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We use replica exchange Monte Carlo simulations to measure the equilibrium equation of state of
the disordered fluid state for a binary hard sphere mixture up to very large densities where standard
Monte Carlo simulations do not easily reach thermal equilibrium. For the moderate system sizes
we use (up to N = 100), we find no sign of a pressure discontinuity near the location of dynamic
glass singularities extrapolated using either algebraic or simple exponential divergences, suggesting
they do not correspond to genuine thermodynamic glass transitions. Several scenarios are proposed
for the fate of the fluid state in the thermodynamic limit. © 2011 American Institute of Physics.
[doi:10.1063/1.3541248]

I. INTRODUCTION

Simple liquids, crystals, glasses, powders, and colloidal
dispersions are frequently modeled using hard spheres. Al-
though considered as one of the simplest models in condensed
matter physics, hard spheres exhibit a complicated phase
behavior that is not fully elucidated. In particular, a well-
established first order fluid–solid transition exists in three
dimensions. For monodisperse systems, it occurs from vol-
ume fractions ϕf = πρσ 3/6 ≈ 0.492 to ϕs ≈ 0.545 (ρ is the
number density and σ the particle diameter).1–5 However, the
metastable fluid branch persists for ϕ > ϕf, and its fate at
large ϕ remains a debated subject.6 Since the fluid cannot ex-
ist above the maximum density of the cubic centered crystal
structure, ϕfcc ≈ 0.74, it may either go unstable, or it may ex-
hibit a singularity with a diverging (dimensionless) pressure,
Z = β P/ρ, and a vanishing (also dimensionless) isothermal
compressibility, χ = δρ/δ(β P). Here β = (kB T )−1, with T
the temperature and kB the Boltzmann constant. Addition-
ally, a thermodynamic glass transition could possibly occur
along the way,6–11 characterized by a diverging timescale for
structural relaxation,12–15 a change of slope in the equilibrium
equation of state Z (ϕ), and a jump in the compressibility.
These features would be the analog, for hard spheres, of the
glass transition observed in glassforming liquids, character-
ized in particular by a diverging viscosity and a jump in the
specific heat.16 It is the aim of this work to search for a ther-
modynamic signature of the glass transition in hard spheres.

Studying the metastable fluid branch by simulations is
complicated since the system naturally tends to form the crys-
tal phase,17, 18 at least in three dimensions.19 Since pressure is
very dependent on the existence of small amounts of crystal
nuclei, excluding ordered configurations from the sampling
is critical to obtain the real pressure–density relationship.17, 18

An efficient way to overcome the somewhat arbitrary exclu-
sion of crystalline states from the sampling is to introduce size
polydispersity to avoid, or at least considerably delay, crystal

formation. One must then work between several constraints:
polydispersity must be large enough to prevent ordering, but
small enough that a qualitatively different physics, specific
to very polydisperse systems, does not set in. For instance,
phase separation can occur in mixtures,20 or fractionation in
systems with continuous polydispersity.21 These phenomena
have counterparts even for disordered states, since multiple
glass transitions might occur in polydisperse systems, where
for instance large particles are arrested in a sea of small ones
that still easily diffuse.22 In this work we use a 50:50 bi-
nary mixture of hard spheres with a diameter ratio 1.4, large
enough to efficiently prevent crystallization, but which shows
no sign of multiple glass transitions.

The final problem to be overcome is also the most dif-
ficult one: approaching the glass transition at thermal equi-
librium is hard in systems where the viscosity becomes large
because the timescale to reach equilibrium is simultaneously
diverging. On this aspect, numerical simulations could poten-
tially outperform experimental work since it is possible, at
least in principle, to imagine algorithms that have no “phys-
ical” counterpart but still allow a proper exploration of the
configuration space, and thus of the thermodynamic prop-
erties of the system.23 Several such “smart” algorithms ex-
ist in various context of statistical mechanics, such as um-
brella sampling which makes use of biased statistical weights,
replica exchange, or parallel tempering where copies of the
system at various thermodynamic states are run in parallel to
avoid being trapped in free energy minima,24–26 or cluster and
swap algorithms which implement unphysical particle moves
to speed up equilibration.27, 28

Although commonly used and very successful in many
areas of condensed matter, such methods have compara-
tively been much less used in numerical studies of the
glass transition, for several reasons. First, the glass transi-
tion is mostly defined by, and studied via, dynamic proper-
ties, and so it is vital to use physical microscopic dynamics,

0021-9606/2011/134(5)/054504/9/$30.00 © 2011 American Institute of Physics134, 054504-1

Downloaded 01 Feb 2011 to 192.100.180.19. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.3541248
http://dx.doi.org/10.1063/1.3541248
http://dx.doi.org/10.1063/1.3541248


