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1 Introduction

Associating polymers are macromolecules with a part that is soluble in a selective solvent (often
water), the so-called backbone or spacer to which two or more moieties that do not dissolve in
this solvent, the stickers, are attached. The stickers may be randomly distributed along the
backbone or may be grouped in blocks. One of the major issue of associating polymers is to
convey useful rheological properties to solutions, such as increased viscosity, gelation, shear-
thinning or shear-thickening. the association of such polymers in solution has been studied
extensively, and many reviews can be found in the literature , see for example [1–4].
Associating polymer may form self-assembled transient networks, a class of complex mate-
rials forming spontaneously 3D networks at thermodynamical equilibrium, that can transmit
transiently elastic stresses over macroscopic distances.Transient self-assembling networks are
common in both natural and synthetic materials. They consist of self-assembled aggregates
(nodes) that are reversibly connected by links with a finite life-time as opposed to chemical
gels where junctions are permanent. These physical gels exhibit two universal and independent
features : a thermodynamic first order phase separation, which occurs at low volume fraction
between a dilute and concentrated solution even in the absence of any specific interaction, and
a non-thermodynamic topological transition, where an infinite network spanning the entire vol-
ume of the system is formed[ [5].
Telechelic polymers are often used as model linkers because they are architecturally simple:
they consist of a long solvophilic midblock with each end terminated by a solvophobic short
chain (a sticker). The stickers incorporate into the solvophobic domains of the aggregates and
can bridge them via their solvent-soluble midblock resulting in an attractive interaction between
the aggregates. The nature and the morphologies of the aggregates forming the network are
versatile: (i) telechelic polymers in binary solution [6] that self-assemble spontaneously into
non interacting flowerlike micelles at low concentration and form three dimensional networks
above a threshold concentration [7] , (ii) surfactant vesicles [8] , (iii) lyotropic lamellar phases
[10] (iv) wormlike micelles [11–13], (v) spherical micelles [14], (vi) oil-in-water [15] or water-
in-oil [16] microemulsion droplets.
This last system (telechelic-microemulsion mixtures) is of particular fundamental interest. In-
deed, the advantage of this system is that the parameters that control the thermodynamics and
structure of the physical gel can be easily identified and independently controlled: the concen-
tration of nodes (the droplets) and the number of polymers per droplets. This is in contrast with
binary mixtures of telechelics, where the number of nodes formed by the associating chain ends
and the number of links cannot be controlled separately. Other advantages of this system are the
spherical symmetry which allows for instance a simple structural analysis in the Fourier space
from scattering experiments and the versatility of the control of the surface curvature.
On the other side, linear rheological properties are very simple and have been indeed very well
described by a simple Maxwell fluid model with a single relaxation time and a single zero shear
modulus. Again the elastic modulus is easily controlled by the number density of polymer
bridges in the sample whereas the relaxation time can be tuned by changing the chemical length
of the stickers. Finally This system exhibit a very peculiar sudden rupture mode reminiscent of
a brittle fracture in solid materials [17].
So, the telechelic -micromemulsion mixtures serve as an elegant model system for a general
class of transient networks of associating polymers and allow to investigate both the equilib-
rium, structural, flow an fracture properties of transient networks . In this lecture, we will
first describe the model system, and address successively (i) the pair potential induced by two
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beads reversibly linked by telechelic polymers, (ii), the phase behavior of the microemulsion-
telechelics mixtures, and (iii) the linear viscoelastic properties. However, the reader interested in
binary solutions of telchelic chains can refer to a series of recent papers by Sprakel et al. [18–20]

2 Experimental system
The telechelics-microemulsion mixture system system is composed of an oil-in-water droplet
microemulsion to which telechelic polymers are added . This system was previously described
by Filali et al [15]. The o/w microemulsion involves a cationic surfactant, cetyl-pyridinium
chloride CPCl, and a cosurfactant n-octanol. The droplets are swollen with decane and dis-
persed in 0.2 M NaCl brine. The droplets are spheres of radius b = 62 Å and were found
robust to variations of both the microemulsion concentration and of the amount of added poly-
mer [15]. The volume fraction in oil droplets is denoted φ. The polymer chains (Poly-ethylene
oxide) of molecular weight 10 kDalton are grafted at both ends with aliphatic chains of eighteen
CH2 groups. This hydrophobic end groups (stickers) anchor reversibly into the microemulsion
droplets. The polymer amount is represented by the connectivity r, i.e. the average number of
hydrophobic stickers per droplet. The polymers chains can either link two oil droplets ( bridge
configuration) or loop one a single one ( loop configuration). The other possible states ( free
chains with no stickers adsorbed into a sphere of dangling chains with a single sticker adsorbed
) are negligible. Indeed, For aqueous transient networks, the stickers consist of short chains
of typically 10-25 methylene groups, with a sticking energy on the order of kT per methylene
group. Therefore,the corresponding sticking energy is ε/kT ≈ 10 − 25 is large enough to
neglect the fraction of dangling or free chains.

