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Ouverture

Most children learn early that things break, whether it is a stick excessively bent or a
favorite toy dropped from sufficient height. Such events teach us that we have to protect
our belongings from mechanical overload if we want to keep them safe. Nevertheless, it is
with our greatest disappointment that from time to time we realize that our efforts were
not enough: posters pinned to the wall fall down unexpectedly days after we accurately
fixed them, and the cable of our laptop charger gets damaged after being bent several
times. Yet, the poster appeared to be well fixed before, and the cable could safely
withstand a few bending cycles without apparent damage.

Failure is the term conventionally used to indicate that something does not work
anymore as it is supposed to do. Many little annoying examples demonstrate that failure
is very often undesired, uncontrolled and unpredicted. This is all the more true for
large scale catastrophic events, like the collapse of bridges or dams, but also geological
events like snow avalanches, landslides or earthquakes. When such events happen, all of
a sudden, the question that emerges is: Why? Which means: For what reason? but also:
Why then, not earlier nor later? As a matter of fact, both questions are unanswered, and
still challenge the mind of many scientists with widely different backgrounds, from geology
and engineering to physics, chemistry and biology. Surprisingly, or maybe unsurprisingly,
it turns out that what is so common in our daily experience is based on profound science
that is not yet fully understood.

The complexity of failure mainly lies in its multiscale nature: a massive snow avalanche
always arises from tiny cracks between snowflakes, and its origin cannot be fully under-
stood without tracing back to them. Furthermore, accessing these microscopic events
from which failure originates holds the promise of providing a means of predicting the
collapse before its occurrence, which in most cases appears far too difficult, if not im-
possible, only looking at macroscopic observables. Any measurable feature anticipating
failure, which is thus exploitable for its prediction, is called a precursor. Failure precursors
do exist (for instance, animals behave differently before an earthquake, which indicates
that they can feel it approaching), but detecting them and recognizing them in their role
of precursors is extremely challenging, which explains the scarcity of successful works
in this field so far. In fact, if it is now recognized that purely macroscopic approaches
are doomed to fail, combining macroscopic and microscopic investigation is still far from
trivial, for several reasons that will be discussed in chapter 1.

In this work we present one of the first successful attempts to measure microscopic
failure precursors in model soft solids. Here, microscopic plasticity under shear is observed
using a novel setup, presented in part I, coupling a custom-made stress controlled shear
cell to small angle static and dynamic light scattering. The main results come from the
study of a colloidal gel, and will be discussed in part II, whereas in part III the generality
of those results is examined by comparing them with a colloidal glass.
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1.1 Objectives, originality and novelty

1.1.1 Material failure in our everyday life

Material failure is ubiquitous on length scales ranging from a few nanometers, as
in fracture of atomic or molecular systems [Weibull 1939, Célarié 2003| up to geologi-
cal scales, as in earthquakes |Myers 2001, Ben-Zion 2008|. While some attempts have
been made to harness failure, e.g. in order to produce new materials with a well con-
trolled patterning [Nam 2012|, material failure remains in general an unwanted, uncon-
trolled and unpredictable process. Indeed, a better control of the conditions under which
material failure may or may not occur and the detection of any precursors that may
point to incipient failure are the Holy Grail in many disciplines, from material science
[Amon 2013, Guarino 2002, Pradhan 2005, Vinogradov 2012, Koivisto 2016] and biology
[Bell 1978, Erdmann 2004, Buehler 2009, Gobeaux 2010] to engineering [Bazant 1991| and
geology [Jones 1979, Sommerfeld 1982, Swanson 1983, Sommerfeld 1983, Voight 1988,
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McGuire 2005, Wu 2006, Ancey 2007, Duputel 2009, Van Herwijnen 2011a, Van Herwij-
nen 2011b, Kato 2012, Johnson 2013, Bouchon 2013, Kromer 2015, Agioutantis 2016

