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Defect coalescence in spherical nematic shells

Teresa Lopez-Leon,1,* Martin A. Bates,2 and Alberto Fernandez-Nieves1

1School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
2Department of Chemistry, University of York, York YO10 5DD, United Kingdom

(Received 7 May 2012; published 28 September 2012)

We study coalescence of topological defects in nematic liquid crystals confined to spherical shells using both
experiments and computer simulations. We observe that the four s = + 1

2 defects that are present due to topological
constraints imposed by the spherical geometry coalesce by pairs after changing the molecular orientation at the
outer surface from tangential to perpendicular; the result is the formation of two single s = +1 defects. It is
noteworthy that the speed of the coalescence process is peaked when the defects are at opposite points on the
equator of the shell; this maximum results from the thickness inhomogeneity of the shells.
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Defects are spatial regions where the characteristic order of
a material is disrupted. Their presence determines to a large
extent the physical properties of the material. As a result,
understanding their behavior and interactions is crucial and
could enable precise control of material properties. Nematic
liquid crystal droplets exemplify this fact very well, for
example, in their response to electric fields. Nematics typically
consist of rodlike molecules aligned, on average, along a
common axis or director, n; they thus posses orientational
order. When confined to the spherical volume of a droplet, the
presence of defects, which are regions where n is undefined,
is unavoidable; this directly results from the topological
characteristics of the sphere. These defects can be points
or lines depending on the boundary conditions for n at
the confining surface and cannot be removed; they are thus
topological defects and are present even in the ground state of
the system [1].

Defects in nematic liquid crystals are characterized by
their topological strength, s, which is a semi-integer number
indicating how much n rotates along a path encircling the
defect. This topological strength is also called topological
charge to emphasize that interactions between defects, as those
between electrical charges, can either be repulsive or attractive.
In fact, the interaction energy per unit length of two defects
with topological charge s1 and s2 separated by a distance r is [2]

W12 = πK(s1 + s2)2 ln
R

rc

− 2πKs1s2 ln
r

2rc

, (1)

with R the system size, K the Frank elastic constant of the
nematic, and rc the radius of the defect core. This expression
assumes that the three elastic constants characterizing splay,
twist, and bend distortions of n are identical. Despite this fact,
it correctly captures that equally charged defects repel while
oppositely charged defects attract. Indeed, for s1 · s2 < 0, the
interaction force between defects, F12 = −∇W12, is negative
and results in their approach and annihilation; this has been
well studied in flat liquid crystal cells [3–9]. By contrast, when
s1 · s2 > 0, F12 > 0 and the defects repel; they separate and
maximize their distance, eventually reaching the boundaries
of the cell [2].
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The situation is very different in nematic droplets. In this
case, when n is tangential at the bounding surface and splay is
favored versus bend, there are two surface defects or boojums
in the ground state; these are forced to coexist as a result
of the topological constraints imposed by the Poincaré and
Hopf theorem, which requires a total topological charge on
the surface of the sphere equal to its Euler characteristic,
χ [10]. Since for a sphere, χ = +2, a total charge of
stotal = +2 is required. As a result, each of the two defects
has a charge of s = +1, which indicates the 2π rotation
of n as we encircle the defect. This nematic configuration
thus naturally provides the remarkable coexistence of equally
charged defects a finite distance away from each other. Similar
configurations also exist in nematic shells, where the liquid
crystal is confined between two spherical surfaces. For these
shells, when sufficiently thin, the ground state is populated
with four s = + 1

2 disclination lines that span the thickness of
the shell. Nematic spheres thus provide unique opportunities
to study the behavior of equally charged defects that would
otherwise be impossible to study in flat space.

In this Rapid Communication, we take advantage of this
and study for the first time coalescence of defects with
similar topological charge. We use nematic shells with four
s = + 1

2 lines and analyze their coalescence after changing
the boundary conditions for n at the outer surface from
tangential to perpendicular. We observe that the four s = + 1

2
disclinations coalesce by pairs into two single s = +1 boojums
residing at the inner surface. Interestingly, the speed at which
the two s = + 1

2 disclinations move exhibits a maximum. By
using numerical simulations, we show that this maximum
results from the thickness inhomogeneity of our shells.