054504-2 G. Odriozola and L. Berthier J. Chem. Phys. 134, 054504 (2011)

which inevitably yields slow dynamics. There are neverthe-
less interesting thermodynamic properties to be investigated
in glassforming materials, for which implementation of parti-
cle swaps,29 cluster moves,30 Wang–Landau sampling,31, 32 or
parallel tempering33–36 have all been implemented. Of course,
these different methods can be combined to improve fur-
ther the efficiency. This has led in particular to strong claims
about both the absence30 and presence29, 37 of thermodynamic
glass transitions in various glassy fluid models (including hard
spheres), but also raised debates about the real efficiency of
the various numerical algorithms to study systems with slow
dynamics.33–35, 38

Here, we employ the replica exchange Monte Carlo
(REMC) method,25, 26, 39, 40 as recently adapted to systems
composed of hard particles.5 The idea is to simulate several
replicas of the same system at different but close enough ther-
modynamic states to allow efficient exchanges between the
replicas.23 For soft interparticle potentials, the most common
ensemble expansion is that performed in temperature where
each replica follows a canonical ensemble simulation and the
ensembles are set at different temperatures. To take advan-
tage of the REMC algorithm for hard spheres, one needs to
expand the isobaric-isothermal ensemble in pressure,41 each
replica evolving at a different pressure.5 Replicas having the
larger pressures can escape from locally stable free energy
minima through successive exchanges with replicas at lower
pressures.42

Using REMC, we have been able to reach thermal equi-
librium for hard spheres up to very large densities where stan-
dard Monte Carlo algorithms do not allow proper sampling of
the configuration space.15, 43, 44 We were thus able to study the
thermodynamic properties of the disordered fluid branch of a
binary hard sphere mixture over a broad density range, which
includes both the mode-coupling, ϕmct, and Vogel–Fulcher–
Tamman, ϕvft > ϕmct, dynamic singularities finding no ther-
modynamic signature for any of them, at least for the mod-
erate system sizes we used, up to N = 100. While the ab-
sence of a genuine transition at ϕmct can be established by
standard numerical methods,15, 43, 44 it is the main new result
of this work that the same phenomenon seems to occur also
at ϕvft.

The paper is organized as follows: In Sec. II we describe
in more detail the model we use, and review the various “crit-
ical” volume fractions that have been reported in previous
work. In Sec. III we provide details about the REMC sim-
ulations. In Sec. IV we perform several tests to ensure that a
proper sampling of configuration space has been done. In Sec.
V we describe our equilibrium results for the thermodynamics
of the system. In Sec. VI we investigate even higher densities,
for which thermal equilibration could not be reached. Finally,
we discuss our results in Sec. VII.

II. CRITICAL DENSITIES IN A BINARY HARD SPHERE
MIXTURE MODEL

Previous work on binary mixtures suggests that a 50:50
binary mixture of hard spheres with a diameter ratio of 1.4 is a
very efficient way to prevent crystalline ordering even at large
densities.7, 44, 45 We will use N = NA + NB particles, NA and

NB denoting the number of small and large particles in the
mixture, respectively. We work in units where the diameter of
the small particles is unity, σAA = 1.

Moreover, the dynamics of small and large particles is
strongly coupled so that the slow relaxation and location
of the putative dynamic glass singularities yields consistent
results for both components of the mixture.15, 46 Thus, this
model seems well-suited for investigating the existence of a
thermodynamic glass transition of hard spheres. In a previ-
ous (bidimensional) study where efficient cluster Monte Carlo
moves were used,30 a very large polydispersity was intro-
duced, with the unwanted result that large particles seemed to
arrest at a density where small particles could still easily dif-
fuse, making the identification of dynamic singularities some-
what ambiguous.38

Previous numerical explorations of the dynamics of the
present binary mixture revealed the existence of very slow
dynamics and possible dynamic singularities at large volume
fraction, with no interference from the crystalline phase.15

Several relevant values of the packing fractions have been re-
ported using different definitions and theoretical approaches,
and we summarize them in Table I.

First, the dynamics of the system slows down and starts to
become nonexponential above ϕonset ≈ 0.56, which can thus
be seen as the onset density for slow dynamics in this system.

Second, the location of several dynamic “singularities”
can be defined and have been numerically studied. An alge-
braic divergence of the relaxation time,

τ ∼ (ϕmct − ϕ)−γ , (1)

as predicted by mode-coupling theory,47 can be located near
ϕmct ≈ 0.592. However, simulations also revealed this density
to be a crossover since the equilibrium relaxation time can be
measured at and above ϕmct where it remains finite.15, 46 This
suggests that a different functional form should be used to
extrapolate a possible divergence of the relaxation time.

A popular functional form for τ (ϕ) is the so-called
Vogel–Fulcher–Tamman (VFT) expression,16

τ ∼ τ∞ exp

(
A

ϕvft − ϕ

)
, (2)

which yields, for the present system, the value ϕvft ≈ 0.615,
A and τ∞ being additional fitting parameters.15 As opposed
to the mode-coupling singularity, standard simulations fail to
access such a large packing fraction in equilibrium condi-
tions, since the largest state point investigated in Ref. 15 is
ϕ = 0.597 < ϕvft.