Failure may occur almost instantaneously, as a consequence of an impulsive load
[Field 2004]: in this case the main interest typically consists in evaluating the damage as a
function of impact speed and energy [Richardson 1996, Camacho 1996, Ball 1999|. Often,
however, it manifests itself in more elusive ways, as in the sudden, catastrophic break-
age of a material submitted to a constant or cyclic load, where failure may be preceded
by a long induction time with little if any precursor signs of weakening [Basquin 1910,
Andrade 1910|. In the latter case, sometimes referred to as dynamic fatigue failure
|[Kahn 2004|, one has the possibility to monitor the stroboscopic evolution of micro
to mesoscopic damage developing before macroscopic failure [Ewart 1986, Patra 2016],
whereas such a detection is much more delicate in the former case.

Delayed failure under a constant load has been reported in a wide spectrum of phe-
nomena, from large scales systems such as earthquakes [Lockner 2002, Onaka 2013,
rock sliding [Kromer 2015|, snow avalanches, [Reiweger 2010] and structural materials
|[Bazant 1991, Maekawa 2016| to small scale ones such as biological materials |Bell 1978,
Erdmann 2004, Gobeaux 2010] relevant to bioengineering [Anwar 2009|. Other exam-
ples include crystalline [Poirier 1985] solids like metals [Troiano 1959, Nakasato 1980,
Golub 2003], ice [Ashby 1985, Sinha 1988] or colloidal polycrystals [Bauer 2006], as well as
composite materials such as wood [Guarino 2002]|, paper [Koivisto 2016] or synthetic fibers
|[Nechad 2005b|, and amorphous systems [Preston 1942, Gurney 1947, Aoki 1980, includ-
ing viscoelastic soft materials |[Gopalakrishnan 2007, Gibaud 2010, Divoux 2011, Sieben-
biirger 2012, Grenard 2014, Sentjabrskaja 2015, such as adhesives [Sancaktar 1985 and
network-forming materials [Bonn 1998, Poon 1999, Skrzeszewska 2010, Sprakel 2011,
Leocmach 2014].

The widespread occurrence of delayed failure represents a challenge for the durability
of objects and structures, a well known problem in civil engineering |Bazant 1991|. In
order to design durable applications, structural parameters have to be optimized, which
requires control of the material lifetime under realistic conditions. Conversely, knowledge
about the stress required to trigger failure and flow is relevant in other applications, from
industrial processing to oil extraction and transportation, where engineers face the well
known problem of pipe clogging |Zuriguel 2015, Van de Laar 2016, Koivisto 2016]|. Thanks
to the power of modern simulation schemes, nowadays such knowledge can often be
considered satisfactory for applications, but it remains essentially empirical and system-
specific: much still has to be done in order to achieve a unitary description of those
phenomena.

At the same time, diagnosis of mechanical faults on existing structures is required in
order to assure proper maintenance [Collacott 1977]. This is extremely important not
only in civil engineering, where the catastrophic collapse of bridges, dams or buildings
still represents a relevant origin of casualties, but also in the transportation industry,
as in railway maintenance or in aircraft industry, where maintenance is delicate and
expensive. As an example, more than 60% of the total ownership costs for US aviation



1.1. Objectives, originality and novelty 5

are represented by aircraft maintenance, due to inefficient Condition Based Maintenance
(CBM) system [Bell 2008].

On a still larger scale, the detection of precursors of catastrophic events such as
earthquakes, rockslides, landslides, snow avalanches or volcano eruptions is certainly of
paramount importance for many self-evident social, economical and environmental rea-
sons. It has been argued [Sommerfeld 1982, Voight 1988, Bouchon 2013, Kromer 2015]
that this prediction might be achieved, and indeed in 1975 the Chinese Seismological Bu-
reau successfully predicted a magnitude 7.3 earthquake [Jones 1979]. However, despite
the optimistic wave generated by such successful prediction, to the best of our knowl-
edge this remains the only documented example, although a posteriori analyses could
in some cases identify detectable precursors [McGuire 2005, Duputel 2009, Van Herwij-
nen 2011b, Kato 2012].

