eV 194.80 nm f=0.0159
20 --> 22 0.47433
21 --> 23 0.57521

Excited State 4: Singlet-A" 7.3369 eV 168.98 nm f=0.0000
19 --> 23 0.69159

Excited State 5: Singlet-A’ 8.1128 eV 152.82 nm f=0.6248
20 --> 22 0.49328
21 --> 23 20.36631

Excited State 6: Singlet-A’ 8.2142 eV 150.94 nm f=0.5872
20 --> 23 0.58185
21 --> 22 0.24477

Excited State 7: Singlet-A" 8.4510 eV 146.71 nm f=0.0000
17 --> 25 20.10404
20 --> 25 20.10957
21 --> 24 0.66688
21 --> 26 20.11328

Excited State 8: Singlet-A" 8.9454 eV 138.60 nm f=0.0383
17 --> 24 20.14068
20 --> 24 20.45970
21 --> 25 0.49000

The text above shows sample output from a CIS singlet state calculation on pyridine,

and I have only included the first eight excited states. The MOs  20 and  21 are both

p type, whilst  22 and  23 are antibonding p�. The 19th occupied orbital corresponds

to the N lone pair. The lowest singlet excited state is n!p� as is the fourth. The

remainder in my small sample are all �!p�.
I have collected a small number of calculated data into Table 17.2. In each case I

have recorded the first one or two n!p� and first four p!p� transitions, together

with the oscillator strengths.

A satisfactory theory of the spectra of aromatic hydrocarbons was not developed

until there had been a detailed classification of their absorption bands. This important
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work was first undertaken by E. Clar [79]. There are three types of absorption

bands that are classified mainly by their intensity but also by their vibrational fine

structure and the frequency shifts within a family of compounds. The ground state of

benzene (with D6h symmetry) has closed shell configuration a21ue
4
1g which gives

symmetry A1g. The first excited configuration a21ue
3
1ge

1
2u gives rise to states of sym-

metry B1u, B2u and E1u which can be either singlet or triplet. The experimental

absorption spectrum shows a weak band near 260 nm, and a strong band at

185.0 nm. Our CIS calculation therefore accounts only qualitatively for the features

of the benzene spectrum.

The lowest singlet excitation for the azines is n!p� in character, and the experi-

mental values are 270, 340, 298 and 328 nm (S. F. Mason [80]). The CIS calculation

gives the trend correctly but the absolute agreement with experiment is poor. Similar

conclusions apply to the p!p� transitions. The general conclusion is that the CIS

method gives a useful first approximation to the excited states.

17.9 Consequences of the Brillouin Theorem

I mentioned primary properties in Section 17.3; these are properties such as the

electric dipole moment, which is given as the expectation value of a sum of one-

electron operators (together with the corresponding nuclear contribution)

Xh i ¼
Z

C�
el

Xn
i¼1

X̂Xi

 !
Cel d�

Suppose that we have a singlet ground state closed shell HF wavefunction C0 and

we try to improve it by adding singly excited states; if I denote occupied orbitals

Table 17.2 Spectroscopic data for various cyclic molecules, l (nm) and oscillator strength f

benzene pyridine 1,2-diazine 1,3-diazine 1,4-diazine

n!p� – 203.80 259.80 213.41 247.08

0.0063 0.0088 0.0099 0.0081

n!p� – – 210.86 190.58 184.52

0.0000 0.0000 0.0000

p!p� 204.79 201.47 194.08 190.93 208.67

0.0000 0.0638 0.0423 0.0696 0.1525

p!p� 203.59 194.80 190.68 182.87 190.92

0.0000 0.0159 0.0000 0.0294 0.0584

p!p� 159.08 152.82 152.26 147.01 145.63

0.7142 0.6248 0.5952 0.5473 0.5010

p!p� 159.08 150.94 146.87 143.18 138.47

0.7142 0.5872 0.5133 0.5139 0.4620
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A,B, . . . and virtual ones X,Y, . . . then

C ¼ c0C0 þ
X
A;X

cXAC
X
A ð17:24Þ

where cXA is the CI expansion coefficient and CX
A the appropriate combination of

Slater determinants describing a singlet singly excited state. We find

hXi ¼ c20

Z
C0

Xn
i¼1

X̂XiC0d� þ 2
X
A;X

cXAc0

Z
C0

Xn
i¼1

X̂XiCX
Ad�

þ
X
A;X

X
B;Y

cXAc
Y
B

Z
CY

B

Xn
i¼1

X̂XiCX
Ad� ð17:25Þ

and all terms on the right-hand side apart from the first are zero, since the cs are zero

by Brillouin’s theorem. In addition, the only non-zero integrals in the third sum are

those where the excited states differ by no more than one spin orbital. This can be

easily proved by application of the Slater–Condon–Shortley rules.

If we now repeat the argument but include doubly excited rather than singly

excited states

C ¼ c0C0 þ
X

A;B;X;Y

cXYABC
XY
AB

Xh i ¼ c20

Z
C0

Xn
i¼1

X̂XiC0d� þ 2
X

A;B;X;Y

cXYABc0

Z
C0

Xn
i¼1

X̂XiCXY
AB d�

þ
X

A;B;X;Y

X
C;D;U;V

cXYABc
UV
CD

Z
CUV

CD

Xn
i¼1

X̂XiCXY
AB d� ð17:26Þ

then the CI expansion coefficients are no longer zero. However, the integrals in the

second sum are all zero because the doubly excited states differ from C0 by two spin

orbitals. All the integrals in the third sum except those where CXY
AB ¼ CUV

CD are zero

for the same reason, and the final expression is

Xh i ¼ c20

Z
C0

Xn
i¼1

X̂XiC0d� þ
X

A;B;X;Y

Z
CXY

AB

Xn
i¼1

X̂XiCXY
AB d� ð17:27Þ

At first sight, one-electron properties calculated from HF wavefunctions ought to be

very accurate because the lowest ‘correction’ terms are certain doubly excited con-

figurations. The argument is correct as far as it goes, but if we include both the singly

and doubly excited states together

C ¼ c0C0 þ
X
A;X

cXAC
X
A þ

X
A;B;X;Y

cXYABC
XY
AB ð17:28Þ
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then the singly excited states couple with the doubly excited ones, which couple with the

ground state and so the singly excited states do make a contribution to the ground state.

In any case, the key choice when performing HF–LCAO calculations is the choice

of atomic orbital basis set, as can be seen from my representative HF–LCAO calcu-

lations on pyridine in Table 17.3. In each case I optimized the geometry.

17.10 Electric Field Gradients

I have made mention at several points in the text to electron spin, the internal angular

momentum possessed by electrons just because they are electrons. The total angular

momentum of an atomic electron is found by summing the electron spin and the

electron orbital angular momentum.

Many nuclei have a corresponding internal angular momentum, which is given

the symbol I and the vector is characterized by two quantum numbers, I and mI.

The vector obeys the laws of quantum mechanics appropriate to angular momenta;

for each value of I, mI ¼ �I;�I þ 1; . . . ;þI, the size of the vector is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I I þ 1ð Þ

p h

2�

and we can only measure simultaneously the size of the vector and one component

that we conventionally take as the z-component. The z-component has size

mI

h

2�

The nuclear spin quantum number is characteristic of a given nucleus and can have

different values for different isotopic species. A sample is shown in Table 17.4.

Many nuclei with I� 1 also possess a nuclear quadrupole Qn, and it is usually

defined in terms of the nuclear charge distribution 
n(r) as

Qn ¼
1

e

R

n 3x2 � r2ð Þ d� 3

R

nxy d� 3

R

nxz d�

3
R

nyx d�

R

n 3y2 � r2ð Þ d� 3

R

nyz d�

3
R

nzx d� 3

R

nzy d�

R

n 3z2 � r2ð Þ d�

0
@

1
A ð17:29Þ

Table 17.3 Electric dipole moment for pyridine. HF–

LCAO model

Level of theory pe (10
�30Cm)

HF/STO–3G 6.8695

HF/6–31G 8.8114

HF/6–31G� 7.7195

HF/6–311G�� 7.5530

Experiment 7.31� 2%
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This definition gives a traceless tensor. Here the integration is over the nuclear charge

distribution. Nuclear wavefunctions are pretty hard to come by, and we normally have

to determine the components of Qn by experiment.

In a molecule, a given nucleus will generally experience an electric field gradient

due to the surrounding electrons. Electric fields are vector quantities and so an

electric field gradient is a tensor quantity. The electric field gradient at nucleus n is

usually written qn. The energy of interaction U between the nuclear quadrupole and

the electric field gradient is

U ¼ � e

6

X
Qnð Þij qnð Þij ð17:30Þ

In principal axes, the interaction is determined by Qn¼ (Qn)zz and qn¼ the largest of

the diagonal components of qn. The quantity eQnqn/h is referred to as the quadrupole

coupling constant. According to C. H. Townes and B. P. Dailey [81], since filled shells

and s orbitals have spherical symmetry, and since d and f orbitals do not penetrate

near the nucleus, the quadrupole coupling constant should be largely due to any p

electrons present in the valence shell.

Molecular quadrupole coupling constants are usually determined from the hyper-

fine structure of pure rotational spectra or from electric beam and magnetic beam

resonance spectroscopies. Nuclear magnetic resonance, electron spin resonance and

Mossb€aauer spectroscopies are also routes to this property.

I can use the well-studied series HCN, FCN and ClCN to illustrate a couple of

points. These molecules, including many isotopic species, have been exhaustively

studied by spectroscopic techniques. An interesting feature of the experimental geom-

etries is that the CN bond lengths are almost identical in length yet the 14N quad-

rupole coupling constant is quite different (Table 17.5).

Table 17.4 Representative nuclear spin quantum numbers

Isotopic species I

1H 1/2
2D 1
12C 0
13C 1/2
17O 5/2

Table 17.5 Experimental results for XCN

Molecule R(C		N) (pm) 14N QCC (MHz)

HCN 115.5 � 4.58

FCN 115.9 � 2.67

ClCN 115.9 � 3.63
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Table 17.6 shows results calculated at the HF/6–311G�� level of theory, including

geometry optimization. The agreement with experiment is good to within a few

percent. What chemical insight these calculations give into the reason why the three

coupling constants are so different is not clear!

Table 17.6 HF/6–311G�� results for XCN

Molecule R(C		N) (pm) 14N QCC (MHz)

HCN 112.7 � 4.53

FCN 112.5 � 2.95

ClCN 112.8 � 3.85
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18 Semi-empirical Models

I have spent a good deal of time discussing the current state of the art in quantum

chemical calculations, and I have deliberately focused on techniques where we

perform all the calculations as exactly as possible. Over the years, it has become

fashionable to refer to such models as ab initio. This Latin phrase translates into

‘from the beginning’; it certainly doesn’t necessarily mean ‘correct’. Once we have

stated the Hamiltonian and, if necessary, the atomic orbital basis set, then all the

integrals are evaluated exactly without any attempt to calibrate them against experi-

ment. Thus, the atomic Hartree–Fock model is an ab initio model, and the calcula-

tions I described for the hydrogen molecule ion and dihydrogen are ab initio

calculations.

These early calculations were done in the 1920s and the 1930s, and you probably

noticed that I then jumped to the 1970s to discuss modern HF–LCAO calculations

with GTOs. Scientists first got their hands on computers in a meaningful way in the

1970s, and one unfortunate characteristic of ab initio calculations is that they are

compute-intensive. From the early days, by necessity rather than choice, workers

tried to develop simple HF–LCAO based models that applied to certain classes of

molecule, and a characteristic of these models is that they avoid all the difficult

integrals. There usually is a price to pay, and the models have to be calibrated against

experiment; some workers regard this as a major advantage in order to achieve

meaningful chemical predictions from cheap calculations. We often refer to such

calibrated models as semi-empirical. This isn’t a Latin phrase but it translates into

‘based on a correct model but calibrated and=or parameterized’. We can of course

argue for ever about what constitutes a ‘correct’ model; Hartree–Fock theory is

certainly not absolutely ‘correct’ because it averages over the electron interactions

and so it usually runs into trouble when trying to describe bond-breaking.

18.1 Hückel p-Electron Theory

Chemists describe the structure of planar organic molecules such as benzene in terms

of two types of bond: s and p. The s bonds are thought of as localized in bonding

regions between atoms, whilst the p bonds are delocalized over large parts of the

molecule. Much of the interesting chemistry of these compounds appears to derive



from the p electrons and chemists imagine that these p electrons see a fairly constant

potential due to the s electrons and the nuclei.

One of the earliest models for p-electron compounds is afforded by H€uuckel
p-electron theory that dates from the 1930s. The ideas are chemically simple and

appealing, and the model enjoyed many years of successful application. Imagine two

simple conjugated molecules such as pyridine and pyrrole, shown in Figure 18.1. I

haven’t indicated the hydrogen atoms because they are excluded from such calcula-

tions, but I have numbered the ring heavy atoms.

H€uuckel’s method was developed long before modern HF–LCAO theory, but it

turns out that the two can be related. You will recall from Chapter 16 that the

HF–LCAO Hamiltonian matrix for a closed shell molecule is written

ĥhFij ¼
Z

�i r1ð Þĥh 1ð Þ r1ð Þ�j r1ð Þ d�

þ
Xn
k¼1

Xn
l¼1

Pkl

ZZ
�i r1ð Þ�j r1ð Þĝg r1; r2ð Þ�k r2ð Þ�l r2ð Þ d�1d�2

� 1

2

Xn
k¼1

Xn
l¼1

Pkl

ZZ
�i r1ð Þ�k r1ð Þĝg r1; r2ð Þ�j r2ð Þ�l r2ð Þ d�1d�2 ð18:1Þ

and the HF–LCAO orbital coefficients ci and orbital energies "i are found as the n

solutions of the generalized matrix eigenvalue problem

hFci ¼ "iSci ð18:2Þ
There are n basis functions, and 1� i� n. The lowest energy orbitals each ac-

commodate a pair of electrons with antiparallel spin, in the simplest version of

HF–LCAO theory.

In H€uuckel p-electron theory, we treat only the p electrons explicitly. At first sight,

this is a big approximation but it can be justified by including the effects of the

remaining electrons in the one-electron terms. Naturally, we allocate pairs of p
electrons to the lowest energy p orbitals. Each carbon in the molecules above con-

tributes one p electron as does the nitrogen in pyridine. The nitrogen in pyrrole

contributes two p electrons. The basis functions are not rigorously defined, but they

are usually visualized as ordinary STO 2pp atomic orbitals. For first-row atoms, we

therefore use a single atomic orbital per centre. If considering sulphur compounds, it

has long been argued that we should use two atomic orbitals, a 3pp and a suitable 3dp.

The atomic orbitals are nevertheless taken to be normalized and orthogonal so that

the overlap matrix S is the unit matrix.

Figure 18.1 Pyridine and pyrrole
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The Hamiltonian is not rigorously defined, although we can think of it as Hartree–

Fock like. No attempt is made to evaluate any integrals exactly, and no HF–LCAO

iterations are performed. We simply assume that

1. The diagonal elements of the Hamiltonian matrix depend only on the atom type

(X), and are written �X. Of the two molecules shown above, there will be three

different �s; one for carbon, one for the pyridine nitrogen and one for the pyrrole

nitrogen. Hydrogen atoms are excluded from the calculation because they don’t

formally have occupied 2pp orbitals in their electronic ground state.

2. Off-diagonal elements of the matrix are zero, unless a pair of atoms X and Y is

directly bonded in which case we call the matrix element �XY.

The idea is to avoid giving numerical values to the parameters until absolutely

necessary, and when it becomes necessary the values are assigned by comparing

calculated properties with experimental results. The first calculations were done on

conjugated hydrocarbons, for which we only have to consider two parameters �C and

�CC. For heteroatomic systems we write

�X ¼ �C þ hX�CC

�XY ¼ kXY�CC
ð18:3Þ

Table 18.1 gives a small selection of hX and kXY, taken from A. J. Streitwieser’s

classic book [82]. With these values, the H€uuckel Hamiltonian matrices for pyridine

and pyrrole are

�Cþ0:5�CC 0:8�CC 0 0 0 0:8�CC

0:8�CC �CC �CC 0 0 0

0 �CC �CC �CC 0 0

0 0 �CC �CC �CC 0

0 0 0 �CC �CC �CC

0:8�CC 0 0 0 �CC �CC

0
BBBBBB@

1
CCCCCCA

and

�Cþ1:5�CC �CC 0 0 �CC

�CC �C �CC 0 0

0 �CC �C �CC 0

0 0 �CC �C �CC

�CC 0 0 �CC �C

0
BBBB@

1
CCCCA

Table 18.1 H€uuckel parameters

Atom X hX kCX

C 1 1

N (1 p electron) 0.5 0.8

N (2 p electrons) 1.5 1.0

B �1.0 0.7

O (1 p electron) 1.0 0.8

CH3 2.0 0.7
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Matrix eigenvalue problems, even of such low order, are not easy to solve with pencil

and paper, and so we find that Streitwieser’s book (written in 1961) places a great

deal of emphasis on the use of molecular symmetry. If we take pyridine and label the

2pp atomic orbitals �1 through �6, then the six normalized combinations shown in

Table 18.2 are called symmetry-adapted orbitals.

Molecular symmetry operators commute with molecular Hamiltonians and as a

consequence the off-diagonal Hamiltonian matrix elements between symmetry-

adapted orbitals of different symmetry are zero. Thus, the Hamiltonian matrix takes

a block diagonal form, giving essentially two eigenvalue problems one of order 4 (for

the a2 IR) and one of order 2 (for the b1 IR)

�CC þ 0:5�CC 0 0:8
ffiffiffi
2

p
�CC 0 0 0

0 �CC 0
ffiffiffi
2

p
�CC 0 0

0:8
ffiffiffi
2

p
�CC 0 �CC �CC 0 0

0
ffiffiffi
2

p
�CC �CC �CC 0 0

0 0 0 0 �CC �CC

0 0 0 0 �CC �CC

0
BBBBBB@

1
CCCCCCA

Despite its advanced age, H€uuckel �-electron theory appears in the literature from time

to time, even today.