TABLE I. Values of the relevant volume fractions characterizing the phys-
ical behavior of the fluid for the binary hard sphere mixture studied in this
work.

Definition Volume fraction
Onset of glassy dynamics ϕonset ≈ 0.56
Mode-coupling theory, Eq. (1) ϕmct = 0.592
Vogel–Fulcher–Tamman, Eq. (2) ϕvft = 0.615
Dynamic scaling, Eq. (3) ϕ0 = 0.635
Diverging pressure (lower bound) ϕlow = 0.662
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Using a combination of scaling arguments involving both
direct simulations of hard particles and a soft harmonic re-
pulsion at very low temperatures, recent numerical work pro-
vided support for the existence of a slightly different stronger
dynamic divergence,15, 44, 46, 48

τ ∼ τ∞

(
A

(ϕ0 − ϕ)δ

)
(3)

with the preferred values δ ≈ 2.2 and ϕ0 ≈ 0.635.
Finally, taking the view that no thermodynamic glass

transition occurs, one must conclude that dynamics should ar-
rest when particles come into contact and no particle move
can take place. In this perspective, τ must diverge simulta-
neously with the pressure Z at the random close packing or
jamming density, ϕrcp, which can then be empirically defined
as the end point of the equilibrium equation of state of the
fluid branch.49 In practice, this is hard to measure because
the system falls out of equilibrium and becomes a nonergodic
hard sphere glass much before getting to jamming, such that
only lower bounds to the location of the diverging pressure
can be numerically determined. For the present system, previ-
ous work reported the value ϕlow ≈ 0.662 as the tightest lower
bound on ϕrcp, obtained by rapid compressions of carefully
equilibrated fluid states.44, 50 This result indicates that the pu-
tative end point of the metastable fluid branch for this system
is above ϕlow = 0.662.

III. THE REPLICA EXCHANGE MONTE CARLO
METHOD

The partition function in the extended ensemble studied
in the replica exchange Monte Carlo method we use is given
by5, 41

Qextended =
nr∏

i=1

QNTPi
, (4)

where QNTPi
is the partition function of the isobaric-

isothermal ensemble of the system at pressure Pi , temperature
T , particle number N . The important new parameter is nr , the
considered number of replicas of the system.

This extended ensemble is sampled by combining stan-
dard NTP i simulations on each replica (involving both trial
displacements of single particles and trial volume changes)
and replica exchanges (swap moves at the replica level). To
satisfy detailed balance, these swap moves are performed
by setting equal all a priori probabilities for choosing ad-
jacent pairs of replicas and using the following acceptance
probability:5, 41

Pacc =min(1, exp[β(Pi − Pj )(Vi − Vj )]), (5)

where Vi − Vj is the volume difference between replicas i
and j . Adjacent pressures should be close enough to provide
non-negligible exchange acceptance rates between neighbor-
ing ensembles. In order to take good advantage of the method,
the ensemble at the smaller pressure must also ensure large
jumps in configuration space, so that the larger pressure en-
sembles can be efficiently sampled.

The probability for selecting a particle displacement trial,
Pd , for selecting a volume change trial, Pv , and a swap trial,
Ps , are fixed to

Pd = nr N/(nr (N + 1) + w),

Pv = nr/(nr (N + 1) + w),

Ps = w/(nr (N + 1) + w),

(6)

where w � 1 is a weight factor. Note that Pd + Pv + Ps = 1,
as it should. The probability density function to have the next
swap trial move at the trial nt is given by

P(nt ) = Ps exp(−Psnt ). (7)

Hence, one may obtain the next swap trial move from nt =
− ln(ξ )/Ps , with ξ being a random number uniformly dis-
tributed in the interval [0, 1] (Refs. 51 and 52). We set all
particles of a given replica to have the same a priori proba-
bility of being selected to perform a displacement trial. The
same is true for selecting a replica for performing a volume
change trial.

The trials [1, nt − 1] are displacements and volume
changes, and so they can be independently performed on the
replicas. This has the advantage of being easily parallelized.
The algorithm is parallelized in four threads, since quad core
desktops are used, but could be more efficiently parallelized
in nr threads. Since all swap trials are performed in a single
core, the efficiency of the parallelization increases with de-
creasing w . We employed w = 1/100. Verlet lists are used
for saving CPU time, which can be quite large for the replicas
evolving with the highest pressure values.

Our simulations are performed in two steps. All simula-
tions are started by randomly placing particles (avoiding over-
laps), so that the initial volume fraction is ϕ = 0.30. We first
perform about 2 × 1013 trial moves at the desired state points,
during which we observe that the replicas reach a stationary
state. We then perform more 2 × 1013 additional trials dur-
ing which various measurements are performed, with results
described in Secs. IV–VI.