1.1.2 Failure in soft materials

Because of the outstanding relevance for many applications and its interest from a
fundamental point of view, material failure represents a very active field of research, which
has the interesting feature of being multidisciplinary, arousing the curiosity of researchers
with widely different backgrounds.

In particular, material failure is relevant to soft matter physics, where the typical en-
ergy scale governing interactions between particles is of the order of thermal energy: for
this reason, soft materials are generally characterized by large mechanical susceptibilities,
and they respond to small or moderate stresses with large deformations, often display-
ing yielding and failure under a suitable range of applied stresses. Typical examples
include emulsions [Liu 1996, Mason 1996], foams [Kabla 2007, Cohen-Addad 2013, Dol-
let 2014|, polymer gels |[Bonn 1998, Baumberger 2006, Skrzeszewska 2010, Karobi 2016,
and suspensions of colloidal particles, quenched out of equilibrium because of crowd-
ing [Siebenbiirger 2012, Sentjabrskaja 2015| or of the presence of attractive interactions
[Poon 1999, Gopalakrishnan 2007, Gibaud 2010, Sprakel 2011, Grenard 2014].

Because of its widespread occurrence, failure in soft materials has strong implica-
tions for many everyday life and industrially relevant problems, including the processing
of food [Van Vliet 2013|, such as gluten [Ng 2008|, starch [Vliet 1995], dough [Mor-
eira 2011], gelatine [McEvoy 1985, Groot 1996|, thickeners [Ma 1996, Jaishankar 2014|,
yogurt |Leocmach 2014|, and cheese |Faber 2017b|, or biomaterials, such as living cells
[Desprat 2005, Kollmannsberger 2011], tissues |Bell 1978|, biopolymer networks [Wag-
ner 2006, Janmey 2007, Gobeaux 2010| or protein assemblies [Liu 2007, Lieleg 2010, Bren-
ner 2013].

Soft materials are excellent systems to investigate material failure, because their char-
acteristic time and length scales are more readily accessible to experiments as compared
to those of atomic systems: this opens the way to a detailed structural and dynamical
characterization both before and after failure occurs. Moreover, a large variety of soft sys-
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tems with a wide spectrum of interactions and structural and dynamical characteristics
are available, thus allowing one to pinpoint the key parameters controlling the observed
phenomena, possibly unveiling general behaviors. For these reasons, the emerging analo-
gies between soft and hard materials [Schmoller 2013, Keshavarz 2017] make soft materials
an ideal benchmark to investigate how a mechanical stress impacts condensed matter.
Finally, the increasing relevance of soft materials in everyday life, as well as in industrial
processes like for example in food industry [Stokes 2012, Spagnolie 2015, Faber 2017a
further aliments the interest in a deeper understanding of their behavior under stress.

1.1.3 Key questions

10!

102 10! 10° 10' 102 103 10t 10° 10t 102 103
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Figure 1.1: (a) Creep response of 8 wt% carbon black gel under a constant stress o
decreasing from left to right and (b) corresponding shear rate 4. (¢) Creep curves for a
weak depletion gel of polystyrene particles and (d) for thermoreversible stearylated silica
gels. Extracted from [Sprakel 2011].

Figure 1.1 illustrates an example of the delayed failure events that we address in this
work. The sample is submitted to a constant mechanical shear stress that is applied
at time ¢t = 0, and it undergoes a very fast, solid-like deformation, followed by a so-
called creep regime where the shear strain v grows sublinearly, either logarithmically or
as a power-law of time [Cottrell 1952|. Remarkably, this regime may last even hours,
depending on the applied stress, until it is suddenly interrupted by a sharp increase in ~
signaling material failure and the onset of flow.

The effects of failure are obvious at the macroscopic scale, and yet the dynamics that
lead to such failure are governed entirely by the material’s behavior at the smallest scales.
Thus, to better understand the observed delayed onset of flow, we start investigating the
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microscopic processes governing creep. Interestingly, although the ultimate fate of the
material (formation of shear bands, ductile vs fragile fracture, permanent vs reversible
damage) may differ according to the system, the macroscopic behavior before failure is
quite general, as one can see by comparing the three samples investigated in Fig. 1.1.