18.2 Extended Hückel Theory

The 1952 pioneering calculations of M. Wolfsberg and L. Helmholtz [83] are usually

cited as the first real attempt to extend H€uuckel theory to inorganic molecules. It is

worth reading the Synopsis to their paper, in order to catch the spirit of the times:

We have made use of a semiempirical treatment to calculate the energies of the

molecular orbitals for the ground state and the first few excited states of

permanganate, chromate and perchlorate ions. The calculations of the

excitation energies is in agreement with the qualitative features of the observed

spectra, i.e. absorption in the far ultraviolet for ClO4
� with two strong maxima

in the visible or near ultraviolet for MnO�
4 and CrO4

2� with the chromate

Table 18.2 Symmetry-adapted orbitals for pyridine by

irreducible representation (IR)

a2 IR b1 IR

�1

�4ffiffi
1
2

q
ð�2 þ �6Þ

ffiffi
1
2

q
ð�2 � �6Þffiffi

1
2

q
ð�3 þ �5Þ

ffiffi
1
2

q
ð�3 � �5Þ
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spectrum displaced towards higher energies. An approximate calculation of the

relative f-values for the first two transitions in CrO4
2� and MnO4

� is also in

agreement with experiment.

The data on the absorption spectra of permanganate ion in different

crystalline fields is interpreted in terms of the symmetries of the excited states

predicted by our calculations.

The extended H€uuckel model treats all valence electrons within the spirit of the

original p-electron version. Once again it is helpful to think of the HF–LCAO model;

the basis functions are taken to be valence shell STOs. For Li through Ne we include

2s and 2p STOs. For Na through Al, we just use 3s and 3p orbitals and then we have

to consider whether to include 3d orbitals for Si through Ar. This seems to be a matter

of personal preference.

The diagonal elements of the Hamiltonian are taken as the negatives of the valence

shell ionization energies. Such quantities can be deduced, with certain subjectivity,

from atomic spectral data. The off-diagonal elements are usually related to these very

simply as

hij ¼ kSij
hii þ hjj

2
ð18:4Þ

where Sij is the overlap integral between the STOs (which is calculated exactly) and k

is a constant that has to be adjusted to give best agreement with experiment. Despite

using overlap integrals in the formula above, the basis functions are treated as ortho-

gonal for the purposes of solving the eigenvalue problem.

Wolfsberg’s and Helmholtz’s classic paper was a serious attempt to explain why

certain tetrahedral anions are coloured and others aren’t, but this actually highlights a

dramatic failing of H€uuckel theory: the formal neglect of electron repulsion. In simple

terms, excitation of an electron in a closed shell molecule from a bonding orbital to

an empty orbital leads to singlet and triplet excited states. As a rule of thumb (Hund’s

rule A in fact) the triplet will have the lower energy, yet in H€uuckel theory transitions

to both singlet and triplet have exactly the same energy given by a difference of the

same pair of orbital energies.

18.2.1 Roald Hoffman

The next milestone was the work of R. Hoffmann [84], who made a systematic study

of organic compounds along the lines of Wofsberg and Helmholtz. Once again I will

let the author put his work in his own words:

The H€uuckel theory, with an extended basis set consisting of 2s and 2p carbon

and 1s hydrogen orbitals, with inclusion of overlap and all interactions, yields a

good qualitative solution of most hydrocarbon conformational problems.

Calculations have been performed within the same parameterisation for nearly

all simple saturated and unsaturated compounds, testing a variety of geometries
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for each. Barriers to internal rotation, ring conformations, and geometrical

isomerism are among the topics treated. Consistent s and p charge distributions

and overlap populations are obtained for aromatics and their relative roles

discussed. For alkanes and alkenes charge distributions are also presented.

Failures include overemphasis on steric factors, which leads to some incorrect

isomerization energies; also the failure to predict strain energies. It is stressed

that the geometry of a molecule appears to be its most predictable property.

18.3 Pariser, Parr and Pople

The next advances came in the 1950s, with a more systematic treatment of electron

repulsion in p-electron molecules. These two keynote papers due to R. Pariser and

G. R. G Parr, and to J. A. Pople are so important that I will give the Abstracts (almost)

in full. Pople wrote [85]

An approximate form of the molecular orbital theory of unsaturated hydrocarbon

molecules in their ground states is developed. The molecular orbital equations

rigorously derived from the correct many-electron Hamiltonian are simplified by

a series of systematic approximations and reduce to equations comparable with

those used in the semi-empirical method based on an incompletely defined one-

electron Hamiltonian. The two sets of equations differ, however, in that those of

this paper include certain important terms representing electronic interactions.

The theory is used to discuss the resonance energies, ionization potentials,

charge densities, bond orders and bond lengths of some simple hydrocarbons.

The electron interaction terms introduced in the theory are shown to play an

important part in determining the ionization potentials, etc.

You should have picked up many of the key phrases. He started from the

HF–LCAO equations and made what is now known as the s–p separation approxima-

tion; the p electrons are treated separately and the effect of the remaining � electrons is

absorbed into the HF–LCAO Hamiltonian. The HF–LCAO equations have to be solved

iteratively in order to get the HF–LCAO p-electron molecular orbitals, and many of the

two-electron integrals (the ‘electronic interaction terms’) are retained. In order to take

account of the effect ofs–p separation, most integrals are calibrated by appeal to experi-

ment. The ‘charges and bond orders’ are simply theMulliken populations calculatedwith

an overlap matrix equal to the unit matrix, and ionization energies are calculated accord-

ing to Koopmans’ theorem.

The second keynote paper, by Pariser and Parr [86], also gives a snapshot of the

times, when there was a great deal of interest in the electronic spectra of conjugated

molecules. They wrote

A semi-empirical theory is outlined which is designed for the correlation and

prediction of the wavelengths and intensities of the first main visible or
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ultraviolet bands and other properties of complex unsaturated molecules, and

preliminary application of the theory is made to ethylene and benzene.

The theory is formulated in the language of the purely theoretical method of

the antisymmetrized products of molecular orbitals (in LCAO approximation)

including configuration interaction, but departs from this theory in several

essential respects. First, atomic orbital integrals involving the core Hamiltonian

are expressed in terms of quantities which may be regarded as semi-empirical.

Second, an approximation of zero differential overlap is employed and an

optionally uniformly charged sphere representation of atomic p-orbitals is

introduced, which greatly simplify the evaluation of electronic repulsion

integrals and make applications to complex molecules containing heteroatoms

relatively simple. Finally, although the theory starts from the p-electron
approximation, in which the unsaturated electrons are treated apart from the

rest, provision is included for the adjustment of the s-electrons to the p-electron
distribution in a way which does not complicate the mathematics.

Once again you should have picked up many of the key phrases. We often speak of

the PPP method in honour of its three originators.

18.4 Zero Differential Overlap

A key phrase that I have yet to explain is zero differential overlap (ZDO); the atomic

orbital basis set is not rigorously defined but we can imagine it to comprise the

relevant STO with one atomic orbital per heavy atom. Hydrogen atoms don’t enter

into p-electron models. The basis functions are taken to be orthonormal, so we haveZ
�i rð Þ�j rð Þ d� ¼ 1 if i ¼ j

0 otherwise

�

ZDO extends this idea to the two-electron integrals; if we have a two-electron integral

of the type

e2

4��0

Z
:::

1

r12
�i r1ð Þ�j r1ð Þ d�1

then the integral is set to zero unless i¼ j. So all two-electron integrals

e2

4��0

Z
�i r1ð Þ�j r1ð Þ 1

r12
�k r2ð Þ�l r2ð Þ d�1d�2 ð18:5Þ

are zero unless i¼ j and k¼ l.

At first sight the basis functions are STO 2pp, and the remaining integrals can

actually be calculated exactly. When Pariser and Parr first tried to calculate the
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ionization energies and spectra of simple conjugated hydrocarbons such as benzene

with exact two-electron integrals, they got very poor agreement with experiment.

They therefore proposed that the two-electron integrals should be treated as param-

eters to be calibrated against spectroscopic data. Once again, you have to remember

that computers were still in their infancy and that any simple formula was good news.

We had electromechanical calculators and log tables in those days, but nothing much

else. One popular such formula was

e2

4��0

Z
�i r1ð Þ�i r1ð Þ 1

r12
�k r2ð Þ�k r2ð Þ d�1d�2 ¼ e2

4��0

1

Rik þ �ik

ð18:6Þ

where Rik is the separation between the orbital centres. All other two-electron inte-

grals were taken as zero and the �ik term has to be fixed by appeal to spectroscopic

experiment. The expression is what you would get for the mutual potential energy of

a pair of electrons separated by distance Rikþ�ik, and these repulsion integrals are

traditionally given a symbol �ik.
Next we have to address the one-electron terms, and the treatment depends on

whether the term is diagonal (i¼ j) or off-diagonal (i 6¼ j). In standard HF–LCAO

theory the one-electron terms are given by

Z
�i � h2

8�2me

r2 � e2

4��0

XN
I¼1

ZI

RI

 !
�j d� ð18:7Þ

where the first term represents the kinetic energy of the electron and the second term

gives the mutual potential energy between the electron and each nucleus.

In PPP theory, the off-diagonal elements are taken as zero unless the atom pairs are

directly bonded. If the atom pairs are directly bonded, then the matrix element is

given a constant value � for each particular atom pair, which is certainly not the same

value as the � value in ordinary H€uuckel theory. The value of either � is found by

calibration against experiment. The one-electron diagonal terms are written so as to

separate out the contribution from the nuclear centre I on which the atomic orbital is

based (usually taken as minus the valence state ionization energy !I) and the other

nuclear centres J (usually taken as –ZJ�IJ, where Z is the formal number of electrons

that an atom contributes to the p system). There is no problem with hydrocarbons in

that all carbon atoms are assigned the same valence state ionization energies,

irrespective of their chemical environment, but many papers were written to justify

one particular choice of !I against another for nitrogen.

For the record, the PPP HF–LCAO Hamiltonian hF for hydrocarbons and other

first-row systems has dimension equal to the number of conjugated atoms and can

be written

hFii ¼ !i þ 1
2
Pii�ii þ

P
j 6¼i

Pjj � Zj
� �

�ij

hFij ¼ �ij � 1
2
Pij�ij

ð18:8Þ
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Here P is the usual matrix of charges and bond orders. The HF–LCAO equations are

solved by the usual techniques.

In those early days, no one dreamed of geometry optimization; benzene rings were

assumed to be regular hexagons with equal C��C bond length of 140 pm. PPP calcu-

lations were state of the art in the early 1970s and consumed many hours of Ferranti

Mercury, IBM 7040 and ICT Atlas time. Once again there was an argument as to the

role of d orbitals on sulphur, and a number of long forgotten schemes and methodol-

ogies were advanced.

18.5 Which Basis Functions Are They?

I seem to have made two contradictory statements about the basis functions used in

semi-empirical work. On the one hand, I have said that they are orthonormal and so

their overlap matrix is the unit matrix, and on the other hand I have used overlap

integrals to calculate certain integrals.

Think of a H€uuckel p-electron treatment of ethene, and call the carbon 2pp orbitals

�1 and �2. The matrix of overlap integrals is

S ¼ 1 p

p 1

� �

where p is the overlap integral of the two atomic (STO) orbitals in question. The

eigenvalues of this matrix are 1� p and the normalized eigenvectors are

v1 ¼
ffiffiffi
1

2

r
1

1

� �
and v2 ¼

ffiffiffi
1

2

r
1

�1

� �

A little matrix algebra will show that

S ¼ 1þ pð Þv1vT1 þ 1� pð Þv2vT2

Mathematicians have a rather grand expression for this; they talk about the spectral

decomposition of a matrix. We can make use of the expression to calculate powers of

matrices, such as the negative square root

S�1=2 ¼ 1þ pð Þ�1=2
v1v

T
1 þ 1� pð Þ�1=2

v2v
T
2

To cut a long story short, we regard the basis functions used in semi-empirical

calculations as related to ordinary STO �1,�2, . . . ,�n by the matrix transformation

�1 �2 � � ��nð ÞS�1=2 ð18:9Þ
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These have the property that they are orthonormal, yet resemble the ordinary STO as

closely as possible, in a least-squares sense.

18.6 All Valence Electron ZDO Models

The early p-electron semi-empirical models proved a great success, and they are still

sometimes encountered in current publications. Attempts to extend them to the s
systems or to inorganic molecules met with mixed fortune for a variety of reasons,

especially the following three.

1. If we draw a molecule and then arbitrarily choose an axis system, then physical

properties such as the energy should not depend on the choice of axis system. We

speak of rotational invariance; the answers should be the same if we rotate a local

molecular axis system.

2. Also, despite what one reads in elementary organic texts, calculated physical

properties ought to be the same whether one works with ordinary atomic orbitals

or the mixtures we call hybrids.

3. Finally, we should get the same answers if we work with symmetry-adapted

combinations of atomic orbitals rather than the ‘raw’ AOs. Whatever the outcome,

we won’t get a different energy.

18.7 Complete Neglect of Differential Overlap

Pople and co-workers seem to be the first authors to have addressed these problems.

The most elementary theory that retains all the main features is the complete neglect

of differential overlap (CNDO) model. The first paper dealt mainly with hydrocar-

bons, and only the valence electrons were treated. The inner shells contribute to the

core that modifies the one-electron terms in the HF–LCAO Hamiltonian. The ZDO

approximation is applied to all two-electron integrals so that

ZZ
�i r1ð Þ�j r1ð Þ 1

r12
�k r2ð Þ�l r2ð Þ d�1d�2 ð18:10Þ

is zero unless i¼ j and k¼ l. Suppose now that atoms A and B are both carbon, and so

we take 2s, 2px, 2py and 2pz basis functions for either atom. In addition to the ZDO

approximation, the CNDO model requires that all remaining two-electron integrals of

type (18.10) involving basis functions on A and B are equal to a common value,
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denoted �AB. �AB depends on the nature of the atoms A and B but not on the details

of the atomic orbitals. This simplification guarantees rotational invariance.

Similar considerations apply to the one-electron terms

Z
�i � h2

8�2me

r2 � 1

4��0

XN
�¼1

Z�

R�

 !
�j d�

When i¼ j and the basis function �i is centred on nucleus A we write the integral

Uii ¼
Z

�i � h2

8�2me

r2 � 1

4��0

ZA

RA

� �
�i d�

and determine U from atomic spectral data. The remaining terms in the sum are

called penetration integrals and are written VAB.

If i 6¼ j and the basis functions are on different atomic centres, then all three-centre

contributions are ignored. The remaining two-centre terms involving atoms A and B

are written �0
ABSij, where S is the overlap integral and � a ‘bonding’ parameter. The

bonding parameter is non-zero only for bonded pairs.

Collecting terms and simplifying we find that a CNDO HF–LCAO Hamiltonian

has elements

hFii ¼ Uii þ PAA � 1
2
Pii

� �
�AA þ

X
B6¼A

PBB�AB � VABð Þ

hFij ¼ �0
ABSij � 1

2
Pij�AB

ð18:11Þ

A and B label atoms, i and j label the basis functions and PAA is the sum of the

diagonal charge density matrix for those basis functions centred on atom A.

The original parameter scheme was called CNDO=1 (J. A. Pople and G. A. Segal

[87]). Electron repulsion integrals were calculated exactly, on the assumption that the

basis functions were s-type STOs, and all overlap integrals were calculated exactly.

The bonding parameters �0
AB were chosen by comparison with (crude) ab initio calcu-

lations on relevant small molecules, and a simple additivity scheme was employed

�0
AB ¼ �0

A þ �0
B

18.8 CNDO/2

It turned out that CNDO=1 calculations gave poor predictions of molecular geo-

metries, and this failing was analysed as due to the approximations made for Uii

and the penetration term VAB. These problems were corrected in CNDO=2. VAB
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is no longer calculated exactly; rather it is taken as � ZB�AB. The atomic terms

become

Uii ¼ � 1
2
Ii þ Eið Þ � ZA � 1

2

� �
�AA ð18:12Þ

where Ii and Ei are valence state ionization energies and electron affinities. The HF–

LCAO matrix elements are

hFii ¼� 1
2
IiþEið Þþ PAA�ZAð Þ� 1

2
Pii� 1ð Þ� �

�AAþ
X
B6¼A

PBB�AB�VABð Þ

hFij ¼ �0
ABSij� 1

2
Pij�AB

ð18:13Þ

18.9 CNDO/S

One failing of the p-electron models was their inability to treat n!p� electronic

transitions. The CNDO models gave a great breakthrough because they afforded

for the first time a systematic treatment of both p!p� and n!p� transitions in

conjugated molecules. The treatment essentially followed the lines of CIS discussed

in Chapter 17, but the first results were in poor agreement with experiment in that

they gave excitation energies that were much too large. The most significant im-

provement to CNDO for use in spectroscopy was given by the work of J. del Bene

and H. H. Jaff�ee [88]. Their major contribution was to modify the bonding integrals;

think of a pair of bonded carbon atoms, with one pair of 2p orbitals pointing along the

bond (s) and the remaining two pairs perpendicular to the bond (p). Del Bene and

Jaff�ee introduced a new parameter 	 such that the p-type interaction was reduced.

They essentially replaced the term �0
ABSij with

�s
ABSij ¼ 1

2
�0
A þ �0

B

� �
Sij

�p
ABSij ¼ 1

2
	 �0

A þ �0
B

� �
Sij

ð18:14Þ

They recommend a value 	¼ 0.585, which gives best agreement with experiment for

many conjugated molecules.

18.10 Intermediate Neglect of Differential Overlap

The CNDO models make an unnecessary and draconian simplification to the two-

electron integralsZZ
�i r1ð Þ�j r1ð Þ 1

r12
�k r2ð Þ�l r2ð Þ d�1d�2 ¼ 
ij
kl�AB
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That is to say, even if the orbitals �i and �j are on the same centre but i 6¼ j, then the

entire integral is taken to be zero. Direct calculation shows that the integrals can be

far from zero. In fact, it is just one-centre integrals of this kind that give the correct

ordering between atomic spectroscopic states. CNDO cannot distinguish between the
3P, 1D and 1S states arising from orbital configuration

C: (1s)2(2s)2(2p)2

J. A. Pople, D. Beveridge and P. A. Dobosh [89] introduced the intermediate neglect

of differential overlap (INDO) scheme, which retained monocentric repulsion inte-

grals. Some of these integrals are taken as parameters to be determined by compar-

ison with experiment rather than by direct calculation.

