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PACS. 05.20.Jj – Statistical mechanics of classical fluids.
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Abstract. – The interplay between self-diffusion and excitation lines in space-time was re-
cently studied in kinetically constrained models to explain the breakdown of the Stokes-Einstein
law in supercooled liquids. Here, we further examine this interplay and its manifestation in
incoherent scattering functions. In particular, we establish a dynamic length scale below which
Fickian diffusion breaks down, as is observed in experiments and simulations. We describe
the temperature dependence of this length scale in liquids of various fragilities, and provide
analytical estimates for the van Hove and self-intermediate scattering functions.

A ten-day journey starts with a single step. — Laotse, Tao Te King.

In this paper, we consider the process of self-diffusion of probe molecules in supercooled
liquids. Figure 1 shows the trajectory of such a probe obtained from a model of a supercooled
liquid [1]. At the conditions shown, the structural relaxation time of the model is of the order
of 105 microscopic time steps. The left panel of fig. 1 extends over this range of time. The
right panel extends three orders of magnitude longer in time, and one order of magnitude
larger in space. Here, the trajectory looks like a random walk of Fickian diffusion, unlike
the trajectory in the left panel. In this paper, we describe the crossover from non-Fickian to
Fickian diffusion, and identify the length scale, ��, that characterizes the crossover.

In our perspective, supercooled liquids are modeled by a coarse-grained mobility field evolv-
ing with simple empirical rules [2]. An essential prediction of our modeling is that dynamics
becomes spatially correlated [3], i.e., the growth of time scales is accompanied by the growth
of dynamical length scales, giving rise to the phenomenon of dynamic heterogeneity observed
in experiments and simulations [4–7]. This finding suggests a degree of universality and thus
utility for a coarse-grained perspective. Nevertheless, it is important to test our approach by
using it to revisit all sorts of experimental and numerical studies of supercooled liquids [1,8–10].
Generic properties are only weakly dependent upon details of the models, which become im-
portant, however, for quantitative comparisons to experiments or simulations [8]. In most of
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Fig. 1 – A typical trajectory of a probe molecule in the 1D FA model at T = 0.25 is shown twice on
different time and length scales. The α-relaxation time is τα ∼ 105, the diffusion constant D ∼ 10−4.

this paper we will therefore pursue our investigations in the simplest lattice model of this fam-
ily [2], namely the one-dimensional Fredrickson-Andersen model (hereafter 1D FA model) [11].
This is defined by the Hamiltonian H =

∑
i ni, where ni = 0, 1, with dynamics constrained by

isotropic dynamic facilitation. A site needs at least one neighbour with ni = 1 to change state,
with Boltzmann probability. The concentration of excited sites is c = 〈ni〉 = [1 + e1/T ]−1, T
being the temperature. Lengths are in units of the lattice spacing which we set to one.

Self-diffusion is studied by introducing a probe molecule [1], which makes it possible to
map “spins” back to “particles”. The probe’s position, x(t), evolves with reduced time as
x(t + 1) = x(t) ± nx(t)nx±1(t), i.e., the probe is allowed to move only when sitting on an
excitation and jumps to a neighbouring excited site. Due to coarse-graining, fast vibrations are
ignored. In that sense, our results are close to dynamic studies of inherent structures [12,13],
but this is not crucial as far as the long-time relaxation is concerned. Numerically, we studied
the dynamics of probe molecules in the 1D FA model using Monte Carlo simulations. At each
temperature, the system size, L, is chosen to be much larger than the mean distance between
excitations, �(T ) = 1/c(T ), in order to avoid finite-size effects. We typically used L > 10�(T )
and averaged over at least 104 independent probe trajectories. We have also studied the
behavior of a probe in the East model [14], a more constrained and fragile counterpart of the
1D FA model, and results are briefly discussed near the end of the paper.