Power-law creep is widespread in both crystalline and amorphous materials, how-
ever in the former case it is well understood and attributed to defect motion |An-
drade 1910, Cottrell 1952, Poirier 1985, Miguel 2002|, whereas in the latter case its
microscopic origin remains controversial. Indeed it has been attributed in turn to the
accumulation of irreversible, plastic rearrangements [Nechad 2005b, Caton 2008, Cous-
sot 2006, Siebenbiirger 2012, Sentjabrskaja 2015, Karobi 2016|, to linear viscoelastic re-
laxation processes |Balland 2006, Gobeaux 2010, Leocmach 2014, or to a combination of
both [Jagla 2011, Kun 2003|, with different authors holding contrasting views on similar
systems [Jagla 2011, Nechad 2005b)].

For this reason, the first question that we want to answer with our work is the follow-
ing: What is the nature of the microscopic dynamics during the creep regime?

More precisely, we want to understand if the power-law creep of amorphous sys-
tems is governed by the same irreversible microscopic processes evoked for crystalline
solids, or if for those viscoelastic materials other deformation mechanisms are allowed,
not necessarily implying structural damage, as it has been suggested for widely different
systems, from biomaterials such as cells [Fabry 2001, Djordjevic 2003, Desprat 2005, Bal-
land 2006, Kollmannsberger 2011, Hecht 2015|, tissues |[Kohandel 2005, Davis 2006,
Freed 2006, Sinkus 2007, Klatt 2007, Shen 2013, Bentil 2014], or biopolymer networks
[Amblard 1996, Gobeaux 2010, Patricio 2015] and pastes [Jozwiak 2015], to food ma-
terials [Ma 1996, Zhou 1998, Goh 2003, Subramanian 2006, Caggioni 2007, Ng 2008,
Korus 2009, Moreira 2011, Ronda 2013, Xu 2013, Jaishankar 2014, Leocmach 2014,
Faber 2017a, Faber 2017b|, colloidal gels [Grenard 2014| and polymer gels [Hung 2015, Li-
don 2017], melts [Plazek 1960, Cheriere 1997, Friedrich 1999, Hernandez-Jiménez 2002,
Metzler 2003], elastomers [Curro 1983] and composites [Metzler 1995].

Crucially, a detailed understanding of the creep regime holds the promise of unveiling
the origin of the sudden failure of the material, potentially revealing any precursor signs
of failure, which are difficult to detect by monitoring macroscopic quantities, such as the
deformation rate [Koivisto 2016]. For this reason, the second question that we plan to
answer with our work is the following: How does the microscopic dynamics change
as failure is approached? Could such evolution provide a means to detect an
incipient failure?

In order to properly address these questions, a different experimental protocol, rep-
resented in Fig. 1.2, can also be usefully employed, where yielding is not observed under
constant stress, but under an oscillating stress (or strain, as in Fig. 1.2) with increasing
amplitude. In such experiments, one typically observes a first linear regime, in the limit
of small deformations, where the stress grows linearly with strain amplitude and the so-
called viscoelastic moduli are independent of deformation. In this regime, linear rheology
teaches us about the mechanical properties of the unperturbed sample, which in the case
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of Fig. 1.2 is predominantly solid. However, when the sample is driven far enough from
equilibrium (beyond ~, in Fig. 1.2) it develops an amplitude-dependent response, with a
growing loss modulus, which indicates that additional, nonlinear dissipative processes are
triggered by the imposed deformation. Such processes become increasingly relevant at
still higher amplitudes, and concomitantly the elastic modulus decreases, up to a point
where the two moduli cross each other, so that in the large amplitude limit (beyond ~; in
Fig. 1.2) the mechanical response will be dominated by the loss modulus, showing that
the initially solid-like material was fluidized by the applied deformation. Interestingly,
this transition can be grasped as well by the stress vs. strain curve, which displays a clear
crossover (around 7, in Fig. 1.2) between the initial linear regime and the shear-thinning
regime observed at larger amplitudes.
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Figure 1.2: Circles, left axis: viscoelastic moduli G’ (filled) and G” (empty) for different
values of the imposed strain amplitude 7. Crosses, right axis: amplitude of the stress
response as a function of strain. The vertical arrows indicate the end of the linear regime
(strain 7.), the onset of (viscoplastic) yielding (strain +,) and complete fluidization, that
is, liquid-like response (strain ;). The sample is a star polymer solution. Extracted from
[Christopoulou 2009).