Fig. 1: Schematic of a bridged microemulsion. The telechelic polymers can either link two oil
droplets or loop on a single one.

The phase diagram [21] is shown In Figure 2. For sufficiently low amount of telechelic poly-
mers a one phase region is obtained for all volume fraction of droplets. For higher r, phase
separation occurs in a wide range of droplets volume fraction. The biphasic region comprises
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two isotropic and transparent phases, one being a rather stiff gel and the other being a fluid of
low viscosity. In the one phase region, a sol-gel transition ( this is a topological transition and
not a thermodynamic transition) and defined the percolation line. A generic phase behavior is
expected for mixed systems of self-assembled aggregates and polymeric crosslinkers: an en-
tropically driven, first-order thermodynamic phase transition is predicted to occur even in the
absence of any specific interactions at the mean-field level [5]. The configurational entropy
of polymer junctions induces indeed an effective attraction that can result in an equilibrium
between a dilute phase and a connected network.

Fig. 2: Phase diagram of the connected microemulsion as a function of the droplet volume
fraction φ and the mean number of polymer stickers per droplet r.

3 Pair potential between two droplets induced by telechelic
polymers [22]

Let consider two spheres of diameter σ separated by a distance h than interact through ideal
telechelic polymer chains of N monomers of size a. The polymers are in contact with a bulk
reservoir of chemical potential µ. The stickers are free to diffuse onto the spheres and the stick-
ing energy ε� kT , so that the free chain configurations and the dangling chains configurations
are negligible. We first consider the simpler case of two infinite walls separated by a distance
h along the z axis.it consists of M sites of area a2 which can be either occupied by a surfactant
molecule or by the sticker of a telechelic polymer of polymerization index N . The statistical
weight associated with all configurations of an ideal chain of N monomers located between the
two impenetrable walls with its first monomer at r = (x, y, z) and its last one at r′ = (x′, y′, z′)
is given by the chain propagator equation [?]:( ∂

∂N
− a2

6
∇2
)
GN(r, r′) = 0 (1)

where GN(r, r′) = 0 outside the space between the walls.
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Fig. 3: Two beads interacting via a telechelic polymer

The solution of Eq.(1 )is given by standard methods:

GN(r, r′) =
3

2πNa2
exp

[
− 3

2Na2
[(x−x′)2+(y−y′)2)

]
×2

h

∞∑
p=1

exp
[−π2Na2

6h2
p2
]

sin
πpz

h
sin

πpz′

h

(2)
A loop configuration is obtained by demanding that r0 = (0, 0, a) and r′0 = (x′, y′, a) and the
corresponding loop partition function is:

zl(h) = a

∫ +∞

−∞
dx′
∫ +∞

−∞
dy′GN(r0, r

′) =
2a

h

∞∑
p=1

e−
π2Na2

6h2
p2 sin2 pπa

h
(3)

Fig. 4: Partition function of a loop (Eq. 3)

A bridge configuration is obtained by demanding that r0 = (0, 0, a) and r′0 = (x′, y′, h−a) and
the corresponding bridge partition function is then:
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zb(h) = a

∫ +∞

−∞
dx′
∫ +∞

−∞
dy′GN(r0, r

′) =
2a

h

∞∑
p=1

(−1)p+1e−
π2Na2

6h2
p2 sin2 pπa

h
(4)

Fig. 5: Partition function of a bridge (Eq. 4)

From Eqs( 3,4) one gets:

zl(∞) =
3
√

6

n3/2
(5)

zb(∞) = 0 (6)

As expected the bridge partition function vanishes if the two wall are far apart(h→∞), whereas
the loop partition function remains constant. Ideal chains by hypothesis do not interact, so, the
partition function of Q ideal chains sticked on a pair of wall is:

ZQ(h) =

(
Q

M

)
(zb(h) + zl(h))Q (7)

The corresponding grand partition function reads:

Ξ(h) =
M∑
Q=0

ZQ(h)eβµQ (8)

where µ is the chemical function of a polymer chain. Note that we use the grand canonical
statistical ensemble, because chains are free to exchange with the bulk reservoir. The grand
potential per unit area is:

J(h) =
kT

a2
ln[1 + eβµ(zb(h) + zl(h))] (9)

where zl and zb arge given by Eqs (3,4).
The polymer-induced effective potential per unit area between the two walls is then:
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V (h) = J(h)− J(∞) = −kT
a2

ln
1 + eβµz(h)

1 + 3
√

6N−3/2eβµ
(10)

where:

z(h) = zl(h) + zb(h) =
4a

h

∞∑
p=0

e−
π2Na2

6h2
(2p+1)2 sin2 (2p+ 1)πa

h
(11)

One has to keep in mind that the mean number of adsorbed polymer per unit area 〈q(h)〉 =
−∂J/∂µ is not a conserved quantity, that is depends on h. So, in the biphasic domain of the
phase diagram, there is no reason that droplets in the dilute phase bear the same mean number
of polymers than droplets in the gel phase.

Fig. 6: Polymer induced effective potential per unit area between two walls

The effective pair potential induced by telechelic polymers V (h) is plotted in Fig.(6). It exhibits
an attractive minimum for a distance between the walls on the order of the end to end distance
of a polymer chain R = aN1/2 ; for this distance, the fraction of bridges is maximal. At larger
distances, there is an entropic penalty for the bridge configurations because bridges must be
stretched. At shorter distance the entropic cost of polymer confinement ( for both loops and
bridges configurations) induces an effective repulsion between the walls.
To extend these results to curved surfaces, we use the Derjaguin approximation despite the fact
that the curvature of the droplets are of the same order of magnitude than the size of polymer
chain.The Derjaguin approximation [23] is a powerful approximation widely use in colloidal
science which gives the force between two spheres in terms of the energy per unit area of two
flat surfaces at the same separation it is applicable to any type of force law, whether attractive,
repulsive or oscillatory, so long as the range of the interaction and the separation is much less
than the radii of the spheres . Finally on obtains the contribution Vp(h) of the polymer to the
interaction potential between the droplets of diameter σ at distance h from Eqs.(10,11):

Vp(h) =
πσ

2

∫ h

∞
V (h′)dh′ (12)

The potential Vp is plotted in Figure(7)
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Fig. 7: Polymer induced effective potential per unit area between two spheres (??)

The attractive minimum for a distance between spheres on the order of the polymer end to end
distance is still present. However the repulsion at short distances disappears. this a consequence
of the fact , that, even at close contact, a bridge or a loop can exist because the stickers freely
slide onto the spheres as shown by Monte Carlo simulations [24]; For real chains, where the
potential is non additive with the mean number of polymer/per bead, the simulations show the
repulsion due to the entropic confinement of the polymer chains. The effective potential Vp
has been tested to fit the small angle neutron scattering data for the structure factor of the ex-
perimental system [22]: the agreement is qualitative; however, the potential underestimates the
repulsion between the spheres, due to the sliding effect , which become less and less important
for the N > 2 bodies contributions to the potential between spheres.

4 Entropic phase separation in transient networks [25]
A simple mean-field theory has been developed by Zilman et al [25] to explain the experimental
phase digram shown in Fig.2. It predicts how the polymer properties control the phase behavior.
The predicted phase separation has a purely entropic origin: there are no energetic interactions
among the polymers or droplets. The phase separation occurs because the loss of the trans-
lational entropy of the droplets is overcompensated by the high configurational entropy of the
polymer connections in the dense network.
A total of Np polymers and N beads are distributed in space so that a polymer either connects
two beads or loops on a single bead. The total free energy of the systems which is athermal
amounts to the configurational entropy. The first term is the translation entropy of mixing of a
dispersion of hard spheres given in lattice representation by:

S0 = −k[φ lnφ+ (1− φ) ln(1− φ)] (13)

where S0(φ) is the entropy per site on the lattice and φ is the volume fraction of the beads.
The second contribution is the configurational entropy of distributing the polymers among the
beads.
For a single polymer there are qlN available looped states where ql is the number of positions
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available to a sticker of size a at the surface of a drop: ql ' σ2/a2 (σ is the diameter of a bead).
The free energy cost εl (in kT units) of a looped polymer measures the entropic cost of both ends
being confined to the same droplet. In a simple approximation, the number of configurations
available to a polymer with radius RG, and with both ends constrained to a volume v, that is
small relative to the total volume is proportional to (v/R3

G) ' σ2l/R3
G) where l is the length

of the hydrophobic sticker. Therefore e−εl ' (σ2l/R3
G) for σ < 2RG and saturates to unity for

σ > 2RG.
We calculate now the mean number of beads connected by a polymer. For a bead located a the
origine O, the mean number of droplets at a distance [R,R + dR] is 4πR2dRφ

πσ3/6
. This gives the

number of pair droplets at a distance [R,R + dR] (R > σ)

N
2

4πR2dRφ

πσ3/6
= q(R)dR (14)

A bridge connecting two beads at distance R has stretching energy on the order of ER =
3
2
kTR2/(Na2).