The trajectories in fig. 1 show the typical time evolution of the position of a probe molecule
in the 1D FA model at a fixed, low temperature. Due to the kinetic constraint, excitations in
dynamically facilitated models propagate as continuous excitation lines in space and time [1,3].
On the α-relaxation time scale motion is non-Fickian with long periods where the molecule
is immobile, seen as plateaux in fig. 1, punctuated by shorter periods where it travels over
a few sites. Plateaux correspond to the particle being “caged” in regions of space far from
excitations, and having to wait for an excitation line to reach its position and allow it to
move. As discussed in ref. [1], the average time it takes a probe to be reached by an excitation
line and thus move for the first time is the mean persistence time, which is also the α-
relaxation time, τα, of these models. Further, once the particle has moved, subsequent steps
occur when it is hit again by excitation lines, i.e., each time there is a microscopic exchange
event. The average exchange time, τx, determines the self-diffusion constant, D. Since τx

grows much more slowly with decreasing temperature than τα, the breakdown of the Stokes-
Einstein relation follows [1]. This means also that the propagation of the particle is given by
a competition between these two fundamental processes: persistence and exchange. Which
one dominates at a given temperature will depend on the time and length scales of motion.
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Fig. 2 – Left: Gs(r, t), eq. (1), at fixed temperature and various times has a bimodal form from
slow/fast molecules. Right: diffusive part of Gs(r, t) rescaled after eq. (5) shows decreasing deviations
from the Gaussian (dashed line) with increasing time.

To quantify the above observations, we study the histogram of particle displacements, i.e.
the self-part of the van Hove function,

Gs(r, t) =
〈
δ
(
r − [x(t) − x(0)]

)〉
, (1)

where brackets indicate an average over trajectories. The above discussion suggests that at
times of the order of τα, some particles are still trapped in their initial position, while others
have already escaped and rapidly diffused over a certain distance. The distribution (1) should
reflect this bimodal character with a contribution in r = 0 from the “slow”, immobile particles,
and contributions at non-zero displacements from diffusing, “fast” particles. Numerical results
in fig. 2 (left panel) fully confirm this expectation. Coexistence of fast and slow subpopulations
of particles is a major indicator of dynamic heterogeneity [4–7,15–17].

The behavior of the van Hove function (1) can be anticipated from a simple analysis.
Each time the probe particle is allowed to move it makes a random-walk step. Therefore,
it performs a random walk, but the time lag between steps fluctuates. The time lags are
determined by the dynamics of the mobility field of the host liquid. For ease of analysis, we
neglect the back-reaction of the probe on this field. In this approximation, the probe process
is a random walk at random times, or continuous-time random walk [18]. The probability for
the particle to be at position r at time t is then Gs(r, t) =

∑∞
m=0 πm(t)φ(m)(r), where πm(t)

is the probability that the probe jumped m times up to time t, and φ(m)(r) is the probability
that a random walker is at site r after m steps, having started from the origin.

The first step is a persistence event. If p(t) is the distribution of persistence times [9],
then the probability π0(t) of not having an event up to time t is given by π0(t) = P (t), where
P (t) =

∫ ∞
t

dt′p(t′) is the persistence function [3, 9]. If we further assume that successive
exchange events are uncorrelated, which is a good approximation in the FA model [1], then
πm(t) can be written as a multiple convolution of the exchange time distribution ψ(t) [19].
The Laplace transform of πm(t) for m > 0 then reads π̂m(s) = p̂(s)ψ̂m−1(s)[1−ψ̂(s)]/s, where
hats indicate Laplace transforms. If we also Fourier-transform in space we obtain F̂s(k, s),
which is the Laplace transform of the self-intermediate scattering function, Fs(k, t), and reads

F̂s(k, s) = P̂ (s) + cos (k)
p̂(s)
s

1 − ψ̂(s)

1 − cos (k)ψ̂(s)
. (2)

This is the Montroll-Weiss equation for the propagator of the probe particle [18]. From
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eq. (2) we immediately obtain a k- and T -dependent time scale: τ(k, T ) = lims→0 F̂s(k, s).
Since the distributions p(t) and ψ(t) are both narrow (all moments are finite [3]), their Laplace
transforms read, for small s, p̂(s) ≈ 1 − ταs and ψ̂(s) ≈ 1 − τxs, which leads to

τ(k, T ) = τα(T ) +
cos (k)

1 − cos (k)
τx(T ). (3)

For small k this gives τ ≈ τα + (k2D)−1, since D = 1/(2τx) [1].
The inverse Laplace transform of the factor cos (k)[1−ψ̂][s−s cos (k)ψ̂]−1 in eq. (2) defines

a propagator for diffusing molecules, Fdiff(k, t). Due to the narrowness of ψ, it becomes that
of normal diffusion in the large-t, small-k limit, Fdiff(k, t) ≈ exp[−Dk2t]. Inverse-Laplace-
transforming (2), we obtain Fs(k, t) = P (t) +