The qualitative features observed in Fig. 1.2 seem to be quite general, being ob-
served in a variety of soft systems like polymer solutions |[Tirtaatmadja 1997|, com-
posites [Payne 1963|, emulsions [Mason 1996, Bower 1999, Knowlton 2014|, as well
as colloidal gels [Raghavan 1995, Raghavan 1997, Yziquel 1999, Christopoulou 2009,
Gibaud 2010, Kim 2014, Perge 2014, Moghimi 2017|, glasses |[Derec 2003, Petekidis 2003,
Craciun 2003, Pham Trong 2008, Carrier 2009, Rogers 2011, Koumakis 2013, Hima Naga-
manasa 2014| and polycrystals [Louhichi 2015], whereas some other systems show a
characteristic two-step yielding process, with a peculiar intermediate regime between
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the onset of the nonlinear regime and the complete fluidization [Altmann 2004, Helge-
son 2007, Pham Trong 2008, Koumakis 2011, Laurati 2014, Agrawal 2015, Brunel 2016].

Oscillatory yielding of soft solids has been rationalized by various models [Sollich 1998,
Derec 2003, Miyazaki 2006, Carrier 2009, Radhakrishnan 2016|, based on the idea that
sample relaxation dynamics are essentially unperturbed by small amplitude shear, whereas
the appearance of stress-induced plastic rearrangements determines the onset of the non-
linear regime at amplitudes beyond a given threshold. However, such threshold ap-
pears to be difficult to define unambiguously [Bonn 2017|, as one can appreciate from
the difference between ~,., 7, and 7 in Fig. 1.2. In the attempt to investigate more
deeply the nature of such yielding transition, recent experiments have addressed the
microscopic reversibility of the imposed deformation, by detecting the onset of irre-
versible particle displacements either with direct imaging techniques |Pouliquen 2003,
Marty 2005, Slotterback 2012, Keim 2014, Knowlton 2014, Hima Nagamanasa 2014],
with scattering techniques, [Petekidis 2002a, Gibaud 2010, Amon 2013, Rogers 2014,
Laurati 2014, Leheny 2015, Agrawal 2015|, or in computer simulations [Regev 2015,
Kawasaki 2015, Priezjev 2016, Priezjev 2017|. A transition from reversible to irreversible
dynamics is indeed retrieved, although at a more detailed analysis the results appear
rather controversial, and no consensus is found about the nature of this crossover, which
has been described either as a smooth change [Keim 2013|, a sharp crossover [Knowl-
ton 2014, Kawasaki 2015] or a continuous nonequilibrium phase transition [Hima Naga-
manasa 2014].

The possibility of bridging the gap between the (ir)reversible nature of microscopic
dynamics and the macroscopic deformation makes oscillatory shear the ideal technique
to precise and complete the first two questions. Therefore, in line with the recent work
mentioned above, the third question that we plan to answer with our experiments is the
following: Which microscopic processes govern the reversible to irreversible
transition observed upon yielding? How are they related to the change in
rheological properties?