The maximum particle displacements and volume
changes for trial moves are adapted for each pressure to yield
acceptance rates close to 0.3. Thus, particle displacements
and volume changes of ensembles having high pressures are
smaller than those associated with ensembles having low
pressures. An optimal allocation of the replicas should lead
to a constant swap acceptance rate for all pairs of adjacent
ensembles. For a temperature expansion, the efficiency of the
method peaks at swap acceptance rates close to 20%.53 In this
work, we use instead a geometric progression of the pressure
with the replica index. In Sec. V we report results for various
system sizes, N = 60, 80, and 100 using nr = 14, with β P
varying from 38 to approximately 5.8, the geometrical factor
being 0.865. In Sec. VI we present additional results where
the largest pressure is β P = 100, N = 60, nr = 18, and the
geometrical factor is 0.840.

IV. THERMALIZATION TESTS

The aim of this work is to provide new reliable thermo-
dynamic information at large densities where thermalization
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becomes a severe issue for standard algorithms. This means
in particular that the algorithm must be able to sample accu-
rately a phase space where ergodicity is potentially broken
in the thermodynamic limit. Such severe sampling conditions
are also met, for instance, in systems such as spin glasses.40 It
is crucial to establish whether the produced results are indeed
representative of thermal equilibrium, as we now discuss.

As a first check we verify that the pressure measured
from the configurations sampled by the replicas in each en-
semble yield results consistent with the values set numeri-
cally. Pressure and structure are related by20

β P

ρ
= 1 + 2πρ

3

∑
α

∑
γ

xαxγ σ 3
αγ gαγ (σαγ ), (8)

where α and γ run over species A and B, and xα , σαγ , and
gαγ , respectively being the fraction of particles in species α,
the contact distance between α and γ , and the partial radial
distribution functions of species α and γ . Note that gαγ (σαγ )
must be evaluated using a careful extrapolation of gαγ (r ) to-
ward contact. Thus, we may split the excess pressure into
three contributions, corresponding to the AA, AB, and BB
interactions. These contributions are shown in Fig. 1(a) to-
gether with the total pressure obtained from Eq. (8). As can
be seen, the measured pressure agrees very well with the val-
ues imposed numerically. Furthermore, a smooth behavior is
obtained for all gαγ (σαγ ) as a function of ϕ suggesting that
adequate sampling has been performed.

For all ϕ the largest contribution to the excess pressure
is that of the large–large pairs (BB), followed by the large–
small (AB), and the small–small (AA) pairs, in that order. In
the right panel of Fig. 1 the evolution of the average num-
ber of neighbors is shown, obtained by integration of the par-
tial pair correlation functions in a spherical shell of constant
thickness 0.2σAA. The total number of neighbors per particle
is also shown. The numbers of neighbors are consistent with
the contributions to the excess pressure, i.e., they increase fol-
lowing the order AA, AB, and BB at all ϕ and they increase
with ϕ, albeit more slowly than the pressure. This saturation
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FIG. 1. (a) gAA(σAA) (squares), gAB (σAB ) (diamonds), and gB B (σB B ) (cir-
cles) as a function of ϕ. The total pressure, Eq. (8), is shown as triangles.
It agrees well with the set pressure values (light bullets). (b) The number of
AA (squares), AB (diamonds), and BB (circles) neighbors as a function of ϕ

with bullets indicating the total number of neighbors per particle. All data
correspond to N = 100.

is physically expected since the number of neighbors remains
finite even when the pressure diverges near jamming.

We mentioned in the introduction that preventing crys-
tallization is in principle dealt with by using a binary mix-
ture. Since evidence for this stems from standard numerical
approaches, it remains to be seen whether REMC finds more
easily the crystalline phase or not. Indeed previous work on
the monodisperse system showed that the REMC algorithm is
not only capable of forming the crystal phase but also to ac-
curately predict the liquid–solid transition.5 Thus, if a crystal
is the preferred state, we expect to see signs of local orienta-
tional order. We checked this by computing the well-known
order parameter Q6, as defined, for instance, in Refs. 5, 18,
and 54, which is very sensitive to any trace of local angular
order.18 We evaluate it separately for AA, BB, and AB pairs. In
all cases and at all densities, Q6 is very close to the value of
a completely random system of points.18 Moreover, the three
Q6 values do not evolve significantly during the runs. Thus,
we can safely conclude that if the crystal phase corresponds
to the equilibrium state of this particular binary mixture, the
disordered state is sufficiently metastable not to affect our re-
sults.