18.11 Neglect of Diatomic Differential Overlap

The next level of approximation along these lines is the neglect of diatomic differ-

ential overlap (NDDO) model, developed by Pople et al. (see for example [90]). All

two-electron integrals ZZ
�i r1ð Þ�j r1ð Þ 1

r12
�k r2ð Þ�l r2ð Þ d�1d�2

are retained when �i and �j are on the same centre and both �k and �l are on a single

different centre. NDDO never really caught on, it was overtaken by events as follows.

18.12 The Modified INDO Family

The CNDO=2, INDO and NDDO methods are now little used apart from providing

initial estimates of the electron density for use in ab initio HF–LCAO iterations.

Their significance is that they were the first family of semi-empirical models that

retained increasing numbers of smaller repulsion integrals in a systematic way. Even

NDDO neglects the majority of two-electron integrals for real molecules, and so the

models made HF–LCAO calculations on large systems feasible. They did not give

very accurate results, perhaps because they were parameterized by comparing with

low accuracy ab initio calculations. They also needed reliable geometries as input,

because geometry optimization was still in its infancy. Pople and Beveridge’s book

contains a listing of a FORTRAN CNDO=INDO code, and it is interesting to note

that there is no mention of geometry optimization.
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The MINDO models (Modified INDO) developed by M. J. S. Dewar had a

quite different philosophy; their objective was to develop a genuine reliable model

for experimentalists. They realized that parameters had to be available for a wide

range of atoms and the models had to deliver results to chemical accuracy in

reasonable amounts of computer time. Attention was paid to reliable geometry

optimization, so enabling the program to accept relatively crude initial geometries for

unknown structures.

18.12.1 MINDO/3

The Synopsis for the landmark 1975 MINDO=3 paper by R. C. Bingham et al. [91] is

terse:

The problems involved in attempts to develop quantitative treatments of organic

chemistry are discussed. An improved version (MINDO=3) of the MINDO

semiempirical SCF-MO treatment is described. Results obtained for a large

number of molecules are summarised

MINDO=3 uses an s, p minimal basis set of STOs and the elements of the HF–LCAO

matrix are

hFii ¼ Uii þ
X
j on A

Pij�ij � 1
2
Pijlij

� �þX
B6¼A

PBB � ZBð Þ�AB

hFij ¼
� 1

2
Pijlij if �i and �j on A

hcoreij � 1
2
Pij�AB otherwise

( ð18:15Þ

I have written the atomic Coulomb and exchange integrals

�ij ¼ e2

4��0

Z
�i r1ð Þ�i r1ð Þ 1

r12
�j r2ð Þ�j r2ð Þ d�1d�2

lij ¼ e2

4��0

Z
�i r1ð Þ�j r1ð Þ 1

r12
�i r2ð Þ�j r2ð Þ d�1d�2

for simplicity of notation. The parameters for MINDO=3 were obtained in an entirely

different way from the CNDO=INDO=NDDO family; many quantities such as the

STO exponents were allowed to vary during the fitting procedure. The bonding

parameter �0
AB was allowed to vary, and experimental data such as enthalpies of

formation and accurate molecular geometries were also used to get the best fit.

An interesting feature was the treatment of core–core repulsions (the core in this

case being identified with the nucleus plus any inner-shell atomic electrons). The

simple Coulomb term

UAB ¼ e2

4��0

ZAZB

RAB
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(where ZA and ZB are the ‘effective’ nuclear charges) was modified for various

complicated reasons to make it a function of the electron repulsion integrals

UAB ¼ ZAZB �AB þ e2

4��0

1

RAB

� �AB

� �
exp ��ABRAB

m

� �� �
ð18:16Þ

Here �AB is a dimensionless constant and it depends on the natures of the atoms A

and B. For O–H and N–H bonds a slightly different scheme was adopted.

UAH ¼ ZAZH �AH þ e2

4��0

1

RAH

� �AB

� �
�AH exp �RAH=mð Þ

� �
ð18:17Þ

18.13 Modified Neglect of Differential Overlap

MINDO=3 proved very successful but it had a number of limitations; enthalpies of

formation of conjugated molecules were generally too positive, bond angles were not

well predicted, and so on. M. J. S. Dewar and W. Thiel [92] introduced the modified

neglect of differential overlap (MNDO) model, which they based on NDDO whilst

retaining the philosophy of MINDO=3. The core–core repulsions were further modified

UAB ¼ e2

4��0
ZAZB

Z
sAðr1ÞsA r1ð Þ 1

r12
sBðr2ÞsB r2ð Þ d�1d�2

� 1þ exp ��ARAB

m

� �
þ exp ��BRAB

m

� �� � ð18:18Þ

with a different formula for OH and NH bonds.

18.14 Austin Model 1

Next came Austin model 1 (AM1), due to M. J. S. Dewar et al. [93]. AM1 was designed

to eliminate the problems fromMNDO caused by a tendency to overestimate repulsions

between atoms separated by the sum of their van der Waals radii. The strategy adopted

was to modify the core–core terms by multiplication of the Coulomb term with sums of

Gaussian functions. In the original AM1 paper there are four terms in the Gaussian

expansion. Each Gaussian is characterized by its position along the A–B vector and

by its width. This significantly increased the number of parameters for each atom.

18.15 PM3

PM3 is the third parameterization of MNDO, and the PM3 model contains essentially

all the same terms as AM1. The parameters for PM3 were derived by J. J. P. Stewart
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[94] in a more systematic way than for AM1, many of which were derived by

‘chemical intuition’. As a consequence, some of the parameters are quite different

from those of MNDO but the two models seem to predict physical properties to the

same degree of accuracy.

18.16 SAM1

The final 1993 offering in Michael Dewar’s name was Semi-Ab-Initio Model 1 [95].

In SAM1, two-electron integrals are calculated using a standard STO-3G basis set

(and hence the appearance of ab initio in the title). The resulting integrals were then

scaled, and the Gaussian terms in the core–core repulsions were retained in order to

fine-tune the calculations.

18.17 ZINDO/1 and ZINDO/S

Michael Zerner and co-workers developed these models for transition metal com-

pounds [96]. ZINDO=1 is a variant of INDO and ZINDO=S is an INDO-like method

used to calculate electronic spectroscopic properties of such molecules.

18.18 Effective Core Potentials

The ground state of a silver atom has an electron configuration

Ag: (1s)2(2s)2(2p)6(3s)2(3p)6(3d)10(4s)2(4p)6(4d)10(5s)1

and much of its chemistry can be explained in terms of the outer 5s electron. The

remaining 46 electrons seem to form an inert core and this suggests that we might try

to model the silver atom as a nucleus of charge Z¼ 47 and an inner shell of 46

electrons. This idea was tried in the very early days, and a common effective core

potential (ECP) was

Ucore ¼ � nV

4��0r
þ A

exp �2krð Þ
r

ð18:19Þ

where nV is the number of valence electrons and A and k are constants that have to be

determined by fitting an atomic property. Use of such a potential means that we have

eliminated most of the two-electron integrals.

334 SEMI-EMPIRICAL MODELSSEMI-EMPIRICAL MODELS



The idea of dividing electrons into groups is quite common in chemistry; in CNDO

theory we treat the valence electrons only, without explicitly treating the core elec-

trons. In ZDO p-electron models we treat the p electrons explicitly and assume that

the effect of the s electrons can be taken into account in the parameter choice. There

is a serious problem that I can explain by reference to silver. The 5s orbital has to

be orthogonal to all the inner orbitals, even though we don’t use them (and don’t

necessarily want to calculate them).

Many ab initio packages allow the use of effective core potentials (ECPs), which

replace the atomic cores in valence-only ab initio calculations; traditionally they were

represented as linear combinations of functions of the type

r�n exp ��r2
� �

with coefficients and exponents determined by fitting the potential generated from

accurate HF–LCAO wavefunctions. In recent years it has become fashionable to

represent the core potentials by one- and two-term Gaussians obtained directly from

the appropriate atomic eigenvalue equation.
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19 Electron Correlation

I have mentioned electron correlation at several points in the text, and I gave an

operational definition of correlation energy as the difference between the exactHF energy

and the true experimental energy. There is a great deal of small print; in general we

cannot obtain exact HF wavefunctions for molecules, only LCAO approximations. The

Schr€oodinger treatment takes no account of the theory of relativity, whilst we know from

simple atomic spectra that relativistic effects are non-negligible. We have to be careful

to treat zero-point energy in a consistent manner when dealing with vibrations, and

so on.

19.1 Electron Density Functions

I have put a great deal of emphasis on the electron density. The wavefunction for a

molecule with n electrons will depend on the 3n spatial electron coordinates

r1, r2, . . . , rn together with the n spin variables si (� or �). Many authors combine

space and spin variables into a composite x¼ rs and so wewould write a wavefunction

Cðx1; x2; . . . ; xnÞ

According to the Born interpretation,

C�ðx1; x2; . . . ; xnÞCðx1; x2; . . . ; xnÞ d�1ds1d�2ds2 � � � d�ndsn

gives the probability of finding simultaneously electron 1 in spatial volume element

d�1 with spin between s1 and s1þ ds1, electron 2 in spatial volume element d�2 with

spin between s2 and s2þ ds2, . . . , electron n in spatial volume element d�n with spin

between sn and snþ dsn.

As we noted earlier, this expression contains too much information and we ask

instead about the probability that any given element will be occupied by one electron

with the other electrons anywhere. This is often called the one-electron density function

�1ðx1Þ ¼ n

Z
C�ðx1; x2; . . . ; xnÞCðx1; x2; . . . ; xnÞ d�2ds2 � � � d�ndsn ð19:1Þ



The x1 on the left refers to ‘point 1’ at which the density is to be evaluated rather than

the coordinates of electron 1, the indistinguishability of the electrons being accounted

for by the factor n.

If we want to know the probability of finding an electron of either spin in the

spatial element d�1, then we integrate over ds1 to give the charge density discussed in

Chapter 16 and measured by crystallographers

P1ðr1Þ ¼ n

Z
C�ðx1; x2; . . . ; xnÞCðx1; x2; . . . ; xnÞ ds1d�2ds2 � � � d�ndsn ð19:2Þ

It is written either P or P1; I have used P in earlier chapters. It also proves desirable to

introduce probabilities for finding different configurations of any number of particles.

Thus, the two-electron (or pair) density function

�2ðx1; x2Þ ¼ nðn� 1Þ
Z

C�ðx1; x2; . . . ; xnÞCðx1; x2; . . . ; xnÞ d�3ds3 � � � d�ndsn
ð19:3Þ

determines the probability of two electrons being found simultaneously at points x1
and x2, spins included, whilst

P2ðx1; x2Þ ¼ nðn� 1Þ
Z

C�ðx1; x2; . . . ; xnÞCðx1; x2; . . . ; xnÞ ds1ds2d�3ds3 � � � d�ndsn
ð19:4Þ

determines the probability of finding them at points r1 and r2 in ordinary space,

irrespective of spin.

Many common one-electron properties depend only on P1 and since the

Schr€oodinger equation only contains pair interactions we need not consider distribu-

tions higher than the pair functions. For a state of definite spin, as distinct from a

mixed state, the one-electron density function has the form

�1ðx1Þ ¼ P�
1 ðr1Þ�2ðs1Þ þ P

�
1 ðr1Þ�2ðs1Þ ð19:5Þ

where the Ps are spatial functions. There are no cross terms involving both � and �.

In orbital models, the Ps are just sums over the squares of the occupied orbitals. The

two-electron density function is also given by

�2ðx1; x2Þ ¼ P��
2 ðr1; r2Þ�2ðs1Þ�2ðs2Þ þ P

��
2 ðr1; r2Þ�2ðs1Þ�2ðs2Þ

þ P
��
2 ðr1; r2Þ�2ðs1Þ�2ðs2Þ þ P

��
2 ðr1; r2Þ�2ðs1Þ�2ðs2Þ ð19:6Þ
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19.1.1 Fermi correlation

The two-electron functions tell us how the two electrons are correlated. In the one-

determinant HF model, we find that the Ps are related as follows

P��
2 ðr1; r2Þ ¼ P�

1 ðr1ÞP�
1 ðr2Þ � Xðr1; r2Þ

P
��
2 ðr1; r2Þ ¼ P�

1 ðr1ÞP�
1ðr2Þ

ð19:7Þ

where X is a function whose form need not concern us, except to note that it exactly

cancels the first term when r1¼ r2. From these results we get a clear picture of the

electron correlation shown by standard closed-shell HF theory. The form of P
��
2

shows that there is no correlation between electrons of opposite spin, since the

simultaneous probability is just the product of the individual ones. This is a defect

of HF theory. Electrons of like spin are clearly correlated and they are never found at

the same point in space, and HF theory is satisfactory here. This type of correlation

arises from antisymmetry and applies to all fermions. It is usually called Fermi

correlation.

19.2 Configuration Interaction

I have mentioned configuration interaction (CI) at various points in the book, in the

dihydrogen discussion of Chapter 15 and in the CIS treatment of excited states in

Chapter 17. The idea of modern CI is to start with a reference wavefunction that

could be a HF–LCAO closed shell wavefunction, and systematically replace the

occupied spinorbitals with virtual ones. So if A, B, . . . represent occupied orbitals

and X,Y, . . . represent virtual ones we would seek to write

CCI ¼ CHF þ
X
A;X

cXAC
X
A þ

X
A;B;X;Y

cXYABC
XY
AB þ � � � ð19:8Þ

The expansion coefficients can be found by solving the variational problem, in the

usual way. This involves finding the eigenvalues and eigenvectors of the Hamiltonian

matrix; usually one is only interested in a few of the electronic states, and methods

are available for finding just a small number of eigenvalues and eigenvectors of very

large matrices.

In a complete CI calculation we would include every possible excited configuration

formed by promoting electrons from the occupied spinorbitals to the virtual ones; for a

closed shell singlet state molecule withm electron pairs and n basis functions there are

n!ðnþ 1Þ!
m!ðmþ 1Þ!ðn� mÞ!ðn� mþ 1Þ!
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possible Slater determinants. If we consider a HF/6–311G�� wavefunction for

benzene, we have m¼ 21 and n¼ 144, giving approximately 5� 1050 possibilities.

We therefore must truncate the CI expansion.

In the CIS model we just take singly excited states. If the reference wavefunction is

a closed-shell HF one, then the single excitations don’t mix with the ground state and

CIS tends to be used as a low-level method for studying excited states.

The next logical step is to include the double excitations. If this is done together with

the single excitations, then we have the CISD (CI singles and doubles) model. If the

double excitations alone are included, then we have CID (CI doubles). Such trunca-

tions can lead to a problem called size consistency that I can illustrate by considering a

very simple problem, that of two neon atoms. Table 19.1 shows a CISD/6–311G�

calculation for dineon at 5000 pm separation, together with the free atom energy.

The HF–LCAO energy of a pair of neon atoms at large separation is exactly twice

the free atom value, but this is not the case for the CISD calculation. If we have an

ensemble of n particles and their energy is n times the energy of a single particle, then

we say that the theory scales correctly (or that the method is size consistent). Full CI

calculations scale correctly, but truncated CI expansions do not.

After double excitations, quadruple excitations are next in order of importance. If

singles, doubles, triples and quadruples are included, then the acronym becomes

CISDTQ.

19.3 The Coupled Cluster Method

The coupled cluster (CC) method was first used by physicists studying nuclear struc-

ture. R. J. Bartlett’s review [97] is fairly recent. The fundamental equation relates a

HF wavefunction CHF to the best possible wavefunction C by

C ¼ exp ðT̂TÞCHF ð19:9Þ
The exponential operator is defined by a Taylor-series expansion

exp ðT̂TÞ ¼
X1
k¼0

T̂Tk

k!
ð19:10Þ

and the cluster operator is defined as

T̂T ¼ T̂T1 þ T̂T2 þ � � � þ T̂Tn ð19:11Þ

Table 19.1 Dineon calculations, 6–311G� basis set

Method Dineon energy, Eh at 5000pm Atom energy, Eh

HF–LCAO �257.0451061 �128.52255305

CISD �257.4466147 �128.7283956
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where n is the number of electrons in the molecule. The operators have the effect of

replacing occupied spin orbitals in CHF with virtual spin orbitals. T̂T1 performs all

singly excited substitutions; T̂T2 performs all doubly excited configurations and so on

until all n electrons have been promoted from filled to virtual spinorbitals. The effect

of the exponential operator on the HF wavefunction is to express it as a linear

combination that contains CHF and all possible excitations of electrons from occu-

pied to virtual spinorbitals. We write

T̂T1CHF ¼
X
A;X

cXAC
X
A

T̂T2CHF ¼
X

A;B;X;Y

cXYABC
XY
AB

and so on, and the aim of the theory is to determine the numerical coefficients. It is

usual to approximate the T̂T operator by including only some of the terms, and it is

generally accepted that the most important contribution is T̂T2. This gives the coupled

cluster doubles (CCD) method. Since we take

exp ðT̂TÞ � exp ðT̂T2Þ ¼ 1þ T̂T2 þ 1

2!
T̂T2
2 þ � � � ð19:12Þ

the resulting wavefunction contains the HF wavefunction together with double quad-

ruple, hextuple, etc. substitutions. The CCD method is size consistent.

The next step is to include the T1 operator and so take

exp ðT̂TÞ � exp ðT̂T1 þ T̂T2Þ ¼ 1þ ðT̂T1 þ T̂T2Þ þ 1

2!
ðT̂T1 þ T̂T2Þ2 þ � � � ð19:13Þ

which gives CCSD. Inclusion of T3 gives CCSDT in an obvious notation.

Pople and co-workers [98] have developed a quadratic CI method, which lies

between CI and CC. This QCI method exists in size-consistent forms QCISD and

QCISDT.