1.1.4 Challenges

In order to address the above questions, several challenges have to be faced, essen-
tially coming from the intrinsically multiscale nature of material failure [Ben-Zion 2008,
Ritchie 2011]|, involving collective behaviors spanning characteristic energy, time and
length scales from the constitutive elements to the system as a whole. Therefore, the
essential challenge is to bridge over those scales. This is typically challenging in simu-
lations, where computational performance sets severe limitations to the total number of
unitary elements that can be simulated at once |[Colombo 2014, Landrum 2016|. Inciden-
tally, most numerical simulation schemes are currently implemented in a strain-controlled
fashion, which is not adapted to capture the creep dynamics. In order to access realis-
tic volumes, coarse grained models are available, like mesoscopic elastoplastic models
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[Bocquet 2009, Martens 2011], the fuse model [De Arcangelis 1985, Sornette 1992], the
fiber bundle model [Daniels 1945, Pradhan 2010] with its many modifications [Prad-
han 2002, Pradhan 2003, Kun 2003, Kun 2008, Kovacs 2008, Baxevanis 2007, Jagla 2011,
and finite element models [Fragiacomo 2004|, even though most of them were developed
to describe hard materials [Sornette 1992, Fragiacomo 2004, Kun 2007| and do not con-
tain thermal fluctuations, which might be relevant in softer materials like the ones we
investigate. A different implementation of such elasto-plastic models is presented in ap-
pendix B as a way to describe thermoplastic elastomers |[Aime 2017]. Another delicate
point concerning coarse grained numerical simulations is that they rely on specific as-
sumptions on the fundamental mechanisms governing the macroscopic deformation. As a
consequence, even once the rheological behavior is correctly reproduced, the link between
the information obtained at the mesoscopic scale and the physical mechanisms govern-
ing the real systems might not be straightforward. An example is again the debate on
power-law creep, which is equally reproduced by numerical models built on fairly different
assumptions [Pradhan 2002, Jagla 2011].

Bridging different length and timescales is also challenging for experiments, as it is
well known by geologists struggling to predict earthquakes [McGuire 2005 and snow
avalanches [Van Herwijnen 2011b], since the precursor of such macroscopic events is very
likely to be represented by tiny, fast events occurring at the microscopic scale after a
potentially long, unpredictable waiting time. In the present work we mainly address the
above questions with experiments, by imposing a well-controlled load to the sample and
by measuring simultaneously both its mechanical response and its microscopic dynamics.
Such simultaneous measurements are quite rare [Chen 2010] and mostly restricted to rheo-
microscopy (the coupling of a rheometer and a microscope) |Van der Linden 2003, Bessel-
ing 2009| or rheo-DWS (the coupling of a rheometer and a dynamic light scattering appa-
ratus working in the multiple scattering regime) [Wagner 1998, Hébraud 1997|. Although
both techniques represent an invaluable extension of standard rheology, they have dif-
ferent limitations that might make them unfit to our purposes. For example, real space
measurements, like microscopy, suffer an intrinsic trade-off limiting the total volume that
can be probed at a given rate and a given spatial resolution. On the other hand, diffusing
wave spectroscopy (DWS) can effectively probe extremely small displacements (down to
the nanometer scale) in macroscopic samples (several centimeters), but its main disad-
vantage is the lack of a direct connection between the observed signal and the nature
of the probed displacements. To overcome these limitations, in our experiments we will
mainly use time-resolved dynamic light scattering, a technique described in chapter 2,
which will allow us to detect rearrangements involving motion on a very small scale -
down to a fraction of um -, while being able to probe a fairly large portion of the sam-
ple, up to some mm in (linear) size. On the other hand, investigating the microscopic
dynamics of a sample under shear with dynamic light scattering is also challenging, since
the physically interesting signal has to be decoupled from the trivial contribution coming
from the so-called affine deformation of the sample. This requires a careful, nonstandard
analysis of the light scattering signal (discussed in chapter 4), which proves in addition to
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be very sensitive to the presence of eventual wall slip or shear banding, another positive
side effect of dynamic light scattering.