For replica exchange methods to provide an efficient
sampling of phase space, it is important to check whether all
simulated replicas visit the entire set of thermodynamic con-
ditions several times. This is a necessary condition for ther-
malization because this ensures that the configurations con-
tributing to the thermodynamic averages are very different
as the low pressure replicas evolve rapidly and have large
displacements in configuration space. In Fig. 2 we show the
evolution of three randomly selected replicas making a ran-
dom walk among the different pressure states. We observe
that all replicas contribute several times during the course of
the production run to both the highest and the lowest pres-
sure states. With the imposed geometric progression of the
pressure, we find that the acceptance rate has a small drop
near ϕ ≈ 0.58, which suggests that thermalization becomes
much harder above these densities. It is intriguing that this
corresponds roughly to ϕmct, above which it also becomes
hard to reach thermal equilibrium using standard numerical
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FIG. 2. Random walk in pressure space for N = 100 and nr = 14 for three
arbitrarily chosen replicas. Thermodynamic state “1” corresponds to the high-
est pressure and “14” to the lowest. All replicas visit several times both lowest
and highest pressure states.
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tools. This numerical bottleneck suggests a faster decrease
of the number of accessible configurations as pressure in-
creases, or a faster increase of the barriers separating long-
lived metastable states.

Each replica evolves at a given predefined pressure Pi .
Therefore, the volume Vi of replica i is a fluctuating quan-
tity, and it is interesting to focus on the probability density
functions (PDFs) of the volumes Vi , or equivalently of the
corresponding volume fractions ϕi . In cases where the system
remains trapped in long-lived metastable states, the PDFs may
be distorted or may contain peaks or shoulders which help de-
tecting a lack of thermalization. Additionally, these features
of the PDFs typically disappear as time increases and thus
help revealing whether measurements are performed in sta-
tionary states. We observe that the PDFs evolve in the first
simulation steps but they then become both symmetric and
take a Gaussian shape. The resulting functions are shown in
Fig. 3 for N = 100 with low volume fractions PDFs corre-
spond to low pressures. Notice that the PDFs have a larger
peak and become narrower as pressure increases, which re-
flects the fact that the compressibility decreases.

Ergodicity implies that the same results should be ob-
tained independent of the set initial conditions and of the pa-
rameters of the simulation. We checked the reproducibility
of our results by running simulations with nr = 1, 2, 4, 6,
8, 10, 12, and 14, for N = 60, for the same highest pressure
(β P = 38) and geometrical factor of 0.865. Three indepen-
dent runs were carried out with nr = 1, having all different
initial conditions. For a fair comparison, all simulations lasted
four weeks running on identical single cores and no paral-
lelization was implemented for this particular test. From the
measured PDFs at each pressure, we measure the averaged
density to calculate the equation of state Z (ϕ), which are re-
ported in Fig. 4. We observe that results become reproducible
only when nr ≥ 8, which corresponds to simulations where
the lowest pressure is below ϕ = 0.58 and yields thermalized
results. For smaller nr , Z is always larger than that obtained
for nr ≥ 8, suggesting that thermal equilibrium had not been
reached. In particular, the three independent runs with nr = 1
are well above the equilibrated curve and distinct from one
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FIG. 3. Probability distribution functions (PDFs) of volume fraction fluctua-
tions for each of the nr = 14 pressure values, N = 100. All distributions are
stationary, featureless, and symmetric and have sufficient overlap to allow for
replica exchanges.
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FIG. 4. (a) Equation of state, Z = β P/ρ = Z (ϕ), for N = 60 and increasing
number of replicas from nr = 1 to nr = 14. Only data for nr > 8 are repro-
ducible, while data for a smaller nr are not thermalized. (b) Checking the
fluctuation–dissipation theorem (FDT) relation, Eq. (9), for density fluctua-
tions. The lines show 1/χ obtained from taking the derivative of the equation
of state, while symbols are direct evaluation using spontaneous fluctuations
of the density. The FDT holds with good accuracy both for equilibrated sys-
tems (nr = 14, bottom) and for nearly frozen ones (nr = 6, top).

another. This implies that runs with nr < 8 are nonergodic
and do not sample the configuration space accurately at large
densities even with a large number of trials. In particular, this
means that a standard Monte Carlo algorithm would not yield
equilibrium results at large density, and that it is clearly out-
performed by the REMC simulation scheme we use in this
work.

A final test for equilibrium was suggested by Santen and
Krauth.30 At thermal equilibrium the spontaneous fluctuations
of density are related to the isothermal compressibility, which
is defined from the response of the pressure to an infinitesi-
mal change in density in the linear response regime. This rela-
tion is thus a form of fluctuation–dissipation theorem (FDT),
which is derived using the hypothesis that states are sampled
with the equilibrium Gibbs measure,

χ = N

( 〈ρ2〉 − 〈ρ〉2

〈ρ〉2

)
= δρ

δ(β P)
. (9)

Checking whether this relation is satisfied by the data is,
therefore, in principle a good way to check thermalization.
In practice, this means checking the existence of a quantita-
tive relationship between the broadness of the PDFs in Fig. 3
and the location of their averages.