We study this transformation experimentally using double
emulsion droplets produced in a glass-based microfluidic
device [11,12] consisting of an inner aqueous droplet of
radius a contained inside an outer liquid crystal droplet of
radius R, which is in turn dispersed in an aqueous medium.
The two aqueous fluids contain 1% wt of polyvinyl alcohol
(PVA), which stabilizes the double emulsion and imposes
tangential degenerate anchoring to the liquid crystal, 4-n-
pentyl-4′-cyanobiphenyl (5CB). The resultant nematic shells
have R = 25 μm and are heterogeneous in thickness as
a result of buoyancy forces [11,13]; they are thinner at
the top and thicker at the bottom and have an average
thickness h = R − a = 2.5 μm. After fabrication, we place
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FIG. 1. (Color online) Cross-polarized images of a nematic shell after changing the boundary conditions at the outer surface from tangential
to perpendicular. The different images correspond to different times after adding SDS: (a) 0 s, (b) 110 s, (c) 158 s, (d) 208 s, (e) 248 s, (f) 332 s,
and (g) 790 s.

a drop of sample in a cuvette and change the molecular
anchoring at the outer surface of the shells from tangential
to perpendicular by adding a concentrated solution of sodium
dodecyl sulfate (SDS). The final concentration of SDS in the
cuvette is around 30 mM. The cuvette is sealed to prevent
evaporation and located in an optical microscope under cross-
polarizers.

Initially, when the boundary conditions are tangential at
both spherical surfaces, the four s = + 1

2 defect lines are
localized at the top of the shell, as shown in Fig. 1(a).
The equilibrium position observed results from the balance
between the repulsion between disclinations of equal charge
and the tendency of the lines to minimize their length. This
configuration is altered when the SDS reaches the outer surface
of the shell. At this point, defects 1 and 2 become connected
with a new defect line and approach each other to coalesce
into a single s = +1 defect; this is shown in Figs. 1(a)–1(c).
Concomitantly, defects 3 and 4 move away from each other
toward the equator of the shell. In this case, the defect line
joining these defects is very obvious; it runs along the longer
arc connecting the two defects, along the lower hemisphere,
as shown in Figs. 1(b)–1(f). The line shrinks with time until
defects 3 and 4 eventually also coalesce. The final state of the
shell with these hybrid boundary conditions is characterized
by the presence of two defects of charge s = +1 located on
the inner sphere; they are an inner-droplet diameter away on
different hemispheres, as shown in Figs. 1(c) and 1(g).

Imposing perpendicular anchoring at the outer surface
while maintaining tangential anchoring at the inner surface
forces the director to tilt inside the shell. As a result, there is
a projection of n onto the inner surface that effectively results
in a vector field on that surface. We show this using nails in
Fig. 2, with the head of the nail indicating the tilt direction.
In this situation, there is a π rotation of n across the line
joining the two s = + 1

2 defects resulting in formation of the
defect line connecting both defects; this is shown in Fig. 2
also. On crossing this new line, n rotates by π . The line is
thus a one-dimensional analog of a π wall. Its presence is
energetically not favored and topologically not required. For
this reason, the line shrinks while pulling the s = + 1

2 pair
together until the defects coalesce to form the final s = +1
defect.

We measure the time evolution of the two π lines, L1 and
L2, joining the s = + 1

2 defects by pairs. We observe that they
shrink in a nonlinear way, as shown in Fig. 3(a). Therefore,
the speed of the defects as they approach is not constant.
Instead, the measured speed for the longest of the two π lines,
v2, exhibits a pronounced peak at a time corresponding to an

angular separation of around θ2 ≈ π , as shown in Fig. 3(b).
This implies that the speed is maximum when the defects have
reached the equatorial plane of the shell. The defects separate
while accelerating, when they are in the upper hemisphere
of the shell, and approach while decelerating, when they
are in the lower hemisphere of the shell. Interestingly, the
two defects participating in the coalescence process move at
the same speed, in contrast to what happens when defects
annihilate; in that case, since the defects have opposing charge,
n has different contributions from splay and bend, resulting in
different approaching speeds [6,8].