19.4 Møller–Plesset Perturbation Theory

The HF–LCAO model is thought to be satisfactory for treating many molecular

properties near minima on the molecular potential energy surface. It cannot generally

treat covalent bond-breaking and bond-making, but forms a useful starting-point for

the more advanced theories. The HF model averages over electron repulsions; each

electron experiences an average field due to the remaining electrons plus the field due

to the nuclei. In real life there are ‘instantaneous’ electron repulsions that go as

e2

4��0

1

rij
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A great advantage of the HF–LCAO model is that the equations can be solved

to arbitrary precision, once a basis set has been defined. We therefore have a ‘zero-

order’ problem with an exact solution, together with a perturbation. We discussed

perturbation theory in Chapter 14 when dealing with the helium atom; the idea

is to write the true Hamiltonian as that for a soluble, zero-order problem plus a

perturbation

ĤH ¼ ĤHð0Þ þ lĤHð1Þ

The difference from Chapter 14 is that we now use a HF–LCAO wavefunction as the

zero-order wavefunction and treat the difference between the true electron–electron

repulsions and the averaged ones from HF theory as the perturbation. This gives us

the Møller–Plesset perturbation theory. The method had been in the literature since

1934, but its potential for molecular calculations was not appreciated until the 1970s.

It is of immense historical interest because it gave us the first realistic route for a

treatment of small-molecule correlation energy, and you ought to read the original

paper. The synopsis is reproduced below (see Møller and Plesset [99]:

A Perturbation Theory is developed for treating a system of n electrons in

which the Hartree Fock solution appears as the zero-order approximation. It is

shown by this development that the first order correction for the energy and

the charge density of the system is zero. The expression for the second order

correction for the energy greatly simplifies because of the special property

of the zero order solution. It is pointed out that the development of the higher

order approximation involves only calculations based on a definite one-body

problem.

The HF model averages over electron repulsions, and the HF pseudo-one-electron

operator for each electron has the form (from Chapters 14 and 16)

ĥhFðriÞ ¼ ĥhð1ÞðriÞ þ ĴJðriÞ � 1
2
K̂KðriÞ

The unperturbed Hamiltonian is taken as the sum of the HF operators for each of the

n electrons

ĤHð0Þ ¼
Xn
i¼1

ĥh
FðriÞ

¼
Xn
i¼1

�
ĥhð1ÞðriÞ þ ĴJðriÞ � 1

2
K̂KðriÞ

� ð19:14Þ

whilst the true Hamiltonian makes no reference to averaging

ĤH ¼
Xn
i¼1

ĥhð1ÞðriÞ þ e2

4��0

Xn�1

i¼1

Xn
j¼iþ1

1

rij
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The first few key equations of the perturbation expansion, taken from Chapter 14 but

simplified for our present discussion, are shown below. The electronic state of interest

is the ground state, denoted C(0), with energy "(0). I have therefore dropped the (i)

subscripts, since we are dealing with just the one electronic state. Promoting electrons

from the occupied to the virtual HF spin orbitals gives the excited states, and we

consider single, double, triple, etc. excitations in the usual fashion of CI

ĤHð0ÞCð0Þ ¼ "ð0ÞCð0Þ

ðĤHð0Þ � "ð0ÞÞCð1Þ ¼ ð"ð1Þ � ĤHð1ÞÞCð0Þ

ðĤHð0Þ � "ð0ÞÞCð2Þ ¼ "ð2ÞCð0Þ þ "ð1ÞCð1Þ � ĤHð1ÞCð1Þ
ð19:15Þ

Since the zero-order Hamiltonian is a sum of HF operators, the zero-order energy is a

sum of orbital energies

"ð0Þ ¼
X
i

"i ð19:16Þ

where the sum runs over the occupied spinorbitals. The first-order energy is

"ð1Þ ¼
Z

Cð0ÞĤHð1ÞCð0Þ d� ð19:17Þ

and adding "(1) to "(0) gives the full HF energy "HF. We therefore need to progress to

second-order theory in order to give any treatment of electron correlation. The levels

of theory are denoted MP2,MP3, . . . ,MPn, where n is the order of perturbation

theory.

The second-order energy is given by

"ð2Þ ¼
X
j

jR Cð0ÞĤHð1ÞCj d� j2
"ð0Þ � "j

ð19:18Þ

and the first-order correction to the wavefunction is

Cð1Þ ¼
X
j

R
Cð0ÞĤHð1ÞCj d�

"ð0Þ � "j
Cj ð19:19Þ

where the sum runs over all excited states, written Cj, and energies "j. The ground

state C(0) is an HF wavefunction and so the integral vanishes for all singly excited

states because of the Brillouin theorem. It is also zero when the excited state differs

from C(0) by more than two spin orbitals, by the Slater–Condon–Shortley rules.

Hence we only need consider doubly excited states in order to find the second-order

energy. The "(2) numerator is non-negative since it is the square of a modulus. The

denominator is negative because C(0) refers to the ground state and Cj to the excited
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states. The second-order energy correction is therefore always negative or zero. High-

er orders of perturbation theory may give corrections of either sign.

The MP1 energy therefore is identical to the HF energy and MP2 is the simplest

practicable perturbation treatment for electron correlation. It includes only the effect

of double excitations.

By similar considerations, the third, fourth and higher orders of perturbation theory

can be determined. The terms rapidly become algebraically complicated and the

higher orders are increasingly costly to apply. For n basis functions, HF–LCAO

theory scales as n4, MP2 as n5, MP3 as n6 and MP4 as n7. These should be seen

as theoretical upper bounds, since sophisticated use of symmetry and integral cut-offs

mean that practical calculations need considerably less resource.

A great simplifying feature of MP2 is that a full four-index transformation is not

necessary, all we have to do is to semi-transform the two-electron integrals and this

leads to an immense saving in time compared with conventional CI treatments. MP3

also includes only double excitations, whilst MP4 includes a description of single

excitations together with some triples and quadruples. The triple contributions in

MP4 are the most expensive. In the MP4(SDQ) variation we just include the least

expensive singles, doubles and quadruple excitations.

Analytical energy gradients have been determined for MP2, MP3 and MP4, which

makes for very effective geometry searching. I can illustrate some points of interest

by considering two examples. First, the geometry optimization of ethene shown in

Table 19.2.

I ran all calculations using GAUSSIAN98W on my office PC taking the same

starting point on the molecular potential energy surface. The HF/STO-3G calculation

would these days be regarded as woefully inadequate, and professionals would tend

to have faith in the HF/6–311G�� calculation. The two 6–311G�� HF energies are a

little different because the geometries are different. The timings show that there is

little to be lost in performing the HF calculation with a decent basis set compared

with STO-3G.

There are two sources of error in the calculations: the choice of a finite basis set,

and truncation of the MPn series at MP2. According to the literature, the basis set

error is the larger of the two. One has to be careful to compare like with like and

the results of the calculations should be compared with geometric parameters at the

Table 19.2 Geometry optimization for ethene

HF/STO-3G HF/6–311G�� MP2/6–311G�� MP2/cc-pVTZ

"HF/Eh �77.0789547 �78.0547244 �78.0539661 �78.0638977

"MP2/Eh �78.3442916 �78.3993063

"corr/Eh 0.2903255 0.3354086

RCC (pm) 130.6 131.7 133.7 133.2

RCH (pm) 108.2 107.6 108.5 108.0

HCH (deg) 115.7 116.7 117.2 117.3

cpu time (s) 28 41 70 881
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bottom of the potential energy well. Experimental values very often refer to the

lowest vibrational energy level. The estimate of the correlation energy depends

markedly on the quality of the basis set. Electron correlation studies demand basis

sets that are capable of high accuracy, and a number of suitable basis sets are avail-

able in the literature. One popular family is the correlation consistent basis sets of

Dunning, which go by acronyms such as cc-pV6Z. This contains seven s-type, six

p-type, four d-type, two g-type and one h-type primitives.

We usually find that MP2 calculations give a small but significant correction to the

corresponding HF–LCAO geometries. It is probably more worthwhile using MPn

models to investigate effects that depend crucially on electron correlation; bond-

breaking and bond-making phenomena spring to mind. Figure 19.1 shows represen-

tative potential energy curves for dihydrogen, following the discussion of Chapter 15.

A 6–311G�� basis set was used. The top curve is the HF–LCAO calculation, and

shows the usual bad dissociation limit. The remaining three curves are (in descending

order) MP2, MP3 and MP4(SDQ). The first point to note is that MPn calculations are

size consistent. The second point is that none of the curves appears to be approaching

the correct dissociation limit of �1Eh. It is reported in the literature that MPn calcu-

lations do not work particularly well for geometries far from equilibrium. The MPn

series has not been proved to converge to the true energy, but calculations using very

high orders (MP48) have suggested that convergence will eventually occur.

Figure 19.1 Dihydrogen electron correlation
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Finally, MPn calculations need an HF–LCAO wavefunction to act as the zero-

order approximation. It follows that MPn can only be used for those molecules and

electronic states where it is possible to find such a wavefunction. This rules out most

excited states.

19.5 Multiconfiguration SCF

One problem with traditional CI calculations is that excitations are to the virtual

orbitals; the occupied orbitals usually are determined variationally by the HF–LCAO

procedure whilst the virtual orbitals give poor representations of excited states. One

solution to the problem is to write the ground state wavefunction as a linear combina-

tion of Slater determinants and then use the variation procedure to optimize both the

linear expansion coefficients and the HF–LCAO coefficients. That is, we write

C ¼ CHF þ
X

cjCj

where CHF is the Hartree–Fock wavefunction and Cj an excited state, in the usual

sense of CI calculations. In certain cases the ratio of some of the cj will be fixed by

symmetry. The MCSCF model is regarded as highly specialized, with a small number

of adherents. A literature search revealed an average of 50 papers per annum in

primary journals over the last 10 years.
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20 Density Functional Theory

and the Kohn–Sham

LCAO Equations

The 1998 Nobel Prize for chemistry was awarded jointly to John A. Pople and Walter

Kohn, and the texts of their addresses on the occasion of the awards are reported in

Reviews of Modern Physics 71 (1999) pp. 1253 and 1267. John Pople’s name should

be familiar to you if you have assiduously studied this text. Walter Kohn opened his

address with the following remarks:

The citation for my share of the 1998 Nobel Prize in Chemistry refers to the

‘Development of Density Functional Theory’. The initial work on Density

Functional Theory (DFT) was reported in two publications: the first with Pierre

Hohenberg (P Hohenberg and W Kohn, Phys Rev 136 (1964) B864) and the next

with Lu J Sham (W Kohn and L J Sham, Phys Rev 140 (1965) A1133). This was

almost 40 years after E Schr€oodinger (1926) published his first epoch-making

paper marking the beginning of wave mechanics. The Thomas–Fermi theory, the

most rudimentary form of DFT, was put forward shortly afterwards (E Fermi,

Att1 Accad Naz Lincei, Cl Sci Fis Mat Nat Rend 6 (1927) 602, L H Thomas, Proc

Camb Phil Soc 23 (1927) 542) and received only modest attention.

It is worth spending a little time on the historical aspects before launching into

modern density functional theory (DFT), and the exchange potential plays a key role

in our discussion. If we consider a closed shell system with electron configuration

ð 1Þ2ð 2Þ2 � � � ð MÞ2

then in Hartree’s original theory we would write the total wavefunction as a simple

orbital product for which the electronic energy is

"el ¼ 2
XM
R¼1

Z
 Rðr1Þĥhðr1Þ Rðr1Þ d�1

þ
XM
R¼1

XM
S¼1

2

ZZ
 Rðr1Þ Rðr1Þĝgðr1; r2Þ Sðr2Þ Sðr2Þ d�1d�2



In Hartree–Fock (HF) theory we write the wavefunction as a Slater determinant and

this gives an additional exchange term in the electronic energy

"el ¼ 2
XM
R¼1

Z
 Rðr1Þĥhðr1Þ Rðr1Þ d�1

þ
XM
R¼1

XM
S¼1

2

ZZ
 Rðr1Þ Rðr1Þĝgðr1; r2Þ Sðr2Þ Sðr2Þ d�1d�2

�
XM
R¼1

XM
S¼1

ZZ
 Rðr1Þ Sðr1Þĝgðr1; r2Þ Rðr2Þ Sðr2Þ d�1d�2

These expressions are general to Hartree and HF theory in that they don’t depend on

the LCAO approximation. You should also be familiar with the LCAO versions,

where the energy expressions are written in terms of the ‘charges and bond orders’

matrix P together with the matrices h(1), J and K

"el;H ¼ trðPh1Þ þ 1
2
trðPJÞ

for the Hartree model and

"el;HF ¼ trðPh1Þ þ 1
2
trðPJÞ � 1

4
trðPKÞ

for the HF version. The J and K matrices depend on P in a complicated way, but the

Hartree and HF electronic energies are completely determined from knowledge of the

electron density P.

20.1 The Thomas–Fermi and Xa Models

There is nothing sinister in the exchange term; it arises because of the fermion nature

of electrons. Nevertheless, it caused considerable confusion among early workers in

the field of molecular structure theory and much effort was spent in finding effective

model potentials that could mimic electron exchange. In the meantime, solid-state

physics had been developing along quite different lines. I discussed the earliest

models of metallic conductors in Chapter 12. The Pauli model is the simplest one

to take account of the quantum mechanical nature of the electrons; the electrons exist

in a three-dimensional infinite potential well, the wavefunction obeys the Pauli

Principle and at 0K the electrons occupy all orbitals having energy less than or equal

to energy "F (which of course defines the Fermi energy). The number N of conduction

electrons can be related to "F and we find

"F ¼ h2

8me

�
3N

�L3

�2=3

ð20:1Þ
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Now N=L3 is the number density of conduction electrons and so Pauli’s model gives a

simple relationship between the Fermi energy and the number density of electrons.

Physicists very often use the symbol n for the number density; it can vary at points in

space and so we write n(r) but in this simple model, the number density is constant

throughout the dimensions of the metallic box.

n ¼ N

L3

¼ 8�

3h2
ð2meÞ3=2ð"FÞ3=2 ð20:2Þ

We now switch on an external potential Uext(r) that is slowly varying over the

dimensions of the metallic conductor, making the number density inhomogeneous.

This could be (for example) due to the set of metallic cations in such a conductor, or

due to the nuclei in a molecule. A little analysis suggests that the number density at

position r should be written

nðrÞ ¼ 8�

3h2
ð2meÞ3=2ð"F � UextðrÞÞ3=2 ð20:3Þ

This Thomas–Fermi relation relates the number density at points in space to the

potential at points in space. The number density of electrons at a point in space is

just the charge density P1(r) discussed in several previous chapters and so we can

write it in more familiar chemical language

P1ðrÞ ¼ 8�

3h2
ð2meÞ3=2ð"F � UextðrÞÞ3=2 ð20:4Þ

Thomas and Fermi suggested that such a statistical treatment would be appropriate

for molecular systems where the number of electrons is ‘large’ and in the case of a

molecule we formally identify the external potential as the electrostatic potential

generated by the nuclei. The Thomas–Fermi approach replaces the problem of cal-

culating an N-electron wavefunction by that of calculating the electron density in

three-dimensional position space.

Paul Dirac [100] studied the effects of exchange interactions on the Thomas–

Fermi model, and discovered that these could be modelled by an extra term

UXðrÞ ¼ CðP1ðrÞÞ1=3 ð20:5Þ

where C is a constant. R. Gáspár is also credited with this result, which J. C. Slater

rediscovered in 1951 [101] but with a slightly different numerical coefficient of 2
3
C.

The disagreement between Dirac’s and Slater’s numerical coefficient seems to have

been first resolved by Gáspár [102] and authors began to write the local exchange

potential as

UX�ðrÞ ¼ C�ðP1ðrÞÞ1=3 ð20:6Þ
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where � could take values between 2
3
and 1 and this is the so-called X� model. The

use of the symbol � here is not to be confused with the use of the same symbol for a

spin eigenfunction.

Slater then had the ingenious idea of writing the atomic HF eigenvalue equation

ĥhFðrÞ ðrÞ ¼ " ðrÞ
ðĥhð1ÞðrÞ þ ĴJðrÞ � 1

2
K̂KðrÞÞ ðrÞ ¼ " ðrÞ

as

ðĥhð1ÞðrÞ þ ĴJðrÞ þ ÛUX�ðrÞÞ ðrÞ ¼ " ðrÞ ð20:7Þ

and such calculations are usually referred to as atomic X�–HF. The resulting X�

orbitals differ from conventional HF orbitals in one major way, namely that

Koopmans’ theorem is no longer valid for every orbital and so the orbital energies can-

not generally be used to estimate ionization energies. Koopmans’ theorem now ap-

plies only to the highest occupied orbital. A key difference between standard HF theory

and density functional calculations is the way we conceive the occupation number � of

each orbital. In molecular HF theory, the occupation number is 2, 1 or 0 depending on

whether a given spatial orbital is fully occupied by two electrons (one of either spin),

singly occupied, or a virtual orbital. For a system comprising very many electrons we

focus on the statistical occupation of each orbital and the occupation number becomes

a continuous variable having a value between 0 and 2. The relationship between the

electronic energy "el and the occupation number of orbital i is

@"el
@�i

¼ "i ð20:8Þ

so that the ionization energy from a particular orbital  i is given by

"elð�i ¼ 0Þ � "elð�i ¼ 1Þ ¼
Z 0

1

"id�i

Note, however, that the energy is determined by the charge density P(r). When the

calculations are performed, the resulting orbitals closely resemble those from stan-

dard HF theory and people use them in much the same way.

20.2 The Hohenberg–Kohn Theorems

The Thomas–Fermi and X� approaches were constructed as approximations to the

quantum mechanical problem of calculating the electronic properties of a system of

interest. The density functional theory of Hohenberg and Kohn, to be discussed, is in

principle an exact theory. The first keynote paper contains two fundamental theorems.
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The first theorem is what mathematicians call an existence theorem; it proves that the

ground state energy of any electronic system is determined by a functional of

the electron density. The theorem means that in principle we only need to know

the electron density in three-dimensional space and not the full wavefunction in order

to calculate any ground-state property including the energy.

The term functional is mathematical jargon; a function is a mapping from one set

of numbers to another (see Figure 20.1), whilst a functional is a mapping from a set of

functions to a set of numbers.