We followed these two routes for obtaining χ . The fluc-
tuations are directly measured from the simulations, while
the response function is obtained by first fitting the pressure
locally to a smooth polynomial function before taking the
derivative with respect to density. In Fig. 4 we present our
results showing 1/χ as a function of density using both meth-
ods. When nr = 14 and results are reproducible, we find that
the FDT relative to fluctuation density is well satisfied, which
comes as an additional proof that our data are representative
of thermal equilibrium. However, we note that for runs with
a small number of replica all concentrated in the high den-
sity regime which appeared far from equilibrium in the left
panel of Fig. 4, the FDT is also satisfied with a good accu-
racy. In that case, all replicas belong to the glassy state and are
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basically frozen in a single “basin” where they sample
quasiequilibrium short-lived fluctuations. Studies of FDT vi-
olations in aging glasses have indeed shown that deviations
from FDT appear only when considering those degrees of
freedom that relax very slowly in the glass.55 This suggests
that the FDT test suggested in Ref. 30 is only effective in
a narrow density regime where a complete separation of
timescale does not make Eq. (9) valid even very far from equi-
librium. That is, the test seems useful to detect a slow evolu-
tion and thus, the consistency of both χ determinations only
guarantees a stationary state has been reached. This is a nec-
essary but insufficient condition for equilibrium.

V. THERMODYNAMIC RESULTS AT EQUILIBRIUM

In Sec. IV, we provided evidence that the REMC algo-
rithm is properly implemented, and that it might give ther-
malized results for N = 100, nr = 14 with maximum pres-
sure β P = 38. In this section we study more carefully the
outcome of this study, starting with the equation of state Z (ϕ).

Using the PDFs shown in Fig. 3 it is easy to deduce the
average volume fraction for each pressure, and thus to ob-
tain Z (ϕ). The results are shown in Fig. 5(a) for three dif-
ferent systems sizes, N = 60, 80, and 100. A comparison of
the three system sizes shows that finite size effects appear to
be very small for the equation of state as the data obtained
with different system sizes practically coincide. Nevertheless,
larger system sizes produce a very small but apparently sys-
tematic decrease of the volume fraction at a given pressure,
for all ϕ. As a further check, we report the results of an inde-
pendent study using a standard Monte Carlo approach which
used N = 1000, but covers a smaller range of pressures.44 Up
to ϕ ≈ 0.595 where both data sets can be compared, the data
agree very well, confirming the validity of our algorithm, at
least up to this density.

A first quantitative result from our study stems from
data at volume fractions larger than the ones studied in
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FIG. 5. (a) Equation of state Z (ϕ) for different system sizes, N = 60 (open
squares), N = 80 (circles), and N = 100 (diamonds). Light bullets are N =
1000 data taken from Ref. 44. The black solid line is the BMCSL equation
of state, the dashed line is an empirical polynomial form, and the light line is
a simple pole divergence, Eq. (10). (b) Isothermal compressibility obtained
from density fluctuations (symbols) or by derivative of the fits shown in panel
(a). The vertical dotted line is at ϕvft, where no thermodynamic signature of
a glass transition is found.

Ref. 44, which were all accurately described using
the Boublik–Mansoori–Carnahan–Starling–Leland (BMCSL)
equation of state,56, 57 which is the extension for mixtures of
the Carnahan–Starling equation of state. The data in Fig. 5(a)
follow the BMCSL equation up to ϕ ≈ 0.59, but clearly devi-
ate from it at larger volume fractions, the deviations becoming
very large at large ϕ where BMCSL clearly underestimates
the pressure. A similar deviation was recently reported from
molecular dynamics simulations of a hard sphere system with
continuous polydispersity.58

As a better description of the data at large ϕ we used the
fitting formula suggested from free volume considerations,59

Z = d ′ϕc

ϕc − ϕ
, (10)

where d ′ and ϕc are free fitting parameters. Although the pref-
actor d ′ should in principle be constrained within free volume
theory to be equal to the spatial dimension d, we find that its
value must be adjusted to describe our data. In Fig. 5(a) we
show the best fit to the data ϕ > 0.61 to Eq. (10) as a full line,
using d ′ = 2.82 and ϕc = 0.669. This value of ϕc should be
compared to the lower bound for the diverging pressure dis-
cussed above in Sec. II (see Table I), which was ϕlow = 0.662
(Ref. 50). The large difference between the two values is a
direct sign that the REMC algorithm has been able to ther-
malize the system much more efficiently. Note also that the fit
in Eq. (10) only works at large volume fractions, while at low
ϕvalues it clearly deviates from the simulation data.

Finally, to account for the crossover region ϕ ≈ 0.58–
0.61 between the BMCSL and free volume fits, we use an
empirical high order polynomial fit, shown with a dashed line.
We give no particular emphasis on a physical interpretation
of this fit, which we simply use as a fitting tool to obtain the
numerical derivative of the pressure, and thus the compress-
ibility, in this intermediate range of volume fractions.