∫ t

0
dt′p(t′)Fdiff(k, t− t′). In the regime of strong

decoupling this can be further approximated by

Fs(k, t) ≈ P (t) + [1 − P (t)] Fdiff(k, t). (4)

The corresponding van Hove function then reads

Gs(r, t) ≈ P (t)δ(r) +
1 − P (t)√

2πα(t)
exp

[
− r2

2α(t)

]
, (5)

where we have approximated Gdiff(r, t) by a Gaussian for all times. We find that eq. (5)
works well for all times and temperatures, see fig. 2 (right). Deviations from the Gaussian
tend to disappear at long times, as expected. The mean-square displacement reads 〈r2〉 =∫ ∞
−∞ dr r2Gs(r, t) � [1 − P (t)]α(t), where α(t) is the mean-square displacement obtained by

restricting the average to the fast particles. For large times, α(t → ∞) ≈ 〈r2〉 ≈ 2Dt, while
α(t → 0) = 1 by construction. Physically, eq. (5) shows that it is a good approximation to
think of molecules as existing in one of two subpopulations of immobile and mobile particles.

Our primary results in this paper all follow from eq. (5). It is valid only for lengths and
times larger than our lattice spacing and unit of time, respectively. Thus the delta-function
in eq. (5) contributes to an experimentally observed Gs(r, t) only after coarse-graining and
would be replaced at smaller length scales by a smoother distribution, typically Gaussian.
A two-Gaussian fit to the van Hove function is reported in confocal microscopy experiments
performed with colloidal suspensions [15]. If one is predisposed to think of the distribution in
terms of a single Gaussian, it will appear as if the distribution has “fat tails”. Such tails have
been described as indicators of dynamic heterogeneity [5, 16,17].

The approximation (5) also provides a simple explanation for the time dependence of the
non-Gaussian parameter, α2(t) = 1

3 〈r4〉/〈r2〉. By construction, α2(t) = 1 for a Gaussian
Gs(r, t). Instead, α2(t) reflects the transition from a Gaussian (fast vibrations at short times)
to another Gaussian (Fickian diffusion at long times), the distribution being non-Gaussian
at intermediate times when both terms in (5) compete. From eq. (5) we obtain α2(t) =
[1 − P (t)]−1, which is monotonically decreasing with time. This expression is valid beyond a
coarse-graining time, and therefore does not describe the very short-time Gaussian behaviour
that would make α2(t) non-monotonic. A similar monotonic behaviour is found in molecular-
dynamics studies of inherent structures dynamics [13]. This expression does, however, explain
why α2(t) can reach values much larger than unity.

Figure 3 presents our numerical results at various temperatures and wave vectors for the
self-intermediate scattering function Fs(k, t). At high temperature, T = 1.5, relaxation is
homogeneous and Fs(k, t) decays exponentially at all wave vectors. The effect of dynamic
heterogeneity becomes fully visible when T decreases. First, time decays are non-exponential
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Fig. 3 – Self-intermediate scattering function in the 1D FA model, for different T and the same range
of k: k = 2π/n, with n = 2, 4, 6, 8, 10, 15, 20, 30, 40, 60, 80, and 100 (from left to right). Dashed lines
at T = 0.3 represent the persistence P (t) and the diffusive behaviour exp[−(2π/80)2Dt].

at large wave vector. Second, Fs(k, t) becomes exponential when k decreases at constant T ,
as suggested by our observations of fig. 1. Finally, curves for different wave vectors that are
distinct at high T superpose when T is decreased, and Fs(k, t) becomes k-independent.

These observations are rationalized by eq. (4). For large k, the last term in (4) is exponen-
tially suppressed, and Fs(k, t) ≈ P (t), which is exp[−√

t/τα] in the 1D FA model [20]. This
behaviour justifies our identification of τα with the persistence time [1,9]. At small k and large
times, eq. (4) becomes Fs(k, t) ≈ exp[−k2Dt], as confirmed by fig. 3. At intermediate k, mixed
behaviour between diffusion and persistence is predicted, and observed. These observations
naturally imply that stretching is also a k- and T -dependent property, at odds with predic-
tions stemming from mode-coupling theory [22], which indeed poorly describe self-dynamics
at intermediate wave vectors [22].