The proof of the theorem is quite simple, but will not be reproduced here. The

paper is so important that you should see at least the Abstract. Hohenberg and Kohn

[103] use square brackets [ . . . ] to denote functionals:

This paper deals with the ground state of an interacting electron gas in an

external potential v(r). It is proved that there exists a universal functional of

the density, F[n(r)], independent of v(r), such that the expression E � R
vðrÞ

nðrÞdrþ F½nðrÞ� has as its minimum value the correct ground state energy

associated with v(r). The functional F[n(r)] is then discussed for two situations:

(1) nðrÞ ¼ n0 þ ~nnðrÞ, ~nn=n0 � 1, and (2) n(r)¼’(r=r0) with ’ arbitrary and

r0!1. In both cases F can be expressed entirely in terms of the correlation

energy and linear and higherorder electronic polarizabilities of a uniform electron

gas. This approach also sheds some light on generalized Thomas–Fermi methods

and their limitations. Some new extensions of these methods are presented.

The second theorem gives a variation principle for the density functionals; it states

(in chemical language) that

"el½PðrÞ� � "el½P0ðrÞ� ð20:9Þ
where P0 is the true density for the system and P any other density obeyingZ

PðrÞ d� ¼
Z

P0ðrÞ d� ¼ N ð20:10Þ

Figure 20.1 A function
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where N is the number of electrons. The difficulty is that the Hohenberg–Kohn

theorems give us no clue as to the nature of the density functional, nor how to set

about finding it.

20.3 The Kohn–Sham (KS–LCAO) Equations

The Kohn–Sham paper [104] gives us a practical solution to the problem, based on

HF–LCAO theory; again, it is such an important paper that you should have sight of

the Abstract that in any case is self-explanatory:

From a theory of Hohenberg and Kohn, approximation methods for treating an

inhomogeneous system of interacting electrons are developed. These methods

are exact for systems of slowly varying or high density. For the ground state,

they lead to self-consistent equations analogous to the Hartree and Hartree–

Fock equations, respectively. In these equations the exchange and correlation

portions of the chemical potential of a uniform electron gas appears as

additional effective potentials. (The exchange portion of our effective potential

differs from the due to Slater by a factor of 2=3). Electronic systems at finite

temperatures and in magnetic fields are also treated by similar methods. An

appendix deals with a further correction for systems with short-wavelength

density oscillations.

The Kohn–Sham equations are modifications of the standard HF equations and

we write

ðĥhð1ÞðrÞ þ ĴJðrÞ þ ÛUXCðrÞÞ ðrÞ ¼ " ðrÞ ð20:11Þ

where UXC(r) is the local exchange–correlation term that accounts for the exchange

phenomenon and the dynamic correlation in the motions of the individual electrons.

We speak of the KS–LCAO procedure. It is usual to split UXC(r) into an exchange

term and a correlation term and treat each separately

ðĥhð1ÞðrÞ þ ĴJðrÞ þ ÛUXðrÞ þ ÛUCðrÞÞ ðrÞ ¼ " ðrÞ ð20:12Þ

The electronic energy is usually written in DFT applications as

"el½P� ¼ "1½P� þ "J ½P� þ "X½P� þ "C½P� ð20:13Þ

where the square brackets denote a functional of the one-electron density P(r).

The first term on the right-hand side gives the one-electron energy, the second term

is the Coulomb contribution, the third term the exchange and the fourth term gives the

correlation energy. We proceed along the usual HF–LCAO route; we choose a basis
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set and then all that is needed in principle is knowledge of the functional forms of

UX(r) and UC(r). It is then a simple matter in principle to modify an existing standard

HF–LCAO computer code to include these additional terms. Either component can

be of two distinct types: local functionals that depend only on the electron density at

a point in space, and gradient-corrected functionals that depend both on the electron

density and its gradient at that point.

In their most general form, the exchange and correlation functionals will depend on

the density of the � and the � electrons, and the gradients of these densities. Each

energy term "C and "X will therefore be given by a volume integral

"X ¼
Z

fXðP�;P�; gradP�; gradP�Þ d�

"C ¼
Z

fCðP�;P�; gradP�; gradP�Þ d�
ð20:14Þ

where f is an energy density.

20.4 Numerical Integration (Quadrature)

Given the functionals and the electron density, we have to integrate over the space of

the molecule to obtain the energy. These extra integrals cannot usually be done

analytically and so a numerical integration has to be done to each HF–LCAO cycle.

What we do is to replace the integral by a sum over quadrature points, e.g.

"X=C ¼
X
A

X
i

wAi f ðP�1 ;P�1 ; gradðP�1 Þ; gradðP�1 Þ; rAiÞ ð20:15Þ

where the first summation is over the atoms and the second is over the numerical

quadrature grid points. The wAi are the quadrature weights and the grid points are

given by the sum of the position of nucleus A and a suitable one-centre grid

rAi ¼ RA þ ri

The keynote paper for numerical integration is that due to A. D. Becke [105], and

once again the paper is so important that you should see the Abstract:

We propose a simple scheme for decomposition of molecular functions into

single-center components. The problem of three-dimensional integration in

molecular systems thus reduces to a sum of one-center, atomic-like integrations,

which are treated using standard numerical techniques in spherical polar

coordinates. The resulting method is tested on representative diatomic and

polyatomic systems for which we obtain five- or six-figure accuracy using a few

thousand integration points per atom.
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Becke’s scheme rigorously separates the molecular integral into atomic contributions

that may be treated by standard single-centre techniques. Numerical integration grids

usually are specified as a specific number of radial shells around each atom, each of

which contains a set number of integration points. For example, a GAUSSIAN98 use

a grid designated (75 302) which has 75 radial shells per atom, each containing 302

points giving a total of 22 650 integration points.

Over the years, a large number of exchange and correlation functionals have

been proposed. Software packages such as GAUSSIAN98 and HyperChem7 offer a

selection.

20.5 Practical Details

There are two versions of DFT, one for closed shell systems analogous to the

Roothaan closed shell treatment, and one for the open shell case analogous to the

UHF technique and we implement the Kohn–Sham LCAO (KS–LCAO) equations by

including the relevant exchange=correlation term(s) instead of the traditional HF

exchange term in the HF–LCAO equations. That is, for the UHF case we write

ðĥhð1ÞðrÞ þ ĴJðrÞ þ ÛU�
XðrÞ þ ÛU�

CðrÞÞ �ðrÞ ¼ "� �ðrÞ

for the �-spin electrons and a similar expression for the �-spin. The elements of

the �-spin X=C matrices are related to the energy density f and the basis functions �
by

ðU�
X=CÞi; j ¼

Z �
@f

@P�
�i�j þ

�
2
@f

@���
gradP� þ @f

@���
gradP�

�
� gradð�i�jÞ

�
d�

ð20:16Þ

where I have written

��� ¼ gradðP�ÞgradðP�Þ

The �-spin electrons have a similar matrix.

So, for example, the Slater–X� exchange density is

f ðrÞ ¼ � 9

4
��

�
3

4�

�1=3

ððP�ðrÞÞ4=3 þ ðP�ðrÞÞ4=3Þ ð20:17Þ
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where the �� is the X� parameter, not to be confused with the spin variable. The

derivatives are simple

@f

@P�1
¼ �3��

�
3

4�

�1=3

ðP�Þ1=3 ð20:18Þ

with a similar expression for the �-spin term.

By itself, the Slater–X� local term is not adequate for describing molecular sys-

tems. Becke [106] formulated the following gradient-corrected exchange functional

f ¼ ðP�Þ4=3gðx�Þ þ ðP�Þ4=3gðx�Þ

where

gðxÞ ¼ � 3

2

�
3

4�

�1=3

� bx2

1þ 6bx sinh �1x
ð20:19Þ

x� ¼ �aa

ðP�Þ4=3
and x� ¼ ���

ðP�Þ4=3

The derivatives are again straightforward.

In a similar way there are local and gradient-corrected correlation functionals.

One of the oldest correlation functionals is that due to C. Lee, W. Yang and R. G. Parr

[107]

f ¼ � 4a

1þ dðPÞ�1=3

P�P�

P
� 211=3

3

10
ð3�2Þ2=3ab!ðPÞP�P�ððP�Þ8=3 þ ðP�Þ8=3Þ

þ @f

@ ���
��� þ @f

@ ���
��� þ @f

@ ���
��� ð20:20Þ

where

!ðPÞ ¼ expð�cP�1=3Þ
1þ dP�1=3

ð20:20Þ

where a, b, c and d are constants.

A modern reference that contains a wealth of detail for implementing DFT calcu-

lations is that of Johnson et al. [108].

20.6 Custom and Hybrid Functionals

Hybrid functionals are those that contain mixtures of the HF exchange with DFT

exchange correlation, whilst ab initio codes usually give the user a choice of con-

structing their own linear combination.
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20.7 An Example

We worked through a typical HF–LCAO calculation on L-phenylanine using the

6–31G� basis set in Chapter 17. The following output relates to a corresponding

KS–LCAO single point calculation. First the route:

----------------------------------------------------

# B3LYP=6--31G* SCF¼Direct #T
----------------------------------------------------

1=38¼ 1=1;
2=17¼ 6, 18¼ 5=2;
3=5¼ 1, 6¼ 6, 7¼ 1, 11¼ 2, 25¼ 1, 30¼ 1=1, 2, 3;
4==1;
5=5¼ 2, 32¼ 1, 38¼ 4, 42¼�5=2;
6=7¼ 3, 28¼ 1=1;
99=5¼ 1, 9¼ 1=99;
----------------------------------------------------

L-phenylanine DFT single point
----------------------------------------------------

I chose the Becke three-parameter exchange and the Lee–Yang–Parr correlation

functionals. The usual iterative procedure is followed; a major difference from

HF–LCAO theory is that the numerical integration has to be done at the end of each

cycle, although this is not explicit in the next section of output.

Standard basis: 6--31G(d) (6D, 7F)
There are 202 symmetry adapted basis functions of A symmetry.
Crude estimate of integral set expansion from redundant integrals¼ 1.000.
Integral buffers will be 2 62 144 words long.
Raffenetti 2 integral format.
Two-electron integral symmetry is turned on.

202 basis functions 380 primitive gaussians
44 alpha electrons 44 beta electrons

nuclear repulsion energy 695.8409407052 Hartrees.
One-electron integrals computed using PRISM.
NBasis¼ 202 RedAO¼ T NBF¼ 202
NBsUse¼ 202 1.00D-04 NBFU¼ 202
Projected INDO Guess.
Warning! Cutoffs for single-point calculations used.
Requested convergence on RMS density matrix¼ 1.00D-04 within 64 cycles.
Requested convergence on MAX density matrix¼ 1.00D-02.
Requested convergence on energy¼ 5.00D-05.
SCF Done: E(RBLYP)¼�554.684599482 A.U. after 7 cycles
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Convg¼ 0.2136D-04 �V=T¼ 2.0080
S**2¼ 0.0000

Next come the KS–LCAO orbital energies and LCAO coefficients (not shown

here):

Alpha occ. eigenvalues -- �19.21906 �19.15371 �14.31807 �10.32931 �10.23197
Alpha occ. eigenvalues -- �10.18919 �10.18384 �10.17994 �10.17848 �10.17813
Alpha occ. eigenvalues -- �10.17637 �10.14697 �1.15467 �1.03083 �0.90142
Alpha occ. eigenvalues -- �0.84164 �0.78208 �0.73302 �0.72415 �0.68266
Alpha occ. eigenvalues -- �0.62064 �0.59768 �0.57072 �0.55001 �0.53327
Alpha occ. eigenvalues -- �0.49791 �0.48769 �0.46859 �0.46130 �0.44216
Alpha occ. eigenvalues -- �0.42887 �0.42198 �0.40246 �0.39305 �0.37604
Alpha occ. eigenvalues -- �0.36527 �0.34305 �0.33539 �0.32529 �0.29565
Alpha occ. eigenvalues -- �0.26874 �0.24712 �0.23422 �0.22807

The LCAO orbitals tend to be used just like ordinary HF–LCAO orbitals, and authors

make use of the standard Mulliken population analysis indices:

Total atomic charges:
1

1 N �0.692262
2 H 0.308081
3 C �0.094081
4 H 0.310106
5 H 0.185908
6 C 0.561568
7 C �0.338514
8 O �0.460986
9 H 0.172216

10 H 0.150270
11 C 0.139207
12 O �0.532463
13 C �0.178535
14 C �0.228343
15 H 0.413517
16 H 0.116707
17 H 0.248340
18 C �0.135999
19 C �0.169497
20 H 0.122653
21 H 0.110562
22 C �0.126440
23 H 0.117986
Sum of Mulliken charges¼ 0.00000
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Comparison with Chapter 17 shows that the Mulliken indices are quite different;

there is nothing particularly sinister in this, we simply have to be careful to compare

like with like when using them. Finally, the properties and timing:

Electronic spatial extent (au): hR**2i ¼ 2204.5013
Charge ¼ 0.0000 electrons
Dipole moment (Debye):

X ¼ 0.0147 Y ¼ 1.3960 Z ¼ 0.1895 Tot ¼ 1.4088
Quadrupole moment (Debye-Ang):

XX ¼ �72.7761 YY ¼ �63.9087 ZZ ¼ �72.8707
XY ¼ 1.2446 XZ ¼ �3.1819 YZ ¼ �3.2701

Octapole moment (Debye-Ang**2):
XXX ¼ 7.3252 YYY ¼ 31.8738 ZZZ ¼ �0.0206 XYY ¼ 1.1233
XXY ¼ 0.0154 XXZ ¼ �4.9841 XZZ ¼ 10.8590 YZZ ¼ 2.4692
YYZ ¼ 9.6757 XYZ ¼ �7.1274

Hexadecapole moment (Debye-Ang**3):
XXXX ¼ �1977.5412 YYYY ¼ �555.0004 ZZZZ ¼ �178.6904 XXXY ¼ �13.4681
XXXZ ¼ �51.1200 YYYX ¼ 46.6035 YYYZ ¼ �2.9691 ZZZX ¼ 0.4550
ZZZY ¼ 0.5732 XXYY ¼ �457.6858 XXZZ ¼ �406.2508 YYZZ ¼ �135.1196
XXYZ ¼ �45.4948 YYXZ ¼ 19.4003 ZZXY ¼ 3.9922

Job cpu time: 0 days 0 hours 8 minutes 6.0 seconds.
File lengths (MBytes): RWF ¼ 27 Int ¼ 0 D2E ¼ 0 Chk ¼ 10 Scr ¼ 1

The electric moments are similar to the HF values, and the increased cpu time comes

about because of the numerical integrations.

20.8 Applications

DFT is a relatively new branch of chemical modelling, and the number of papers

has grown enormously over the last 10 years. In many cases these papers are used to

support experimental work, in others to obtain alternative theoretical information

compared with that obtained with the more traditional HF–LCAO models. Michael

Springborg gives a critical review of the literature every two years in his contributions

to the Royal Society of Chemistry Specialist Periodical Reports Series ‘Chemical

Modelling’. In standard HF–LCAO theory, we can systematically improve the accu-

racy of our calculations by increasing the sophistication of the basis set and this

option is still available in DFT theory. There is no systematic way that the form of

the DFT exchange and correlation terms can be improved other than by refining the

basic model, the free-electron gas. Michael’s comments in Volume 1 are well worth

reading [109]:

There is, however, a fundamental difference . . . The HFapproximation represents
a first approximation to the exact solution of the exact many-body Schr€oodinger
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equation so that one may in principle systematically improve the situation. On the

other hand the Kohn–Sham equations are currently approximated and it is not

obvious whether more accurate solutions yield better agreement with experiment.

However, for all but the smallest systems, one can solve the Kohn–Sham

equations more accurately than one can solve the Schr€oodinger equation. Taking
everything together this suggests that both approaches have advantages and

disadvantages and that the best way of developing the understanding of the

properties of materials is to continue to apply both types of method and not to

abandon any of them.
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21 Miscellany

There are a finite number of pages in any textbook and I have obviously had to leave

a number of loose ends and miss out a number of topics, such as time dependence,

relativistic effects, enumeration, atoms-in-molecules and scattering that go to make

up modern molecular modelling. I just haven’t had the space to deal with them, and I

want to finish the text by picking out four topics that interest me. I hope they will also

interest you.

If you want to keep up with the literature without all the trouble of actually making

the literature searches yourself, you might like to read the Royal Society of Chemistry

(RSC) Specialist Periodical Reports (SPRs) on Chemical Modelling; Applications and

Theory. These appear every two years, and experts (‘Reporters’, in RSC-speak) write

the individual chapters. Set your web browser to http://www.rsc.org and follow

the links to our SPR.

21.1 Modelling Polymers

Manymodernmaterials are polymers, compounds in which chains or networks of small

repeating units called monomers form giant molecules. The essential requirement that

a small molecule should qualify as a monomer is that it should be at least bifunctional

(for example hydroxyethanoic acid (I), vinyl chloride (II) adipic acid (III) and hexa-

methylenediamine (IV)) in order that the monomers can link together to form a chain

(Figure 21.1).

Thus (I) can condense with another identical hydroxy acid molecule through the

two reactive groups and the polymerization reaction in this case is a simple conden-

sation. The double bond in (II) is bifunctional and activation by a free radical leads

to polymer formation. If the monomer units are all the same, we speak of a homopoly-

mer (see Figure 21.2).

Condensation of the two different monomers (III) and (IV) yields 6 : 6 nylon,

which is an example of a copolymer. You have probably come across the man-made

polymers polyethene, nylon and polytetrafluoroethene (PTFE); they are often named

after their chemical source, but a wide variety of trade names are in common use (for

example, Teflon�R is PTFE). The prefix poly is attached to the name of a monomer in



addition polymers. When the monomer has a multi-worded name, then this is en-

closed in parentheses and prefixed as in poly(vinyl chloride).

There are also many naturally occurring polymers, such as natural rubber, shown in

Figure 21.3. Michael Faraday established its constitution to be (C5H8)n; it is a poly-

mer of isoprene with a perfectly regular chain. Every fourth carbon atom in the chain

carries a methyl group and the presence of the double bond in each monomer unit

determines the chemical reactivity and its ability to react with sulphur in the vulca-

nization process (which forms cross-chains by reaction across the double bonds of

different chains). The structure Gutta–Percha, the other natural polymer of isoprene,

differs significantly from that of natural rubber.