The second important result of our study is obtained by
considering the vertical line which corresponds to the volume
fraction ϕvft = 0.615. While an extrapolation of the relaxation
time divergence using Eq. (2) indicates the possibility of a
glass transition occurring at ϕvft, there is no corresponding
thermodynamic signature in the equation of state, in particular
no sign that a kink develops as the system size increases, at
least for the modest N values we have been able to study, see
Sec. VII.

These results are confirmed in Fig. 5(b) which shows the
evolution of the isothermal compressibility as a function of
ϕ for the different system sizes. These data are directly ob-
tained from the spontaneous density fluctuations, i.e., from
χ = N (〈ρ2〉 − 〈ρ〉2)/〈ρ〉2, and they directly confirm the ab-
sence of any jump in the compressibility over this range of
volume fractions and system sizes, in particular near ϕvft.

We also show in this figure the compressibility values as
obtained from δρ/δ(Zρ), using the three fits described above,
namely using the BMCSL equation of state at low ϕ (black
line), the polynomial fit at intermediate ϕ (dashed line), and
the free volume fit at high ϕ (light line). There is excellent
agreement between both sets of data showing that Eq. (9) is
well satisfied at over the entire range of volume fractions.
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The compressibility data simply amplify the results ob-
tained for Z (ϕ). In particular, the good agreement between the
BMCSL equation of state and the numerical data is very good
up to ϕ ≈ 0.56, but deviations in fact already appear at mod-
erate volume fractions ϕ ≈ 0.57–0.59, that are not obvious
from the pressure itself [see Fig. 5(a)]. Similarly, the free vol-
ume description of the data is only adequate above ϕ = 0.61.
These two limits make evident the existence of a crossover
regime ϕ ∼ 0.56–0.61 where neither approaches work, and
the only description we have is an empirical polynomial func-
tion, which, interestingly, shows two changes of the concavity
but no jump.

To sum up, our simulation data at low and intermediate
densities agree with the BMCSL equation of state, while at
large densities they are much better described by a simple di-
vergence at ϕc = 0.669. The data show no jump of χ in the
studied range of ϕ values, which encompasses both ϕmct and
ϕvft fitted dynamic singularities.

VI. INCREASING THE PRESSURE FURTHER:
NONEQUILIBRIUM EFFECTS

In Sec. V we found the unexpected result that, for mod-
est system sizes, equilibrium data could be produced even be-
yond the fitted location of the VFT singularity. In this section
we ask whether it is possible to go to even larger volume frac-
tions and cross ϕ0 = 0.635, the putative location of the ther-
modynamic glass transition estimated in Ref. 44.

To start answering this question we run a simulation with
N = 60 and a larger number of replicas, nr = 18 setting the
maximum pressure to β P = 100 and a geometric factor of
0.84. As before, we discard the first 2 × 1013 trials, and use
2 × 1013 trial moves to perform measurements.

The results for Z (ϕ) and χ (ϕ) are shown in Fig. 6, while
the pressure, contact values of the radial distribution func-
tions, and number of neighbors are shown in Fig. 7. The data
shown in Fig. 6 are consistent with those found previously
with nr = 14. There is not only a good agreement with the
data obtained for nr = 14 and N = 100, but also with the
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FIG. 6. Same as Fig. 5 comparing runs with (N = 100, nr = 14, maximum
pressure β P = 38, filled circles) to (N = 60, nr = 18, maximum pressure
β P = 100, open circles). Black lines correspond to the BMCSL equation of
state, light lines to free volume fit Eq. (10), the vertical line denotes ϕvft =
0.615. While both data sets coincide below ϕ ≈ 0.63, the nr = 18 data at
large pressures have not reached thermal equilibrium.
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FIG. 7. Same as Fig. 1 for the run with N = 60 and nr = 18. The data scatter
at large volume fraction, ϕ > 0.63 indicates nonergodic effects.

free volume extrapolation toward larger ϕ. Additionally, for
ϕ < 0.63, the measured pressure shown in Fig. 7(a) matches
the imposed pressure and all structural quantities display a
smooth evolution with ϕ, see Fig. 7(b). Unfortunately, this
smooth behavior is lost for ϕ � 0.63, see Fig. 7, suggesting
that inadequate sampling is performed.

This conclusion is further supported by the data shown in
Fig. 8, which shows the path in the pressure space of three
chosen replicas. Despite an acceptance rate for replica ex-
changes being close to 10%, the replicas clearly do not sample
all thermodynamic states with equal probability. In particular,
it is clear that the averages at large pressure are performed
over a very limited number of independent configurations,
suggesting that an ergodic sampling of the phase space is not
achieved. Note that the third replica, before getting arrested at
large pressure near the end of the run, smoothly travels among
the highest 14 pressures, which probably explains why the
two data sets with nr = 14 and nr = 18 produce consistent
results below ϕ = 0.63, despite the fact that the latter run is
clearly not producing fully thermalized data.