The crossover from persistent to Fickian diffusive dynamics shows up in the behaviour
of the relaxation times τ(k, T ), as given by eq. (3). Numerically, we extract the time scales
from the scattering functions in the usual way, Fs(k, τ) = e−1. Results are presented in fig. 4.
Fickian behaviour, τ ≈ k−2D−1, is obeyed at all k at high T . When T decreases, diffusive
behaviour is restricted to smaller and smaller k, and is progressively replaced, at larger k, by
the k-independent form τ ≈ τα. This leads us to define a temperature-dependent characteristic
length scale, ��(T ), which determines the onset of Fickian diffusion. From eq. (3) we get

�� ∼
√

Dτα . (6)

It is therefore possible to collapse all time scales on a master curve rescaling times by k−2D−1

and space by ��. This is shown in the right panel of fig. 4, where �� is estimated from eq. (6).
In fig. 4, we also show a similar collapse of time scales that we have found when the East
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Fig. 4 – Left: relaxation times in the 1D FA model, as a function of wave vector for different tem-
peratures, T = 1.5, 0.8, 0.6, 0.3, 0.2, and 0.15 (from bottom to top). The straight lines correspond to
τ ∼ k−2 and τ ∼ const, the limiting behaviours predicted by eq. (3). Right: time scales rescaled by
the diffusive limit k−2D−1 are collapsed using the scaled variable k�� for both 1D FA (filled symbols)
and East (open symbols) models. Data for the East model cover about 10 decades in time scales,
with T ∈ [0.31, 0.8] and the scaling curve has been shifted by a factor 5, for clarity.

model [14] is used in place of the 1D FA model. The East model is the fragile counterpart of
the 1D FA model. We see that the scaling behaviour predicted by eqs. (3), (6) works well also
in this case, despite the fact that in the East model successive exchange events are not uncor-
related [1], which was one of the assumptions in the derivation of eqs. (2)-(5). A behaviour
similar to that of figs. 3 and 4 was recently reported in molecular-dynamics simulations of a
binary Lennard-Jones mixture [23], and in experiments on supercooled TNB [24].

For both the FA and East models the diffusion constant obeys a fractional Stokes-Einstein
law, D ∼ τ−ξ

α , with ξ ≤ 1 [1]. In the case of the FA model, ξFA = 2/∆ ≈ 2/3, 2/2.3, 2/2.1
for dimensions d = 1, 2, 3, respectively, ∆ being the time exponent τα ∼ c−∆ [21, 25]. The
Stokes-Einstein law, ξ = 1, is recovered for d ≥ 4, the upper critical dimension of the FA
model [21,25]. For the East model, numerical results indicate ξEast ≈ 0.7–0.8, independent of
d up to the highest dimensionality studied, d ≤ 6. Equation (6) can be rewritten

�� ∼ τ (1−ξ)/2
α . (7)

Therefore, �� will diverge when T → 0 (or c → 0) if there is Stokes-Einstein breakdown, i.e.,
when ξ < 1. The Fickian crossover length, ��, measures something related to but distinct from
the largest dynamic heterogeneity length, �(T ), which can be measured, for example, through
multi-point dynamic structure factors [6]. For both strong (FA) and fragile (East) systems, this
length goes as � ∼ c−ν with a spatial exponent ν [3,25], and therefore always diverges as T → 0
in an Arrhenius manner. In general, we have that � �= ��, and in particular for fragile systems,
eq. (7) shows that �� will grow faster than �, in a super-Arrhenius way. The reverse is true in
strong systems where � should grow faster than ��. In ref. [23], the typical length scale � of
dynamic heterogeneity was used to rescale wave vectors in the analog of fig. 4. Present results
show instead that � and �� are different quantities, although they might be hard to distinguish
on a restricted temperature window. Finally, �� was identified in ref. [26] by dimensional analy-
sis which confuses � and ��. This particular confusion is avoided in ref. [27], where the crossover
length is also obtained, by assuming a memory function is analytic for small wave vectors and
its Taylor series can be truncated at second order even for wave vectors that are not small.

The physical basis for the Fickian crossover is that persistence time dominates over ex-
change time. The former is the time for the first dynamical step, while the latter is the typical
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time scale of subsequent motion. This mechanism naturally leads to the breakdown of the
Stokes-Einstein law [1], non-Gaussian van Hove functions with large tails, and subpopulations
of fast and slow particles. The present picture is different from the idea that relaxation and
diffusion result from averaging a time and its inverse, respectively, over a single distribution of
relaxation times [27, 28]. Our explanation that physically distinct processes (persistence and
exchange) compete is consistent with the experimental observation [24] of a strong decoupling
in a material with self-similar distributions of relaxation times.
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