Figure 21.1 Four monomers

Figure 21.2 Polymer forming unit reactions
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One feature that distinguishes a polymer from a monomer is that it is not possible

to assign an exact molar mass to a polymer sample. A given polymer chain obviously

has a chemical formula and molar mass, but the length of a polymer chain is deter-

mined by random events and the product of a polymerization reaction is a mixture of

chains of different lengths.

There are two experimentally determined measures of the molar mass. Colligative

properties, such as the osmotic pressure and depression of freezing point, give the

number average molar mass defined as

Mh in¼
P

i NiMiP
i Ni

where Ni is the number of species with molar massMi. Light scattering measurements

determine a different kind of average called the weight average

Mh iw¼
P

i NiM
2
iP

i NiMi

21.2 The End-to-End Distance

The simplest place to start the discussion of polymer structure and modelling is with a

long hydrocarbon chain, illustrated in Figure 21.4. One’s first reaction is to draw the

chain as I have done and assume that the fully stretched conformation will be the

lowest energy one (as it probably will) and therefore the only one of interest.

In the early days of conformational studies, it was assumed that there was com-

pletely free rotation about every single bond (that is to say, no barrier to rotation). We

now know better and for each typical subunit there will be three possible local

minima, which can be interchanged by rotation about the C��C bond. There will

be 3n � 1 conformations for a chain of n carbon atoms and all will be very similar in

Figure 21.3 Rubber
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energy. In spite of the fact that the lowest energy state will be the fully extended

conformation, there will be a spread amongst all the possible conformations at room

temperature, determined by their Boltzmann factors. The end-to-end distance affords

a rough-and-ready measure of the complexity of the conformation of a long chain,

and the early theories of polymer structure focused on this quantity.

21.3 Early Models of Polymer Structure

The simple models ignore hydrogens and other side groups and just treat the heavy

atoms, and workers in the field usually follow the notation shown in Figure 21.5. The

heavy atoms are labelled A0, A1, . . . , An, and monomer A0 is taken as the coordinate

origin. It is assumed that n is large, and the polymer will not generally be planar.

The relative position vectors are as shown; r1 points from A0 to A1 and so on, and it

is clear from elementary vector analysis that the position vector r of the end atom (An) is

r ¼
Xn
i¼1

ri ð21:1Þ

Figure 21.4 Fragment of long hydrocarbon chain

Figure 21.5 Notation for simple chain of nþ 1 heavy atoms
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The scalar r (the magnitude of r) is the end-to-end distance and it is given by

r2 ¼ r r¼
Xn
i¼1

Xn
j¼1

ri rj ð21:2Þ

This can also be written in terms of the individual bond lengths (that is, the ri)

r2 ¼
Xn
i¼1

r2i þ 2
Xn�1

i¼1

Xn
j¼iþ1

ri rj ð21:3Þ

The number of conformations available to a long chain molecule is immense, and it

is futile to try to study each and every one of them in isolation. What we do instead is

to adopt the methods of statistical thermodynamics and investigate appropriate

averages. We focus on the end atom An and ask about the probability that this atom

will occupy a certain volume element d� (which would be written dxdydz in Cartesian

coordinates or r2sin � d� d� dr in the more appropriate spherical polar coordinates)

located at the arbitrary position r. If we write this probability as W(r)d� , then the

simplest theories draw analogies with the Maxwell–Boltzmann distribution of velo-

cities and the theory of random errors to suggest that

� W(r) should only depend on the scalar distance r, not on the vector r

� W(r) should have a Gaussian distribution.

The appropriate expression turns out to be

WðrÞ ¼ 3

2� r2h i
� �3=2

exp � 3

2 r2h i r
2

� �
ð21:4Þ

where I have used the familiar convention that hr2i means the average of r2 over all

possible conformations. If I take two spheres of radii r and rþ dr centred on the

coordinate origin (heavy atom A0), then the probability of finding the end atom An

somewhere within these two spheres is

4�r2W rð Þdr

The Gaussian expression for W(r) can be derived formally, assuming an infinite chain

length.

With these ideas in mind, we return to the expression for the end-to-end distance

r2 ¼
Xn
i¼1

r2i þ 2
Xn�1

i¼1

Xn
j¼iþ1

ri rj ð21:5Þ

� �

�

�
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If each bond between the heavy atoms in the polymer has the same length l and we

take account of the statistical averaging, then we can write

hr2i ¼ nl2 þ 2
Xn�1

i¼1

Xn
j¼iþ1

hri rji ð21:6Þ

Over the years, many researchers have made contributions to this field and I will

describe two very simple models.

21.3.1 The freely jointed chain

This model consists of n heavy atom bonds of equal length l and the angles at the

bond junctions may take all values with equal probability. Rotations about the bonds

are completely free in all directions, and there is no correlation between the directions

of neighbouring bonds. Thus

hri rji ¼ 0

and so

hr2i ¼ nl2

Workers in the field compare the results of their theories by calculating the charac-

teristic ratio

Cn ¼ hr2i
nl2

ð21:7Þ

which is unity for the freely jointed chain.

21.3.2 The freely rotating chain

In this model we take n bonds of equal length l joined at fixed bond angles, as shown

in Figure 21.6. Free rotation is permitted about any bond, so that every possible

dihedral angle is equally likely. In modern parlance, the barrier to rotation is set to

zero.

The projection of bond iþ 1 on bond i is l cos � and the projection of bond iþ 1 in

a direction perpendicular to bond i averages to zero under the assumption of free

rotation. This gives

hriþ1 rii ¼ l2 cos �

�

�

�
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The projection of bond iþ 2 on bond i is (l cos�)cos�¼ l cos2�, and the general

formula is that the projection of bond iþ k on bond i is l cosk�. We therefore find

r2
� � ¼ nl2 þ 2l2

Xn�1

i¼1

Xn
j¼1þ1

cos �ð Þ
j�i

This can be summed to give a characteristic ratio

Cn ¼ 1þ cos �

1� cos �
� 2 cos �

n

1� cos n�

1� cos �ð Þ2 ð21:8Þ

and so Cn for a freely rotating chain varies roughly as 1/n. For an infinite chain of

tetrahedrally bonded atoms C1¼ 2. In fact the experimental ratio usually comes

out to be about 7 so these simple models leave much to be desired. Janos J. Ladik

reported on recent advances in the field in Volume 1 of the Chemical Modelling

Specialist Periodical Reports.

21.4 Accurate Thermodynamic Properties;

The G1, G2 and G3 Models

Quantum chemical calculations of thermodynamic data have developed beyond the

level of simply reproducing experimental values, and can now make accurate pre-

dictions for molecules whose experimental data are unknown. The target is usually

set as �2 kcalmol�1 for energy quantities.

21.4.1 G1 theory

The Gaussian-1 (G1) method was introduced by J. A. Pople et al. in 1989 [110] in

order to systematically investigate the shortcomings in the levels of theory known at

that time. It has been recognized for many years that bond dissociation energies are

Figure 21.6 Freely rotating chain
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poorly predicted by standard HF–LCAO calculations. The development of MPn

perturbation theory marked a turning point in the treatment of molecular correlation,

and made the treatment of correlation energy at last possible for molecules of mod-

erate size (but at a high cost in computer resource). The MPn methodology usually is

implemented up to MP4 level, but the convergence of the perturbation series leaves

something to be desired. For this reason a further quadratic CI correction was thought

desirable.

The effect of polarization functions is also important, and even f orbitals make a

contribution to the total energies of first-row atoms.

There are eight distinct stages in a G1 calculation for molecules containing first-

and second-row atoms; in the GAUSSIAN suite the steps are followed automatically

once the G1 keyword is selected.

1. An initial structure is obtained at the HF/6–31G� level of theory.

2. The equilibrium structure is revised to the MP2/6–31G� level of theory. All

electrons are included in the correlation treatment; there are no frozen cores.

3. The geometry from step 2 is now used in a number of single-point calculations

starting with MP4/6–311G��. This energy is improved in four distinct stages and

these four improvements are assumed to be additive.

4. As a first correction we add diffuse s and p basis functions at the MP4 level

of theory. These are known to be important for molecules with lone pairs. The

correction is obtained by comparing MP4/6–311þG�� and MP4/6–311G��

energies.

5. As a second correction we take account of polarization functions on non-

hydrogens. This correction is found by comparing MP4/6–311G(2df) and MP4/

6–311G�� energies.

6. The third correction allows for the inadequacies of the MP4 treatment. We make

an expensive QCISD(T)/6–311G�� calculation.

7. The fourth correction is to add an empirical term devised to give agreement with

experiment for the hydrogen atom and dihydrogen. It is referred to as a higher

level correction.

8. Finally, harmonic frequencies are obtained at the HF/6–31G� level of theory and

scaled uniformly by a well-accepted factor of 0.8929.

Total atomization energies for a set of 31 molecules were found to agree with

experimental thermochemical data to an accuracy of better than �2 kcalmol�1.
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Similar agreement was obtained for ionization energies, electron and proton

affinities.

21.4.2 G2 theory

G1 theory was originally tested against experimental values for a range of simple

first- and second-row molecules. It was observed that G1 theory did badly with ionic

molecules, with triplet state molecules and with hypervalent molecules. Gaussian-2

(G2) theory was introduced by L. A. Curtiss et al. in 1991[111], and it eliminates

some of the difficulties by making three modifications:

1. G2 theory eliminates the assumption of additivity of the diffuse sp and the 2df

basis functions used in G1 theory. This change gives a significant improvement for

ionic species and some anions.

2. It adds a third d function to the non-hydrogen atoms and a second p function to the

hydrogens. The third d function is especially important for some hypervalent

molecules such as SO2, whilst the second p function significantly improves the

atomization energy of some hydrogen-containing molecules

3. The higher-level correction is determined by a least-squares fit for 55 molecules

rather than just the hydrogen atom and dihydrogen. This also contributes to an

improvement in calculated energies.

A comparison was made for 79 well-established molecules, including 43 that were

not included in the original G1 paper. The final total energies are essentially at the

QCISD(T)/6–311þG(3df,2p) level of theory. It was subsequently found that sig-

nificant savings in computer resource could be obtained at little cost in accuracy by

reducing the order of the MP4 calculation to MP3 (giving G2(MP3) theory) or to

MP2 (giving G2(MP2) theory).

21.4.3 G3 theory

A recent 1998 reassessment by L. A. Curtiss et al. [112] of G2 theory used 302

energies which included 148 enthalpies of formation, 88 ionization energies, 58

electron affinities and 8 proton affinities for larger and more diverse molecules. This

revealed some interesting discrepancies, for example the enthalpy of formation of

CF4 is too positive by 7.1 kcalmol�1, whilst that of SiF4 is too negative by

5.5 kcalmol�1. The deviations were also much larger for unsaturated systems than
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for saturated ones. These considerations led the authors to propose Gaussian-3 (G3)

theory, which follows along the same lines as the earlier G1 and G2 theories in that it

is a well-defined sequence of ab initio steps to arrive at the total energy of a given

molecule. G3 differs from G2 theory in several major ways.

1. An initial HF/6–31G(d) equilibrium structure is obtained using the RHF or UHF

treatment (as in G2 theory).

2. HF/6–31G(d) structure is used to find vibration frequencies that are then scaled by

0.8929. The zero-point energy is calculated (as in G2 theory).

3. Equilibrium geometry is refined at theMP2/6–31G(d) level, including all electrons.

This geometry is then used in single-point calculations (as in G2 theory).

4. The first higher level correction is a complete MP4/6–31G(d) single point, which is

then modified to allow for diffuse functions, higher polarization functions, higher

correlation terms using QCI, larger basis sets and the effect of non-additivity.

5. The MP4/6–31G(d) energy and the four corrections are combined along with a

spin-orbit correction.

6. A higher level correction (HLC) is added to take account of remaining deficiencies.

This is

HLC ¼ �An� � B n� � n�
� �

for molecules

HLC ¼ �Cn� � D n� � n�
� �

for atoms
ð21:9Þ

where n� is the number of �-spin electrons, etc., and A through D are constants

chosen to give the smallest average deviation from experiment for the G2 test set.

7. The total energy at 0K is obtained by adding the zero-point energy from step 2.

The overall agreement with experiment for 299 energies is 1.02 kcalmol�1 compared

with 1.48 kcalmol�1 for G2 theory. Use of MP3 rather than MP4 gives a saving in

computer resource but the agreement with experiment becomes 1.22 kcalmol�1.

A further variation uses B3LYP/6–31G(d) geometries instead of those from MP2.

21.5 Transition States

Geometry optimization plays a key role in modern molecular modelling. Ab initio

packages invariably contain powerful options for geometry optimization that can
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locate stationary points on a molecular potential energy surface starting from naı̈ve

back-of-an-envelope molecular sketches. Whether that stationary point is a global

minimum is of course open to question.

Most current methods are based on a Taylor series expansion of the energy about a

reference point X0; the energy at point X is given in terms of the gradient g and the

Hessian H by

" ¼ "0 þ X� X0ð ÞTgþ 1
2
X� X0ð ÞTH X� X0ð Þ þ � � �

The Newton–Raphson method truncates the expression at the quadratic term, and

tells us that the best step to take in order to reach a stationary point is

X ¼ X0 �H�1g

The gradient and the Hessian have to be calculated at the initial point, and an iterative

calculation is normally done. A great deal of effort has gone into determining explicit

algorithms for the gradient and the Hessian at many levels of theory.

Minima correspond to points on the molecular potential energy surface where the

eigenvalues of the Hessian matrix are all positive. Transition states are characterized

as stationary points having just one negative eigenvalue. The requirement for a single

negative eigenvalue means that one has to be much more careful with the step taken.

For example, it is always possible to take a steepest descent step in a minimum

search, which will lower the energy or leave it unchanged. Such a step is not appro-

priate for transition state searching; it is therefore harder to find a transition state than

a minimum.

The key concept in our discussion is the Hessian matrix H. This is a real symmetric

matrix and the eigenvalues and eigenvectors can be found by standard numerical

methods. Simons et al. [113] showed that each Newton–Raphson step is directed

in the negative direction of the gradient for each eigenvector that has a positive

Hessian eigenvalue, and along the positive direction of the gradient for each eigen-

vector that has a negative eigenvalue.

For a transition state search, if you are in a region of the molecular potential energy

surface where the Hessian does indeed have one negative eigenvalue, then the

Newton–Raphson step is appropriate. If you have landed on some region of the

surface where the Hessian does not have the desired structure, then you must some-

how get out of the region and back to a region where the Hessian has the correct

structure.

For minima, qualitative theories of chemical structure are a valuable aid in

choosing starting geometries, whilst for transition states one only has a vague

notion that the saddle point must lie somewhere between the reactants and

products.

One of the earliest algorithms that could take corrective action when the wrong

region of the molecular potential energy surface was chosen, was that due to

D. Poppinger [114]. This author suggested that the lowest eigenvalue of the Hessian
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should be followed uphill. The technique has come to be known as eigenvector

following. The problem with this algorithm is that the remaining directions are left

in isolation whilst the fault is corrected.

If we think of a chemical reaction (reactants) as a minimum on the molecular

potential energy surface, then there is no unique way of moving uphill on the surface

since all directions go uphill. The linear synchronous transit (LST) algorithm

searches for a maximum along a path between reactants and products. It frequently

yields a structure with two or more negative Hessian eigenvalues, and this is not a

transition state. The quadratic synchronous transit (QST) method searches along a

parabola for a minimum in all directions perpendicular to the parabola.

21.6 Dealing with the Solvent

Chemical reactions generally take place in condensed media. I have had very little to

say so far about the presence or absence of a solvent, and many of the applications

discussed have referred to single, isolated molecules at 0K and in free space. The

benchmark molecular dynamics (MD) and Monte Carlo (MC) applications discussed

in earlier chapters dealt with arrays of particles with particularly simple potentials,

and the quantum mechanical models have made no mention of a solvent.

The obvious way to take account of the solvent in a MM calculation is to physi-

cally add solvent molecules and then optimize the molecular geometry, but such

calculations tend to be particularly compute- intensive and the necessary computer

power simply was not available to the pioneers in the field. The same comment

obviously holds for quantum mechanical studies.

In a medium of relative permittivity �r, the mutual potential energy of two point

charges QA and QB is reduced by a factor of �r. Typical values are shown in Table

21.1. Relative permittivities are temperature dependent, and they are usually recorded

as a power series in the temperature

�r ¼ aþ b
T

K

� �
þ c

T

K

� �2

þ � � � ð21:10Þ

Early workers in the MM field attempted to allow for the presence of a solvent by

modifying any electrostatic contribution to their force field. The problem was that the

Table 21.1 Representative relative permittivities

Substance �r
Free space 1

Air 1.0006

Glass 6

Water 81
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chosen factor was at first sight quite arbitrary, and bore little relation to the values

given in Table 21.1. For example, a value of 2.5 was often used for liquid water. All

kinds of convincing arguments were used to justify such choices, for example the two

atoms A and B in the molecule of Figure 21.7 will not have much exposure to a

solvent and so a pure solvent value of �r is not appropriate.

21.7 Langevin Dynamics

Molecules in solution undergo collisions with other molecules and the solvent, and

they can also be thought to experience frictional forces as they move through the

solvent. The Langevin technique allows for both these effects. The collisions are

modelled by the addition of a random force R, and the frictional effects are modelled

by adding a frictional drag that is directly proportional to the velocity of a given

particle. Solvent molecules are not explicitly included.

We saw in Chapter 9 that the key equation for a MD simulation is Newton’s second

law

m
d2r

dt2
¼ F

In Langevin dynamics, the force is modified according to the ideas discussed above

m
d2r

dt2
¼ F� m�

dr

dt
þ R ð21:11Þ

The frictional term introduces energy and the random force removes it as kinetic energy.

The quantity � is the collision frequency, and 1/� is often called the velocity relaxation

time; it can be thought of as the time taken for a particle to forget its initial velocity. There

is an equation due to Einstein that relates � to the diffusion constant D of the solvent

� ¼ kBT

mD

Figure 21.7 Atoms A and B in a molecule (grey) surrounded by a solvent (white)
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Integration of the new equation of motion proceeds along the lines discussed in

Chapter 9. A straightforward algorithm has been given by D. L. Ermak and H.