We also examine the coalescence of defects using Monte
Carlo simulations of the nematic shells based on the Lebwohl-
Lasher model for nematics, which has recently been used to
study topological defects in concentric shells with tangential
degenerate anchoring [13,14]. The model consists of rotors,
representing a small volume of nematic with a well-defined
local director, which are placed on the sites of a cubic lattice
with spacing d. Nearest neighbors i and j interact via the
potential −εijP2(cos β), where εij = ε(>0) is an energy pa-
rameter, P2(x) = 3/2x2 − 1/2, and β is the angle between the
neighboring rotors. Tangential anchoring at the boundaries can
be obtained by using ghost particles pointing along the radial
direction and setting εij = −ε(<0) for the nematic-boundary
interaction. In our simulations, we set R = 40d and a = 25d,
with the inner sphere shifted 10d along the z direction to
account for the buoyancy shift observed in the experiments. As
for previous studies on nematic shells, we run our simulations
at a single temperature T ∗ = kT /ε = 1.0 [13,14], which is be-
low the nematic-isotropic transition temperature T ∗

NI = 1.12.
We initially equilibrate the system with tangential anchoring at
both surfaces and then change the nature of the ghost particles

FIG. 2. (Color online) Schematic representation of the director
field around two s = + 1

2 defects on the inner spherical surface
when the boundary conditions are tangential at that surface and
perpendicular at the outer surface. The heads of the nails represent the
tilt direction of n along the shell thickness. The different tilt across
the line connecting the two s = + 1

2 results in the formation of the
observed π line that joins them.

030702-2



RAPID COMMUNICATIONS

DEFECT COALESCENCE IN SPHERICAL NEMATIC SHELLS PHYSICAL REVIEW E 86, 030702(R) (2012)

L

L

2

1

1,
2

2

(a)

(d)

(b)

43

L2

2

1 2

L1

1

0 2 4 6

0.0

0.5

1.0

1.5

V
( μ

m
/s

)

θ (rads))

0 2 4 6
0

(1
0 

 )-4

3

2

1

v M
C

 

2

θ (rads)2

t

t

(c)

(

0 1 2 3 4
-

0

1

2

3

4

5

θ 2(ra
ds

)

MC10 4

FIG. 3. Distance between de-
fects 1 and 2 and between defects
3 and 4 as a function of time in
(a) experiments and (c) simulations.
Speed of defects 3 and 4 as a function
of the angle between them in (b)
experiments and (d) simulations.

at the outer surface by switching the sign of the interaction
parameter to εij = ε(>0); this favors perpendicular anchoring
at the outer surface. As for the experiments, the nature of
the inner boundary is left unchanged. We use the method of
Callan-Jones et al. to determine the local director field and
Westin matrices to obtain the extent of local ordering [15].

When the anchoring is tangential at both inner and outer
surfaces, the four s = + 1

2 defects cluster near the top of the
shell, consistent with the experimental results, as shown in
Fig. 4(a). After changing the anchoring, a thin region at the
outer surface rapidly disorders, as the molecules must rotate
to fulfil the new boundary conditions for n. However, the
director configuration inside the majority of the shell remains
unchanged. Soon afterward, this disorder at the outer surface
disappears, and two π lines appear on the outer surface, as
shown in Fig. 4(b). The ends of these two lines are located
roughly at the positions of the original s = + 1

2 defects, with

one line being much longer than the other. As the simulation
progresses, the shorter line rapidly decays in length [Fig. 4(c)]
while the longer of these lines gradually shrinks, bringing the
two s = + 1

2 defects to the lower hemisphere of the shell, as
shown in Figs. 4(d) and 4(e). Interestingly, this π line does not
start to move significantly towards the inner sphere right after
it starts shrinking. Instead, it remains at the outer surface of the
shell and only starts to peel away from the outer surface once it
has significantly shrunk in length. Finally, the system reaches
a new equilibrium state compliant with the new boundary
conditions, consisting of two s = +1 boojums an inner-sphere
diameter away from each other, as shown in Fig. 4(f). It is
clear that the director field is tilted and that the nature of
the two s = +1 boojums is quite different. The top defect is
a half hyperbolic hedgehog whereas the bottom defect is a
half radial hedgehog; this is consistent with experiments [16].
Despite being a stochastic rather than a dynamic technique,

(a) (b) (c) (d) (e) (f )

FIG. 4. (Color online) Simulated director field and defect lines along the process. In panel (a), the anchoring is tangential at both confining
surfaces and the thick lines are the four s = + 1

2 lines expected for this situation. Panel (b) corresponds to a shell with tangential and perpendicular
boundary conditions on the inner and outer spheres, respectively. The two thick lines shown are π lines joining the s = + 1

2 defects. Panels (c)
and (d) are snapshots showing the evolution of the π lines. (f) Final equilibrium configuration with two s = +1 boojums on the inner sphere.
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the overall evolution of the defect lines in the Monte Carlo
simulations agrees very well with the experimental results.