Therefore, we conclude that much longer simulations
would be needed to reach thermal equilibrium above ϕ ≈
0.63, presumably with a larger number of replicas to allow
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FIG. 8. Same as Fig. 2 for the run with N = 60 and nr = 18. Thermody-
namic state “1” corresponds to the highest pressure and “18” to the lowest.
Contrary to Fig. 2 here the replica does not appropriately visit all thermody-
namic states in an ergodic manner.
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a more extensive sampling of the configuration space. Un-
fortunately, this implies that despite our numerical effort we
cannot discuss the possibility raised in Ref. 44 that a thermo-
dynamic glass transition takes place near ϕ0 = 0.635 in the
present binary hard sphere mixture.

VII. DISCUSSION

In this work, we have demonstrated that the replica ex-
change Monte Carlo method recently adapted to improve the
sampling of hard sphere systems is a useful new tool to in-
vestigate the thermodynamic behavior of the disordered fluid
state in a binary mixture of hard spheres up to very large vol-
ume fractions. We found that reproducible, thermalized re-
sults could be obtained up to ϕ ≈ 0.63 at least for moder-
ate system sizes, N ≤ 100. This volume fraction is beyond
two important “critical” packing fractions defined dynami-
cally, namely the mode-coupling transition ϕmct = 0.592 and
the divergence extrapolated using a Vogel–Fulcher–Tamman
expression, ϕvft = 0.615. Following the equation of state for
the pressure Z (ϕ) and the isothermal compressibility χ (ϕ) we
found no signature of a thermodynamic glass transition up to
ϕ = 0.63 for the system sizes we use. Additionally, we have
pushed the lower bound for the location of the divergence of
the pressure of the fluid branch up to ϕ = 0.669, much above
the previous determination ϕ = 0.662.

For computational reasons our study was limited both in
the range of system sizes and of volume fractions for which
thermal equilibrium could be reached. Thus, our results leave
open the existence of (at least) three different scenarios for the
behavior of the fluid of hard spheres at large volume fractions
in the thermodynamic limit.

In the first scenario, we assume that finite size effects are
small and that our data at large pressure above ϕ = 0.63 are
nevertheless indicative that no change of behavior is to be ex-
pected for Z and χ even at larger volume fractions, such that
Eq. (10) will continue to hold up to some ϕc. In this view, ϕc

would represent the end point of the fluid branch where the
equilibrium pressure of the fluid would diverge, while the re-
gion ϕ = 0.56–0.61 represents a crossover from the BMCSL
equation of state to a free volume like divergence. To prove
or disprove this scenario is nearly impossible, as one should
establish that no thermodynamic singularity occurs up to ϕc

in the thermodynamic limit. It is also natural to expect, in
this perspective, that the equilibrium relaxation time of the
fluid would also diverge at ϕc. This was termed the “jam-
ming” scenario in Ref. 44 because it is the diverging pres-
sure that controls the divergence of the viscosity. Note that
our results imply that this divergence will in any case occur
above ϕ = 0.669, which is much above the location of the
jamming transition (“point J”) at ϕJ = 0.648 obtained using
purely athermal packing preparation protocols.60 Thus, even
in the absence of a thermodynamic glass transition, point J
does not control the glass transition of hard spheres.

The second scenario could be that finite size effects are
severe, that our checks with different system sizes are insuffi-
cient, and that N = 100 is still very far away from the thermo-
dynamic limit even in the crossover regime ϕ = 0.58–0.62.
In that case, the crossover region we have described could

potentially become sharper, in the thermodynamic limit,
yielding a discontinuity of the pressure and a jump of the
compressibility. This scenario is potentially simpler to study
numerically based on our work, as one should attempt to in-
crease further the range of system sizes studied while main-
taining thermal equilibrium in the crossover regime, an objec-
tive that does appear numerically realistic.

In the third scenario, our conclusions would continue to
hold in the thermodynamic limit up to ϕ = 0.63, confirming
in particular that nothing special happens near ϕvft = 0.615.
However, a thermodynamic transition could still take place at
larger density, as suggested for instance in Refs. 15, 44, and
46 and 48 where a dynamic singularity was located near ϕ0 =
0.635. Although we found no thermodynamic signature of ϕ0

in Sec. VI, we also noticed that our data at these large volume
fraction were not thermalized leaving open the possibility that
a pressure discontinuity exists at equilibrium. Exploring this
third scenario would be quite demanding, as one would need
to cross ϕ0 at thermal equilibrium for larger systems.

To conclude, it should come as no surprise that provid-
ing solid conclusions regarding the existence of a thermody-
namic liquid–glass transition in the thermodynamic limit is
a difficult numerical task. However, we have provided evi-
dence that replica exchange Monte Carlo simulations can be
used to study this issue in hard sphere systems, and we have
suggested that drawing some firm conclusions is perhaps not
completely out of reach. In particular, it would be interesting
to study larger system sizes, together with a larger number of
replicas to maintain the acceptance rates for replica exchanges
at an acceptable level. This implies using larger computational
resources.
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