The partition function of a single chain is:

Z1 = qlN e−εl +

∫ ∞
σ/2

q(R)e−E(R)/(kT )dR = qlN e−εl + qφN (15)

with

q =

∫ ∞
σ/2

24R2

σ3
exp

(
−3

2

R2

Na2

)
dR (16)

The partition function of Np chains which are undistinguishable and independent is:

Zp =
1

Np!
Z
Np
1 =

(qlN e−εl + qφN )Np

Np!
(17)

The free energy per lattice site of the system is f = −kT/V (lnZp − TS0(φ)). From Eqs.(13,
17) with c = Np/V and φ = N /V one gets:

f(φ, c)

kT
= φ lnφ+ (1− φ) ln(1− φ) + c(ln c− 1)− c ln(qφ2 + φqle

−εl) (18)

The first and second terms in Eq.(18) corresponds to the translational entropy of the droplets;
the third term corresponds the translational entropy of the polymers, and the last term describes
the effective interaction between the droplets and the polymers.
The mixed system is stable if f(φ, c) is a convex function, i.e δ2f = fφφδφ

2+2fφcδφδc+fccδc
2

should be a positive bilinear form. So, the matrix

S =

(
fφφ fφc
fφc fcc

)
must have two positive eigenvalues. Simple algebraic manipulations show that fcc is positive ,
so the condition of stability reduces to detS > 0, i.e.:

2
c

φ
<
φ+ (ql/q)e

−εl

φ(1− φ)
(19)
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The mean number of stickers per bead is r = 2c/φ, so the spinodal is defined by

r = rs =
φ+ (ql/q)e

−εl

φ(1− φ)
(20)

Eq.(20) defines the spinodal line in the plane (φ, r) ,i.e., if r > rs, the system is thermodynam-
ically unstable and phase separates into a system of dense droplets that are highly connected
by polymers, that coexists with a dilute system of almost disconnected droplets, decorated with
polymer loops. The latter observation stems from the fact that the average fraction of the looped
polymers λ is given by:

λ =
−∂ lnZ1

∂εl
=

(ql/q) exp(−εl)
(ql/q) exp(−εl) + φ

(21)

In the dilute phase φ→ 0 and λ→ 1
In the coexistence phase domain, the equality of f the polymer chemical potentials µc = ∂f/∂c
in the two coexisting phases implies that:

r = m

(
φ+

ql
q
e−εl
)

(22)

where m is a constant defined by m = 2eµc

q
. It follows that the coexisting phases lie along the

lines given by Eq.(22), which are not horizontal in the (φ, r) plane.
Inersection points of the coexisting lines Eq(22) and the spinodal Eq.( 20) are the solutions of
the equation φ2 − φ + m = 0. For m < 4 there is no solution , and so no phase coexistence.
For m = 4, there is a single solution (φ = 0.5; r = rc = 2 + 2 ql

q
e−εl) which defines the

critical point that is not the minimum of the spinodal. For m > 4 there are two solutions (be
careful that these solutions do not define the binodal). These simple analytical results reproduce
qualitatively well the phase behavior of the experimental system and are summarized in Figure
8. Computer simulations of the same system [26] verify the predictions of the analytical model.
Because of its entropic nature, the phase separation is extremely robust and is independent
of the detailed as-sumptions about the polymer an/or the nodes properties. For instance its is
also predicted using a self consistent field theory for binary solutions of telechelic chains [19] in
agreement with experimental results [27], [28]. The same type of phase separation has been also
observed with entangled solutions of wormlike micelles bridged by telechelic polymers [11].

5 Linear viscoelastic properties
Th gel phase of the bridged microemulsion behaves as a Maxwell, fluid, that is the simplest
viscoelastic behavior: the material can be characterized by a single plateau shear modulus µ0

and a single relaxation time τ . The constitutive differential scalar equation of a Maxwell fluid
is obtained from the spring and dashpot representation of a Maxwell element (Fig. 9).

