Laboratoire des Colloïdes Verres et N anomatériaux

Spatial Correlations and Temporal Heterogeneity of the Slow Dynamics of a Colloidal fractal gel

:

Agnès Duri^{1,2} and Luca Cipelletti¹

¹ Laboratoire des Colloïdes, Verres et Nanomatériaux (LCVN), UMR n°5587, Université Montpellier II, 34095 Montpellier, France ² Desy – Hasylab, 22607 Hamburg, Germany

Experimental System

Polystyrene colloids (d = 20 nm) suspended in a buoyancy-matching H_2O/D_2O (45/55 vol/vol) $\Leftrightarrow \phi_{PS} = 6 \ 10^{-4}$

+ $MgCl_2 \Leftrightarrow C_{M\circCl_2}=10 \text{ mM} \implies Fractal gel$

Experimental Set Up

"Multispeckle" Light Scattering experiments (Single Scattering)

- **Far field** Several q (4337 cm⁻¹ < q < 52177 cm⁻¹) **Time Resolved Dynamics** V \Leftrightarrow All the scattering volume N°1 \Leftrightarrow All the speckled image
- **Imaging geometry** Single q ($q = 10^4$ cm⁻¹) **Time and Space Resolved Dynamics** $V \Leftrightarrow$ Portion of the N°2 scattering volume \Leftrightarrow Portion of the speckled image

time t

Speckled Images

Spatially Resolved Intensity Correlation Function (N°1):

$$g_{2}\left(\tau,\vec{r}\right)-1=\left\langle c_{i}\left(t,\tau,\vec{r}\right)\right\rangle _{i}$$

Fime (N
$$^{\circ}$$
 1) and Space (N $^{\circ}$ 2) Resolved Degree of Correlation

$$c_{I}\left(t,\tau,\vec{r}\right) = \frac{\left\langle I_{P}\left(t\right) I_{P}\left(t+\tau\right)\right\rangle_{P \in V(\vec{r})}}{\left\langle I_{P}\left(t\right)\right\rangle_{P \in V(\vec{r})}\left\langle I_{P}\left(t+\tau\right)\right\rangle_{P \in V(\vec{r})}} - 1$$

 $I_p(t)$: intensity p-th pixel at time t

Spatial Correlation of the Dynamics (N° 2):

$$= \langle c_l(t,\tau,\vec{r}) \rangle_l = \left\langle \frac{\left\langle \left[c_l(t,\tau,\vec{r}) - \left\langle c_l(t,\tau,\vec{r}) \right\rangle_l \right] \left[c_l(t,\tau,\vec{r}+\Delta\vec{r}) - \left\langle c_l(t,\tau,\vec{r}+\Delta\vec{r}) \right\rangle_l \right] \right\rangle_l}{\sqrt{\sigma_{cl}^2(t,\tau,\vec{r}) \sigma_{cl}^2(t,\tau,\vec{r}+\Delta\vec{r})}} \right\rangle_{\vec{r}} \rangle_{\vec{r}}$$

Experimental Results Average Dynamics : 0.6 10 0.5 10 (2005) 10¹ 0.4 (q, r) -0.3 (sec) 0.2 10 0.1 0.0 -0.1 10 3.0x10 10 10 10 t (sec) t (sec) q (cm⁻¹) τ (sec) Fit by a "compressed" exponential Large fluctuations of τ_c $\tau_f \propto q^{-1} \Rightarrow$ Drift motion \nearrow t \Rightarrow Aging behaviour $g_2(q,\tau) - 1 \propto \exp[-(\tau/\tau_f)^{3/2}]$ Heterogeneous dynamics **Time Resolved Dynamics – Fluctuations Study:** $q=20656 \text{ cm}^{-1} \Leftrightarrow 3 \mu\text{m}$ 4337 cm⁻¹ < q < 52177 cm⁻¹ 0.6 0.01 1.0x10 0.15 0.4 1E-3 0.10 ب 0.2 5. 1E-4 _ 5.0x10³ 0.05 ъ 1E-5 2 0.00 0.0 0.0 L 3.6x10 4.0x10 10 5.0x10 1.0x10 2.0x10 6.0x10 1.5x10⁴ 2.4x10 4.0x10 τ (sec) r, (sec) a (cm $max \propto q$ Statistics treatment $\tau_{max} \propto \tau_{f}$ **Time and Space Resolved Dynamics – Local dynamics Study:** Fluctuations max at large length scale $\tau_f = 1000 \text{ sec}$ 1.0 0.8 $\tau > \tau_f$: $au < au_{ m f}$: 0.6 Very long-ranged correlation Spatial correlation decay 0.4 0.2 ⇒ « solid-like » behavior \Rightarrow « fluid-like » behavior

References :

[2] L. Cipelletti, H. Bissig, Trappe V, P. Ballesta, S. Mazoyer, J. Phys.: Condens. Matt., 2003, 15, S257-S262

^[1] L. Cipelletti, H. Manley, R.C. Ball, D. Weitz, J. Phys. Rev. Lett., 2000, 84, 10

^[3] A. Duri and L. Cipelletti, Europhys. Lett., 2006, 76, 972-978