Buckholtz [115]. The equations of motion are integrated over a time interval �t that

is sufficiently short so that the interparticle forces remain approximately constant.

The algorithm for advancing the position rA and velocity vA of particle A is then

similar to those discussed in Chapter 9; we have

rA t þ�tð Þ ¼ rA tð Þ þ c1
drA

dt

� �
t

�t þ c2
d2rA

dt2

� �
t

�tð Þ2þ�rGA

vA t þ�tð Þ ¼ c0
drA

dt

� �
t

þ c1
d2rA

dt2

� �
t

�t þ�vGA

ð21:12Þ

Here rA(t), (drA/dt)t and (d2rA/dt
2)t are the instantaneous position, velocity and

acceleration vector of particle A. The acceleration is calculated from the force.

�rG and �vG are random vectors chosen from a Gaussian distribution with zero

mean and standard deviations

	2
r ¼ �t2

kBT

mA

� �
1

��t
2� 1

��t
3� 4 exp ���tð Þ þ exp �2��tð Þð Þ

� �

	2
v ¼

kBT

mA

� �
1� exp ���tð Þð Þ

ð21:13Þ

The numerical coefficients are given by

c0 ¼ exp ���tð Þ
c1 ¼ 1� c0

��t

c2 ¼ 1� c1

��t

At low values of the friction coefficient, the dynamic aspects dominate. If the inter-

particle forces are taken to vary linearly with time between each time step, then the

equations of motion can be rewritten in a form that is said to produce a more accurate

simulation;

rA t þ�tð Þ ¼ rA tð Þ þ c1
drA

dt

� �
t

�t þ c2
d2rA

dt2

� �
t

�tð Þ2þ�rGA

vA t þ�tð Þ ¼ c0
drA

dt

� �
t

þ c1 � c2ð Þ d2rA

dt2

� �
t

�t þ c2
d2rA

dt2

� �
tþ�t

�t þ�vGA

ð21:14Þ

and as �! 0 we recover the velocity Verlet algorithm discussed in Chapter 9. For large

values of �, the random collisions dominate and the motion becomes diffusion-like.
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The same considerations apply to Langevin dynamics as to standard molecular

dynamics; there are three stages to a simulation, the heating phase, the data collection

stage and the optional cooling stage. For the sake of illustration, Figure 21.8 shows

the end-to-end distance in the hydrocarbon C20H42 discussed in an earlier chapter,

over a 10 ps experiment with a 4 ps�1 friction coefficient. The end-to-end distance

varied much less than the gas-phase experiment, ranging from 2477 pm to 1692 pm,

with a mean of 1993 pm.

21.8 The Solvent Box

In Langevin dynamics the solvent is simulated; no solvent molecules are explicitly

included in the calculation. Such calculations are comparable with standard MD

calculations in their consumption of computer resource.

I mentioned the interest in water as solvent in Chapters 9 and 10, and it is worth

reading the Abstract to Jorgensen’s classic 1983 paper [116]:

Classical Monte Carlo simulations have been carried out for liquid water in the

NPTensemble at 25 �Cand 1 atm using six of the simpler intermolecular potential

functions for the water dimer: Bernal–Fowler (BF), SPC, ST2, TIPS2, TIP3Pand

TIP4P. Comparisons are made with experimental thermodynamic and structural

data including the recent neutron diffraction data of Thiessen and Narten. The

computed densities and potential energies are in reasonable accord with

experiment except for the original BF model, which yields an 18% overestimate

of the density and poor structural results. The TIPS2 and TIP4P potentials yield

oxygen–oxygen partial structure functions in good agreement with the neutron

Figure 21.8 Langevin dynamics on C20 hydrocarbon
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diffraction results. The accord with the experimental OH and HH partial

structure functions is poorer; however, the computed results for these functions

are similar for all the potential functions. Consequently, the discrepancy may be

due to the correction terms needed in processing the neutron data or to an effect

uniformly neglected in the computations. Comparisons are also made for self-

diffusion coefficients obtained frommolecular dynamics simulations. Overall, the

SPC, SDT2, TIPS2 and TIP4P models give reasonable structural and

thermodynamic descriptions of liquid water and they should be useful in

simulations of aqueous solutions. The simplicity of the SPC, TIPS2, and TIP4P is

also attractive from a computational standpoint.

Modern MM packages such as HyperChem usually include the option of a periodic

solvent box, often the TIP3P box of 216 water molecules. The example in Figure 21.9

is from an MM optimization using phenylanine in water. The standard box is a cube

of side 1870 pm, and it is conventional to choose the appropriate box with sides in

multiples of this.

21.9 ONIOM or Hybrid Models

One recent approach to the simulation of chemistry in solution is to use a combina-

tion of quantum mechanical models for the solute and less accurate models such as an

MM solvent box for the solvent. It all started with a key paper in the Journal of

Molecular Biology, which by and large is not read by chemists. Once again, I’ll let

Figure 21.9 Phenylanine in a periodic solvent box
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the two authors A. Warshel and M. Levitt [117] give you their ideas in their own

words:

A general method for detailed study of enzymic reactions is presented. The

method considers the complete enzyme–substrate complex together with the

surrounding solvent and evaluates all the different quantum mechanical and

classical energy factors that can affect the reaction pathway. These factors

include the quantum mechanical energies associated with bond cleavage and

charge redistribution of the substrate and the classical energies of steric and

electrostatic interactions between the substrate and the enzyme. The electrostatic

polarization of the enzyme atoms and the orientation of the dipoles of the

surrounding water molecules is simulated by a microscopic dielectric model. The

solvation energy resulting from this polarization is considerable and must be

included in any realistic calculation of chemical reactions involving anything

more than an isolated atom in vacuo. Without it, acidic groups can never become

ionized and the charge distribution on the substrate will not be reasonable. The

same dielectric model can also be used to study the reaction of the substrate in

solution. In this way, the reaction is solution can be compared with the enzymic

reaction . . . .

What the authors did was to combine an MM potential for the solvent with an early

(MINDO/2) quantum mechanical model for the solute. By 1998 such hybrid methods

had become sufficiently important to justify an American Chemical Society Sympo-

sium (see J. Gao and M.A. Thompson [118]).

If we consider phenylanine in the water solvent box, Figure 21.9, the idea is to treat

the solute phenylanine by a ‘rigorous’ quantum mechanical method (and the choice is

semi-empirical, ab initio, DFT) and the solute by a less rigorous and so less costly

method. The obvious choice for the solvent is MM but we could also choose a semi-

empirical treatment for the solvent and a DFT treatment for the solute.

Most implementations use a two-layer approach, but multilayer approaches are

becoming popular. Such ONIOM hybrid calculations are now routinely used for

solvent modelling.
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Appendix
A Mathematical Aide-M�eemoireAide-M�eemoire

There are several mathematical topics, such as vectors, vector calculus, determinants,

matrices and linear operators, that appear throughout this book. You should have

them at your fingertips if you want to fully understand the subject; it is no use

speaking glibly about the scalar and cross products of two vectors, gradients and

hessians, eigenvalues and eigenvectors, Hamiltonian operators and so on when you

haven’t the slightest idea what the terms mean. I assume that you have come across

most of these topics elsewhere, and so the Appendix is essentially an aide-m�eemoire.
Angular momentum dominates the theory of atomic structure (and if you know

about commuting linear operators, you will understand why), so I have included a

section on this topic.

A.1 Scalars and Vectors

I should emphasize that physical quantities such as mass, temperature and time have

two component parts: a measure (i.e. how many) and a unit (e.g. a kelvin or a

second). It is usual these days to express all physical quantities in the system of units

referred to as the Syst�eeme International, SI for short. The International Unions of

Pure and Applied Physics, and of Pure and Applied Chemistry both recommend SI

units. These are based on the metre, kilogram, second and the ampere as the funda-

mental units of length, mass, time and electric current. There are three additional

units in SI: the kelvin, mole and candela that are units of thermodynamic tempera-

ture, amount of substance and luminous intensity, respectively.

A scalar s is a quantity such as mass, temperature or time that can be represented

by a single value. The modulus (or magnitude, or size) of s, denoted jsj, is the value of
s irrespective of its sign. So if T is a temperature and T¼�273K, then the modulus

of T is 273K. If you know about thermodynamics, you will realize that temperatures

cannot be lower than 0K, but that’s another story.

A vector quantity is a quantity such as displacement, force or velocity that has both a

magnitude and a direction in space. I am going towrite vectors in bold, e.g. a, b,E. Other

authors follow different conventions, and you might find it easier to write vectors by



underlining them a, b, E rather than trying to write them in bold with a biro. My con-

tinental European colleagues often write vectors with an arrow above the symbol~aa;~bb;~EE.

The size or modulus of vector v is denoted by v or jvj. It is important to distinguish

vector quantities from scalar ones; they are certainly not the same thing. Develop the

habit of writing vectors and their moduli in a distinctive style. Once again, you should

recognize that vectors representing physical quantities have a measure and an SI unit.

A unit vector is one with unit modulus (apart from the SI unit), and a unit vector in

the direction of vector v is v=v. Some authors write unit vectors with a special ‘hat’,

typically v̂v. I am not going to follow this convention, because I want to reserve the hat

symbol for a linear operator, of which more shortly.

A.2 Vector Algebra

Vector notation makes many equations look simpler than they would otherwise be,

and so I will make extensive use of vectors through the book. I need to remind you of

certain elementary properties.

A.2.1 Vector addition and scalar multiplication

It is common practice when drawing vectors to show their direction by including an

arrowhead, as illustrated in Figure A.1. The vector 2v is a vector in the same direction as

v but with twice the modulus. The vector�2v has twice the modulus of v but it points in

Figure A.1 Scalar multiplication of a vector

Figure A.2 Addition of two vectors
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the opposite direction. For many kinds of vector, it doesn’t matter where on the page we

draw them. Two vectors are equal if they have the same direction and magnitude.

Two vectors u and v are added together according to the parallelogram rule; we draw

u and then add v ontou according to FigureA.2.Vectors obey the law thatuþ v ¼ vþ u

and we could have equally drawn v first and then added u to get the sum of the two.

A.2.2 Cartesian coordinates

The point P in Figure A.3 has Cartesian coordinates (x, y, z). The Cartesian unit

vectors ex, ey and ez are directed parallel to the x-, y- and z-axes, respectively. They

are sometimes written i, j and k rather than ex, ey and ez. The position vector r of

point P can be expressed by drawing an arrow from the origin to P, and in view of the

laws for vector addition and scalar multiplication we have

r ¼ xex þ yey þ zez ðA:1Þ

I have indicated the components x, y, z in the figure.

A.2.3 Cartesian components of a vector

Vectors u and v can be specified by their Cartesian components

u ¼ uxex þ uyey þ uzez

v ¼ vxex þ vyey þ vzez

so that the vector ku (where k is a scalar) has components

ku ¼ kuxex þ kuyey þ kuzez ðA:2Þ

Figure A.3 Cartesian components of a vector
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whilst the vector sum uþ v has components

uþ v ¼ ðux þ vxÞex þ ðuy þ vyÞey þ ðuz þ vzÞez ðA:3Þ

A.2.4 Vector products

Vectors can be multiplied by scalars, but some care is needed when considering

products of two vectors.

The scalar (or dot) product

The scalar (or dot) product of two vectors u and v is

u v ¼ jujjvj cos � ðA:4Þ

where � is the angle between u and v, and juj, jvj are the moduli of the vectors. If

u v¼ 0 and neither u nor v is a zero vector, then we say that u and v are orthogonal

(in other words, they are at right angles to each other).

Scalar products obey the rules

u v ¼ v u

u ðvþ wÞ ¼ u vþ u w

and the Cartesian unit vectors satisfy

ex ex ¼ ey ey ¼ ez ez ¼ 1

ex ey ¼ ex ez ¼ ey ez ¼ 0

It follows that the scalar product of u and v can be written

u v ¼ uxvx þ uyvy þ uzvz ðA:5Þ

and the modulus of vector v is

jvj ¼ ðv vÞ1=2 ¼ ðv2x þ v2y þ v2z Þ1=2

It also follows that the angle � between the vectors u and v is given by

cos � ¼ uxvx þ uyvy þ uzvz

ðu2x þ u2y þ u2z Þ1=2ðv2x þ v2y þ v2z Þ1=2

�

�

� �
� � �

� � �
� � �

�

�
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The scalar product of u and v gives the projection of u in the direction of v (Figure

A.4), which by symmetry is the same as the projection of v in the direction of u.

The vector (or cross) product

In addition to the scalar product u v, there is a vector (or cross) product u� v

u� v ¼ jujjvj sin �n ðA:6Þ
where � is the angle between u and v and n is a unit vector normal to the plane containing

u and v. The direction of u� v is given by the direction a screw would advance if rotated

from the direction of u to the direction of v. This is shown in Figure A.5.

Vector products obey the rules

u� v ¼ �v� u

u� ðvþ wÞ ¼ u� vþ u�w

and the Cartesian unit vectors satisfy

ex � ex ¼ ey � ey ¼ ez � ez ¼ 0

ex ey ¼ ez

ey ez ¼ ex

ez ex ¼ ey

�

�
�
�

Figure A.4 Projection of u in the direction of v

Figure A.5 Vector product of u and v
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It follows that the vector product of u and v can be written

u� v ¼ ðuyvz � uzvyÞex þ ðuzvx � uxvzÞey þ ðuxvy � uyvxÞez ðA:7Þ

A.3 Scalar and Vector Fields

Mathematically, a field is a function that describes a physical property at points in

space. In a scalar field, this physical property is completely described by a single

value for each point (e.g. temperature, electron density). A scalar field can be repre-

sented pictorially by contours, which are lines or surfaces that link together points

with the same value of the field in a given plane. An example is shown in Figure A.6

(taken from a quantum mechanical study of the electron distribution in a diatomic

molecule; the contour lines join points of equal electron density in a plane drawn so

as to contain the two nuclei, which on close inspection can be identified as the circles

joined by a ‘bond’).

For quantitative work we need to know the values of the field at each contour; this

is sometimes achieved by labelling the contours or by a system of colour coding. For

vector fields (e.g. gravitational force, electrostatic field intensity), both a direction and

a magnitude are required for each point.

A.4 Vector Calculus

In this section I want to explain how fields can be differentiated. I will then discuss

two aspects of scalar fields: their gradient (which describes their rate of change in

Figure A.6 Contour lines for a scalar field
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space) and their integrals over surfaces and volumes. There are other advanced

concepts that you might have come across, for example the divergence and curl of

a vector field. I don’t intend to draw on these ideas in this book.

A.4.1 Differentiation of fields

Suppose that the vector field u(t) is a continuous function of the scalar variable t. As

t varies, so does u, and if u denotes the position vector of a point P, then P moves

along a continuous curve in space.

For most of this book we will identify the variable t as time and we might be

interested in studying the trajectory of a particle along the above curve in space.

Suppose then that a particle moves from point P to point Q as in Figure A.7, in time

�t.
Mathematicians tell us that we will profit from a study of what happens to the ratio

�u=�t as �t gets smaller and smaller, just as we do in ordinary differential calculus.

The first differential du=dt is defined as the limit of this ratio as the interval �t

becomes progressively smaller.

du

dt
¼ lim

�u

�t

¼ lim

�
�ux
�t

ex þ �uy
�t

ey þ �uz
�t

ez

�

¼ dux

dt
ex þ duy

dt
ey þ duz

dt
ez ðA:8Þ

It is a vector directed along the tangent at P (left to right in the figure). The derivative

of a vector is the vector sum of the derivatives of its components. The usual rules for

Figure A.7 A curve in space
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differentiation apply

d

dt
ðuþ vÞ ¼ du

dt
þ dv

dt
d

dt
ðkuÞ ¼ k

du

dt
d

dt
ðfuÞ ¼ df

dt
uþ f

du

dt

where k is a scalar and f a scalar field.

A.4.2 The gradient

One of the most important properties of a scalar field is the rate at which it changes in

space. A vector called the gradient vector describes this. Suppose that f is a scalar

field, and we wish to investigate how f changes between the points r and rþ dr. Here

dr ¼ exdxþ eydyþ ezdz

and the change in f is

df ¼ f ðrþ drÞ � f ðrÞ

We know from the rules of partial differentiation that

df ¼
�
@f

@x

�
dxþ

�
@f

@y

�
dyþ

�
@f

dz

�
dz

and so we identify df as a certain scalar product

df ¼
�
@f

@x
ex þ @f

@y
ey þ @f

@z
ez

�
ðexdxþ eydyþ ezdzÞ

The first vector on the right-hand side is called the gradient of f, and it is written grad f

(in this book)

grad f ¼ @f

@x
ex þ @f

@y
ey þ @f

dz
ez ðA:9Þ

An alternative notation, used in other texts, involves the use of the so-called gradient

operator r (pronounced del)

r ¼ @

@x
ex þ @

@y
ey þ @

@z
ez

In this case the gradient of f is written rf.

�
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The vector grad f is a vector field whose direction at any point is the direction in

which f is increasing most rapidly and whose magnitude is the rate of change of f in

that direction. The spatial rate of change of the scalar field f in the direction of an

arbitrary unit vector e is given by the scalar product e grad f.

A.4.3 Volume integrals of scalar fields

In order to evaluate quantities such as the mass or electric charge contained within a

region of space, it is necessary to evaluate certain volume integrals. I can best

illustrate the concept with the simple example shown in Figure A.8; suppose that

the electric charge density � inside a cubic box whose faces are the planes x¼ 0,

x¼ 1; y¼ 0, y¼ 1 and z¼ 0, z¼ 1 is given by � ¼ �0ðxþ yþ zÞ where �0 is a

constant. We divide each axis into differential elements, dxs along the x-axis, dys

along the y-axis and dzs along the z-axis, giving a number of infinitesimal differential

volume elements each of volume dxdydz. The charge enclosed by each differential

volume element dxdydz is �dxdydz and so the total Q enclosed by the box is

Q ¼
Z 1

0

Z 1

0

Z 1

0

�0ðxþ yþ zÞ dxdydz

We form three single integrals. First of all, we draw within the region a column

having cross section dz, and constant x and y. In order to add these contributions to Q,

we integrate between the limits of z¼ 0 and z¼ 1 to give

Z 1

0

�0ðxþ yþ zÞ dz ¼ �0ðxþ yþ 1
2
Þ

�

Figure A.8 A cubic volume
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Next we form the y integral by drawing a slice parallel to the yz plane and including

the column. The limits of the y integration are y¼ 0 and y¼ 1

Z 1

0

�0ðxþ yþ 1
2
Þ dy ¼ �0ðxþ 1Þ

Finally, we complete the volume by adding all the slabs, and the limits of the x

integration are x¼ 0 to x¼ 1

Z 1

0

�0ðxþ 1Þ dx ¼ 3
2
�0

I have used the symbol d� to denote a volume element; other commonly used

symbols are dV, dr and d~rr.