σ + τ
dσ

dt
= η

dγ

dt
(23)

where σ is the shear stress, γ is the shear strain and η = µ0τ is the viscosity of the Maxwell
fluid.
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Fig. 8: Phase diagram [25] of drops connected with polymers. The thick line is the spinodal line
of the phase separation for qle−εl/q = 2. Above this line the system becomes thermodynamically
unstable. The critical point is atφ = 0.5 and is shown as a black dot. Note that the critical
point is not at the minimum of the spinodal. The tie lines are shown as dotted lines in the phase
separation region. Note that they are not horizontal. The dashed line shows the percolation
threshold calculated for an fcc lattice with q = 16. Below the percolation line, the system is in
the fluid state, while above it a connected gel is formed

Fig. 9: Spring and dashpot representation of a Maxwell element
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When a Maxwell fluid is submitted to an oscillatory stress at frequency ω characterized by its
complex form σ = σ0 exp iωt the material response given by the complex strain γ is of the form
σ = µ(ω)γ.
Re(µ(ω)) = µ′(ω))defines the storage modulus of the material and Im(µ(ω) = µ′′(ω) is the
loss modulus. From Eq. 23, one gets the storage and loss moduli for a Maxwell fluid:

µ′(ω) = µ0
(τω)2

1 + (τω)2
(24)

µ′′(ω) = µ0
τω

1 + (τω)2
(25)

At low frequency (ωτ � 1), the modulus is purely imaginary (µ = iωµ0τ ) and the material
behaves as a liquid of viscosity η = µ0τ . At high frequency (ωτ � 1) we are dealing with an
elastic solid with an elastic moculus µ ≈ µ0.

Fig. 10: Frequency sweep experiments. Storage modulus, µ′ (closed symbols) and loss modulus,
µ” (opened symbols) as a function of the frequency ω for the fluids [r = 6, φ = 10%] (circles)
and [r = 12, φ = 10%] (triangles). Solid lines correspond to fits by a Maxwell mode (Eqs. 24,
25) which give the elastic shear modulus and the relaxation time of each fluid.

Figure 10 show that the Maxwell behavior is almost perfect for the telechelics-microemulsion
mixtures. The shear modulus and the relaxation time are respectively equal to 330 Pa and 0.59
s for [r = 6, φ = 10%], 2400 Pa and 2 s for [r = 12, φ = 10%] [29].
The origin of the Maxwell behavior is explained by the transient network theory [30]. We
summarize here the main results. At high frequency, where we can neglect the transient nature
of the network the gel is a a polymer network. The simplest model to describe the elastic
properties of a permanent polymer network like a rubber is the affine network model which
is described in textbooks (see for instance Ref. [32]). The elasticity arises primarily from the
changes in entropy of the network strands when the network is macroscopically deformed. So
the shear modulus is:
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µ0 = nbkT (26)

where nb ∝ r
2
φ is the number density of polymer bridges. The stress relaxation arises from the

finite residence time τR of a sticker in a given droplet. Since the escape of a given sticker from
a droplet is presumably a thermally activated process, we expect τR and therefore τ ∝ τR to
exhibit an Arrhenius dependance versus the temperature:

τ = τ0 exp(Es/kT ) (27)

where τ0 is some inverse frequency of attempts and the activation energy Es is the reversible
work of extraction of the sticker from the hydrophobic core into the free water. The activation
energy is itself proportional to the number of methyl groups nCH2 in a sticker E ' 1.2kTnCH2 .
The longer are the stickers of the telechelic chains, the longer is the relaxation time of the
network.

Fig. 11: Evolution of the shear modulus µ0 and the relaxation time τ near the percola-
tion threshold (Note that in these experiments the polymer chains have a molecular weight
of 35kDa). The lines are t fits with the expressions µ0(Pa) = 389(r − 1.9)1.55 and τ(s) =
0.6(r − 1.9)0.6

.