We further analyze our simulation results by identifying the
ends of the long π line and plot the angle connecting the two
s = + 1

2 defects as the simulation progresses in Fig. 3(c). From
this angle, we obtain the speed, which is peaked at θ2 ≈ π , as
shown in Fig. 3(d). The simulations thus capture all features
of the experimental dynamics very well.

To understand the presence of the maximum in speed, we
consider the relevant forces in our problem. There is a repulsive
elastic force between defects resulting from their equal charge:
F1 = 2πKs2h

L
, where L is the distance between disclinations.

We adopt the one-constant approximation in writing this force,
which is only important at very short distances. As a result, it
does not play a major role during most of the transformation.
There is also an attractive force associated with the π line
joining the two s = + 1

2 defects. This line tension pulls the
two s = + 1

2 defects together. We estimate this force using [7]
F2 = −πk(1 + ln h

πl
) ≈ −πk ln h

πl
, where l is the anchoring

extrapolation length, which is typically much smaller than h.
Finally, there is a drag force opposing the motion [2]: F3 =
− 1

4πγ vh ln 3.6
Er

, where γ is an average viscosity of the liquid
crystal, v is the speed of the defects, and Er is the Ericksen
number, Er = γ vh

k
.

We balance F2 and F3 and obtain the shell-thickness
dependence of the speed: v ∝ 1

h
ln h

πl
. Since, in our shells,

h depends on the zenithal angle θ = π − θ2/2 as h(θ ) ≈
h(1 − cos θ ), this balance naturally results in a peaked speed,
suggesting that the observed maximum is due to the shell-
thickness inhomogeneity. To test this, we perform additional
simulations with concentric shells. We find that the maximum
in speed disappears, confirming that indeed it results from the
shell-thickness inhomogeneity.

The model, however, does not correctly capture the height
of the peak observed experimentally. For typical values of
the involved parameters, K = 10−11N , γ = 50cP , and l =
10 nm, we find a speed at the peak of 103 μm/s, which is
about three orders of magnitude larger than the value obtained

experimentally, 1 μm/s. This discrepancy can be due to the
details of how the molecular anchoring is changed in the
experiment. It is known that the anchoring provided by SDS
on 5CB progressively varies from tangential to perpendicular
as a function of SDS concentration [17]. As a result, it is
reasonable to think that while at the beginning of the process
only a small number of SDS molecules have reached the outer
surface, as time proceeds this number increases, progressively
changing the tilt angle until full perpendicular alignment is
achieved. Under these conditions, the line tension is expected
to be weaker than that considered in our estimate of F2 for some
of the coalescence process. Indeed, we observe that the line
only is clearly seen once the defects have reached the lower
hemisphere of the shell. Detailed calculations are required
to fully describe this effect and quantitatively describe the
experimental results.

We have studied the coalescence process of s = + 1
2 defects

in the curved space of a nonuniform-thickness spherical shell
by taking advantage of the presence of four of these defects
in the ground state of the system. This has been achieved by
changing the molecular anchoring at the outside boundary of
the shell from tangential to perpendicular. The coalescence is
driven by the presence of two π lines connecting the defects by
pairs. We have found both experimentally and by simulation
that the speed at which the s = + 1

2 defects approach exhibits
a peak that results from the thickness inhomogeneity of the
shells. While defect annihilation in flat cells [8] and the effects
of a change in the boundary conditions in drops and shells
have been studied in the past [2,16,18–20], our study reports
coalescence of equally charged defects to form a single defect
with a larger topological charge. The essential role of curvature
to achieve this might also be used to address other problems
that are hard or impossible to address in flat space.
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