A.4.4 Line integrals

Figure A.9 refers to a particle at point P moving along a curve in space under the

influence of a force F. I have taken the force to be centred at the origin; for example,

the particle at P might be a point charge moving under the influence of another point

charge at the origin. The work done, w, in moving the short distance �r is the

projection of F along the displacement F �r. In order to calculate the total work

done as the particle moves from initial point A to final point B, we divide the curve

into small segments �r1, �r2, . . . , �rN. We then have

w �
XN
i¼1

FðriÞ �ri

�

�

Figure A.9 Work done under the influence of a force
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We let the number of points become infinitely large, and the summation approaches a

limit called the line integral

Z
C

F dr ¼ lim
XN
i¼1

FðriÞ �ri ðA:10Þ

If the points A and B coincide, then the line integral refers to a closed curve and we

often write the line integral with a circle round the integral sign
H
C
F dr. If the line

integral of a certain vector field F is zero around any arbitrary closed path, then the

vector field is called a conservative field. It can be shown that every conservative field

can be written as the gradient of a suitable scalar field

F ¼ �grad� ðA:11Þ

The importance of scalar fields such as � is that changes in � depend only on

the starting and finishing points, and not on the path chosen to get between these

points.

A.5 Determinants

The set of simultaneous linear equations

a11x1 þ a12x2 ¼ b1

a21x1 þ a22x2 ¼ b2

has solution

x1 ¼ b1a22 � b2a12

a11a22 � a12a21
; x2 ¼ b2a11 � b2a21

a11a22 � a12a21

If we define a determinant of order 2 by the symbol

a b

c d

����
���� � ðad � bcÞ ðA:12Þ

then these solutions may be written as

x1 ¼
b1 a12
b2 a22

����
����

a11 a12
a21 a22

����
����
; x2 ¼

a11 b1
a21 bb

����
����

a11 a12
a21 a22

����
����

� �

�

DETERMINANTSDETERMINANTS 389



We speak of the elements, rows, columns and diagonal of the determinant in

an obvious manner. In a similar fashion, solution of the three simultaneous linear

equations

a11x1 þ a12x2 þ a13x3 ¼ b1

a21x1 þ a22x2 þ a23x3 ¼ b2

a31x1 þ a32x2 þ a33x3 ¼ b3

involves a denominator

a11a22a33 � a11a23a32 þ a21a32a13 � a21a12a33 þ a31a12a23 � a31a22a13

and so we define a determinant of order three by

a11 a12 a13
a21 a22 a23
a31 a32 a33

������
������¼a11a22a33�a11a23a32þa21a32a13�a21a12a33þa31a12a23�a31a22a13

ðA:13Þ

By inspection, this can be written in terms of certain determinants of order 2

a11 a12 a13
a21 a22 a23
a31 a32 a33

������
������ ¼ a11

a22 a23
a32 a33

����
����� a21

a12 a13
a32 a33

����
����þ a31

a12 a13
a22 a23

����
����

The three determinants of order 2 are called the minors of a11, a21 and a31, respec-

tively; they are the determinants produced by striking out the first column and

successive rows of the determinant of order 3. A little analysis shows that this

determinant may be expanded down any of its columns or along any of its rows by

suitably combining products of elements and their minors.

A.5.1 Properties of determinants

1. The value of a determinant is unchanged by interchanging the elements of any

corresponding rows and columns.

2. The sign of a determinant is reversed by interchanging any two of its rows or

columns.

3. The value of a determinant is zero if any two of its rows (or columns) are identical.
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A.6 Matrices

A matrix is a set of m� n quantities arranged in a rectangular array of m rows and n

columns, for example

A ¼
a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . .
am1 am2 ::: amn

0
BB@

1
CCA

Throughout this book I will denote matrices by bold letters, just like vectors. The

matrix above is said to be of order m by n (denoted m� n). The null matrix 0 is one

whose elements are all zero. If m¼ n, then the matrix is said to be square of order n,

and a square matrix whose only non-zero elements are the diagonal elements is said

to be a diagonal matrix. Thus,

a11 0 0

0 a22 0

0 0 a33

0
@

1
A

is a diagonal matrix. The unit matrix (1 or I) of order n is a diagonal matrix whose

elements are all equal to 1.

A row vector is a matrix of order 1� n and a column vector is a matrix of order

n� 1. For example ða1; a2; . . . ; anÞ is a row vector and

a1
a2
. . .
an

0
BB@

1
CCA is a column vector.

A.6.1 The transpose of a matrix

Interchanging rows and columns of a determinant leaves its value unchanged, but

interchanging the rows and columns of a matrix A produces a new matrix called the

transpose AT. Thus, for example, if

A ¼
a11 a12
a21 a22
a31 a32

0
@

1
A; then AT ¼ a11 a21 a31

a12 a22 a32

� �

In the case that A¼AT, then we say that the matrix A is symmetric. A symmetric

matrix is square and has aij¼ aji.
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A.6.2 The trace of a square matrix

In the square matrix

A ¼
a11 a12 a13
a21 a22 a13
a31 a32 a33

0
@

1
A

the elements a11, a22 and a33 are called the diagonal elements. The sum of the

diagonal elements is called the trace of the matrix

trA ¼ a11 þ a22 þ a33 ðA:14Þ

and the following rules are obeyed

trðkAÞ ¼ k trA

trðABÞ ¼ trðBAÞ
trðAþ BÞ ¼ trAþ trB ðA:15Þ

A.6.3 Algebra of matrices

We need to be aware of a few simple matrix properties as follows.

1. If A and B are two matrices of the same order with elements aij and bij, then their

sum S¼AþB is defined as the matrix whose elements are cij¼ aijþ bij.

2. Two matrices A and B with elements aij and bij are equal only if they are of the

same order, and all their corresponding elements are equal, aij¼ bij.

3. The result of multiplying a matrix A whose elements are aij by a scalar k is a

matrix whose elements are kaij.

4. The definition of matrix multiplication is such that two matrices A and B can only

be multiplied together to form their product AB when the number of columns of A

is equal to the number of rows of B. Suppose A is a matrix of order (m� p), and B

is a matrix of order (p� n). Their product C¼AB is a matrix of order (m� n)

with elements

cij ¼
Xp
k¼1

aikbkj ðA:16Þ
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Thus, for example, if

A ¼
1 3

2 4

3 6

0
@

1
A and B ¼ 1 2 3

4 5 6

� �

then

AB ¼
13 17 21

18 24 30

27 36 45

0
@

1
A and BA ¼ 14 29

32 68

� �

so we see from this simple example that AB is not necessarily equal to BA. If

AB¼BA, then we say that the matrices commute.

A.6.4 The inverse matrix

Let A be the square matrix

A ¼
a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . .
an1 an2 . . . ann

0
BB@

1
CCA

If a suitable matrix X can be found such that AX¼ 1, then we refer to X as the

inverse of A, and write it A�1. We say that A is invertible or non-singular. Not all

matrices are invertible; the rule is that square matrices with a non-zero determinant

such as
1 �1

1 1

� �
are invertible, whilst those with zero determinant such as

1 1

1 1

� �
are not. Matrices with zero determinant are often called singular.

A.6.5 Matrix eigenvalues and eigenvectors

Consider once again an (n� n) matrix A. If we form the product of Awith a suitable

but arbitrary column vector u, then sometimes it will happen that the product Au is a

linear multiple l of u, Au ¼ lu. In this case we say that u is an eigenvector (or

eigenfunction) of A with eigenvalue l. There are exactly n eigenvalues and eigen-

vectors. Thus, for example, if

A ¼
0 1 0

1 0 1

0 1 0

0
@

1
A
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then we find

l1 ¼ p
2 and uT1 ¼ 1

2

ffiffiffi
2

p

2

1

2

� �

l2 ¼ 0 and uT2 ¼ � 1

2
0

1

2

� �

l3 ¼ �p
2 and uT3 ¼ 1

2
�

ffiffiffi
2

p

2

1

2

� �

If two or more eigenvalues are the same, then we say that they are degenerate.

A.7 Angular Momentum

Figure A.8 shows a particle moving along a curve in space. If the particle has mass

m, then its linear momentum p is defined as

p ¼ m
dr

dt
ðA:17Þ

Newton’s second law of motion relates force to the rate of change of linear momen-

tum

F ¼ dp

dt
ðA:18Þ

In the absence of an applied force, the linear momentum is constant. When the mass

is constant, Equation (A.18) can be written

F ¼ m
d2r

dt2

The angular momentum l is defined as a vector cross product

l ¼ r� p ðA:19Þ
Care has to be exercised when dealing with angular momentum, because l depends on

the point chosen to be the coordinate origin. If we were to choose a new coordinate

origin such that the position vector of the particle were

r0 ¼ rþ R

where R is a constant vector, then we have

l0 ¼ r0 � p

¼ lþ R� p
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On differentiation of both sides of Equation (A.19) with respect to time we find

dl

dt
¼ d

dt
r� p

dl

dt
¼ dr

dt
� pþ r� dp

dt
dl

dt
¼ r� F

The vector cross product of r and the applied force F, r� F, is known as the torque

and so I have proved that in the absence of an applied torque, the angular momentum

of a particle remains constant in time.

Consider now a particle of mass m executing circular motion around the z-axis, as

shown in Figure A.10

r ¼ xex þ yey þ zez

¼ a sin �ex þ a cos �ey þ dez

Differentiating we have

dr

dt
¼ �a

d�

dt
cos �ex þ a

d�

dt
sin �ey

¼ d�

dt
ð�yex þ xeyÞ

¼ d�

dt
ez � r

Figure A.10 Circular motion around the z-axis
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It also follows that

I ¼ r� p

¼ mr� dr

dt

¼ m
d�

dt
r� ð�yex þ xeyÞ

¼ m
d�

dt
ð�zxex þ zyey þ ðx2 þ y2ÞezÞ

The vector l is not directed along the z-axis because of the choice of ‘origin’ along the

z-axis but for rotation with z¼ 0 we have

I ¼ m
d�

dt
ðx2 þ y2Þez

¼ m
d�

dt
a2ez

ðA:20Þ

The quantity ma2 turns out to have a special significance for circular motion, and we

call it the moment of inertia about the z-axis.

A.8 Linear Operators

I now need to remind you about linear operators, mathematical entities that form a

key concept in the language of quantum mechanics. An operator ÂA can be thought of

as a mathematical entity that turns one function into another. It is conventional to

write them with the hat sign in order to distinguish them from other mathematical

constructs. To keep the discussion simple, I will just deal in this section with opera-

tors that work on functions of a real single variable that I will write consistently as x.

Thus, for example, we might have

ÂAf ðxÞ ¼ ðx2 þ 1Þf ðxÞ ðA:21Þ

which means that the action of ÂA is to replace f(x) by (x2þ 1) f(x). So, if f (x)¼ exp (x),

then we would have f (0.1)¼ 1.105 and ÂAf(0.1)¼ (0.12þ 1)� 1.105¼ 1.116. I should

emphasize that this is not an equation that must somehow be solved for a value of x, it

is a mapping between two sets of functions often represented as a Venn diagram

(Figure A.11).

Now consider the operator B̂B which operates on a differentiable function f(x) to

give the first derivative df(x)=dx. We can write this as

B̂Bf ðxÞ ¼ d

dx
f ðxÞ ðA:22Þ
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So B̂B acting on exp(x) gives exp(x). It is clear that the action of these two operators on

the same function generally gives a different result.

An operator is linear if it satisfies the following two properties

ÂAðf ðxÞ þ gðxÞÞ ¼ ÂAf ðxÞ þ ÂAgðxÞ
ÂAðcf ðxÞÞ ¼ cÂAf ðxÞ

where c is a scalar and both of the two operators discussed above are linear.

Consider now the product of two operators ÂA and B̂B which we write as ÂAB̂B. We

define this product as follows

ðÂAB̂BÞf ðxÞ ¼ ÂAðB̂Bf ðxÞÞ ðA:23Þ

That is to say, we calculate the result B̂Bf ðxÞ first and then operate with ÂA on the result.

Using the two operators discussed so far we have

ÂAB̂Bf ðxÞ ¼ ðx2 þ 1Þ df ðxÞ
dx

whilst

B̂BÂAf ðxÞ ¼ 2xf ðxÞ þ ðx2 þ 1Þ df ðxÞ
dx

They certainly don’t give the same result and it therefore matters which way round

we apply the operators. If we now define a third operator ĈC whose effect on a function

is to multiply by x such that

ĈCf ðxÞ ¼ xf ðxÞ

then we see that

B̂BÂAf ðxÞ ¼ 2ĈCf ðxÞ þ ÂAB̂Bf ðxÞ

Figure A.11 Venn diagram
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This is true for all differentiable functions f(x) and so it forms an operator identity.

We would write it as

B̂BÂA ¼ 2ĈC þ ÂAB̂B

In the special case where two operators satisfy the equality

B̂BÂA ¼ ÂAB̂B ðA:24Þ

we say that they commute (you will recognize much of the terminology that we used

for matrices; once again, that’s a different story). Commuting operators play a major

role in quantum mechanics, as we will shortly see.

To every linear operator there belongs a special set of functions ui(x) and scalars

ai such that

ÂAuiðxÞ ¼ aiuiðxÞ ðA:25Þ

The scalars can be real or complex. We say that the ui(x) are the eigenvectors (or

eigenfunctions) of the operator and the ai are the eigenvalues. Depending on the

physical circumstances and the operator, there may be a finite set of eigenvalues, a

countably infinite set or a continuum.

To finish this section, let me give you an important result from the theory of linear

operators (together with a simplified proof).

Theorem A.1 If two linear operators commute, then it is possible to find a set of

simultaneous eigenfunctions.

Proof (simplified version) Suppose that two operators have each a single eigenvec-

tor and eigenvalue, given by

ÂAuðxÞ ¼ auðxÞ
B̂BvðxÞ ¼ bvðxÞ

If we operate on the first equation by the second operator we find

B̂BÂAuðxÞ ¼ aB̂BuðxÞ

but we know that the operators commute and so

ÂAB̂BuðxÞ ¼ aB̂BuðxÞ

or

ÂA½B̂BuðxÞ� ¼ a½B̂BuðxÞ�
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The function in square brackets is therefore a linear multiple of the eigenfunction of

the operator ÂA

B̂BuðxÞ ¼ cuðxÞ

which shows that the eigenfunctions of the two operators are the same, apart from

some arbitrary multiplicative constant.

Linear operators play an important role in quantum mechanics because

1. Every observable such as position, momentum, energy and angular momentum

can be represented by a linear operator.

2. The results of measurements of these observables are given by the eigenvalues of

the operators.

3. Observables can be measured simultaneously to arbitrary precision only when

their operators commute

We usually give some concrete form to the linear operators, especially those re-

presenting position and linear momentum. In the Schr€oodinger representation we

substitute as follows:

� for a position operator such as x̂x we write x

� for a momentum operator such as p̂px we substitute

�j
h

2�

@

@x

A little operator analysis shows that

xpx � pxx ¼ j
h

2�
ðA:26Þ

and this is consistent with the famous Heisenberg uncertainty principle.

A.9 Angular Momentum Operators

The classical angular momentum vector of a particle with position vector r and linear

momentum p is

l ¼ r� p ðA:27Þ
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In classical mechanics we can measure the three components and the square of

the length, lx, ly, lz and l2 ¼ ðlx2 þ ly
2 þ lz

2) simultaneously with arbitrary precision.

Things are far more interesting for quantum mechanical systems.

Expanding the vector product Equation (A.27) we see that the x component of l is

lx ¼ ypz � zpy

The corresponding operator is

l̂lx ¼ ŷyp̂pz � ẑzp̂py

which becomes, in Schr€oodinger representation

l̂lx ¼ �j
h

2�

�
ŷy
@

@z
� ẑz

@

@y

�

After some operator algebra it can be shown that the various components of the

angular momentum operator do not commute with each other and so cannot be

measured simultaneously to arbitrary precision. They are subject to Heisenberg’s

uncertainty principle. We find in addition that the square of the magnitude and any

of the three components can be measured simultaneously to arbitrary precision. We

conclude that at best we can simultaneously measure the square of the magnitude and

one component, which is by convention called the z-component.

The eigenvalues and eigenfunctions of angular momentum can be found most

easily in spherical polar coordinates

l̂lz ¼ �j
h

2�

@

@�

l̂l2 ¼ � h2

4�2

�
@2

@�2
þ cot �

@

@�
þ 1

sin 2�

@2

@�2

� ðA:28Þ

This problem is tackled in detail in all the traditional quantum chemistry texts such as

Eyring, Walter and Kimball, and we can write

l̂l2Yl;ml
ð�; �Þ ¼ lðlþ 1Þ h2

4�2
Yl;ml

ð�; �Þ

l̂lzYl;ml
ð�; �Þ ¼ ml

h

2�
Yl;ml

ð�; �Þ
ðA:29Þ

The eigenfunctions are well known from mathematical physics and are called sphe-

rical harmonics. The quantum numbers l and ml are restricted to certain discrete

values: l¼ 0, 1, 2, 3 . . . and for each value of l; ml can take integral values ranging

from �l to þl.

We visualize angular momentum as follows. The vector precesses round the

z-axis in such a way that its z-component is constant in time, but that the x- and
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y-components vary. There are 2lþ 1 possible orientations of the vector. I have illu-

strated this for the case l¼ 1 in Figure A.12, where just one of the three possible

vector alignments is shown. For each orientation the vector precesses around the

axis keeping the z-component fixed at mlðh=2�Þ. The length of the vector isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp ðh=2�Þ.

Figure A.12 Angular momentum with l¼ 1
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