Eqs (26,27) do not describe properly the viscoelastic behavior near the percolation line as shown
in Figure 11. For a given droplet concentrations both the elastic plateau modulus and the re-
laxation time exhibit a power law dependance with the apparent connectivity r on the form
µ0(r) = A(r− rp)α and τ = B(r− rp)β , where rp defines the percolation point of the network
for a given φ [33]. In principle, in percolation situations, the singular power law dominates the
evolution of a given quantity only close to the threshold. Far above, the mean field behavior is
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usually recovered. In contrast,in this system, the fits happen to be surprisingly good even far
above rp(φ) a feature that is not understood.
µ0 characterizes the immediate elastic response of the network to a sudden deformation, before
any relaxation due to the finite lifetime of a link. It is natural in this picture that it vanishes
below a finite value rp of the connectivity parameter: below rp, there is no cross-linked infinite
path, connecting continuously the cone and the plate of the rheometer and capable of sustain-
ing the transient elastic torque. Since by definition µ0 does not involve any feature related to
relaxations, its evolution can be compared to theoretical predictions derived at true sol- gel tran-
sitions The exponent calculated for the elastic modulus is 1.7 above the gel point [34] close to
the value measured in this system. The terminal relaxation time τ is related to the residence
time of a sticker in a droplet. In the usual interpretation of the stress relaxation in transient
networks [30, 31] the spatial distribution of the nodes is assumed to be affinely deformed by
the step strain and the length distribution of the links is thus shifted accordingly. The transient
off equilibrium length distribution is at the origin o f the measured stress . From time to time
stretched links disengage due to the finite residence time of their stickers and reconnect with the
equilibrium length distribution: they forget the initially imposed strain and no more contribute
to the stress. In this picture the stress at time t is a simple measure of the number of links that
still reminds the initial strain after time t, and we would expect τ to be simply identical to the
residence time. The measurements do not support this expectation: τ sensitively depends on the
average degree of connectivity r and vanishes at rp, whereas the residence time is completely
determined by the adsorption energy of a sticker in a droplet. It should not depend on nonlocal
features such as the degree of connectivity of the network. To understand the discrepancy, we
note that the above affine picture is a mean field description which assumes that the imposed
strain distributes homogeneously within the network. Such homogeneity certainly breaks when
approaching the percolation point. Close to the threshold, the infinite connected cluster con-
sists of more densely cross-linked subclusters connected to each other by weaker parts where
the links are less dense. Breaking a small number of links only, in a weak part, will suddenly
release the stress within the whole adjacent dense subclusters. In this non-mean-field picture,
we expect τ to be shorter than the residence time and indeed to vanish at the percolation as
observed in the experiments.
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[16] Bagger-Jõrgensen H;, Coppola L., Thuresson K., Olsson U. and Mortensen K. Langmuir
13, 4204 (1997).

[17] Tabuteau, H., Mora, S., Porte G., Abkarian M. and Ligoure C. Phys. Rev. Lett. 102,
155501 (2009).

[18] Sprakel J, Besseling NAM, Leermakers FAM, et al J. Phys. Chem. B 111, 2903 (2007).

[19] Sprakel J, Besseling NAM, Leermakers FAM, et al EPJE 25, 163 (2008).

[20] Sprakel J, Spruijt E, van der Gucht J, et al.l Soft Matter 5, 4748 (2009).

[21] Filali, M., Ouazzani M. J., Michel E., Aznar, G. Porte and J. Appell, J. Phys. Chem. B
105, 10528 (2001).



XY.16 Christian Ligoure

[22] G. Porte, , C. Ligoure , J Appell R. Aznar, J.Stat. Mechanics : theory and experiments
P05005, (2006).

bibitemdeGennes1969 de Gennes P. G. Rep. Prog. Phys. 32, 187 (1969).

[23] B. V. Derjaguin, Kolloid. Zeits. 69, 155 (1934).

[24] Testard V., Oberdisse J. and Ligoure C. Macromolecules 41, 7219 (2008).

[25] Zilman A., Kieffer J., Molino F., Porte G. And Safran S. A. Phys. Rev. Lett 91, 015901
(2003).

[26] Hurtado, P., Berthier L. and Kob W. Phys. Rev. Lett. 98, 135503 (2007).

[27] Pham, Q. T., Russel W. B., Thibeault J. C., Lau W. Macromolecules 32, 2996 (1999).

[28] François J., Beaudoin E., Borisov O. Langmuir 19, 1011 (2003).

[29] Tabuteau H., Mora S., Ciccotti M. and Ligoure C. submitted to Soft Matter , (

).

[30] Green M. S. and Tobolsky A. V. J. Chem. Phys. 14, 80 (1946).

[31] Tanaka F; and Edwards S. F. Macromolecules 25, 1516 (1992).

[32] Rubinstein M. and Colby R. H. Polymer Physics (Oxford University Press, New-York,
2003)

[33] Michel E., Filali M., Aznar R., Porte G. and AppellJ. Langmuir 16, 8702 (2000).

[34] Stauffer D. Introduction to percolation theory (Taylor Francis, London, 1985)