A last nontrivial challenge is represented by imposing a well-controlled stress to the
sample. From established works in literature (cf. e.g. Fig. 1.1) we know that delayed
failure is highly stress dependent, so that we require that stress should be homogeneous
in the sample. Among the deformation geometries commonly employed in mechanical
testing, cone-plate rheology is the only one satisfying this requirement |[Macosko 1994|.
However, such a deformation geometry is particularly difficult to couple with light scatter-
ing, because of the optical quality of the conical surface. By contrast, rheo-optical setups
are often based on plate-plate torsional rheometry, in which case the applied stress is
far from being homogeneous. In order to meet both requirements of optical quality and
stress uniformity we decided to work in a different shear geometry, with parallel sliding
planes. To this aim, we realized a stress controlled shear cell, which will be described in
chapter 3.

1.2 Historical excursus

"Dicebat Bernardus Carnotensis nos esse quasi nanos, gigantium humeris insidentes,
ut possimus plura eis et remotiora videre, non utique proprii visus acumine, aut eminentia
corporis, sed quia in altum subvenimur et extollimur magnitudine gigantea” (John of Sal-
isbury, Metalogicon). The medieval image, reported by John of Salisbury, is particularly
adapted to introduce a brief survey of the current knowledge around the topics that will
be touched by this work. In English it would read: "Bernard of Chartres used to say that
we |[the Moderns| are like dwarves perched on the shoulders of giants [the Ancients|, and
thus we are able to see more and farther than the latter. And this is not at all because
of the acuteness of our sight or the stature of our body, but because we are carried aloft
and elevated by the magnitude of the giants" [Troyan 2004].

Although it is easy for us, modern scientists, to identify with this medieval image
(Newton himself used it in a letter to Robert Hooke), we can linger on it, asking our-
selves what exactly gives us our raised viewpoint. There is no doubt that the incredible
amount of easily accessible information, which was unimaginable already 30 years ago,
together with the improved data quality provided by modern scientific instruments and
ever-increasing computational schemes and platforms, constitutes an absolutely favorable
working condition for today’s soft matter scientists. However, there is also another related
aspect, which I would like to take as a starting point. To introduce it, another quotation
will help, this time from C.S. Lewis, who writes that "The universe rings true whenever
you fairly test it" [Lewis 1955]. This is specially true in science, being clear that to simply
test is not enough: one has to do it fairly in order to obtain a true answer, and history
has shown how long and curvy is the path through which we learn how to fairly test
universe, and to ask relevant scientific questions in the proper way. If on the one hand
this is necessarily the path of every young scientist wishing to become an adult scientist,
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on the other hand this path is traced by the example of curious people that across the
centuries have found out better ways to formulate scientific questions, and more proper
ways to test them. The beginning of this work is dedicated to a short selection of those
curious people, with particular focus on the research on material failure.

a) b) <) T

&)

Figure 1.3: Schemes of the mechanical tests designed by (a) Leonardo da Vinci, (b)
Galileo Galilei and (c¢) Robert Hooke. Extracted from [Timoshenko 1953].

Without any doubt, the dawn of this research dates back to ancient times: from the
earliest times when people started to build, it was found necessary to have information
regarding the strength of structural materials, so that rules for determining safe dimen-
sions of building elements could be drawn up. Ancient civilizations as Egyptians, Greeks
and Romans certainly had some empirical rules of this kind, since without them it would
have been impossible to erect their great monuments, some of which still exist [Tim-
oshenko 1953]. However, to the best of our knowledge, the first documented attempt
to directly address the strength of structural materials with dedicated experiments is
attributed to Leonardo da Vinci, in XV century |Parsons 1976]. In his note "Testing
the Strength of Iron Wires of Various Lengths" he gives the sketch of the first tensile
experiment of human history (Fig. 1.3a) and remarks: "The object of this test is to find
the load an iron wire can carry. Attach an iron wire [...] to something that will firmly
support it, then attach a basket [...] to the wire and feed into the basked some fine sand
through a small hole placed at the end of a hopper. A spring is fixed so that it will close
the hole as soon as the wire breaks. [...] The weight of sand and the location of the frac-
ture of the wire are to be recorded. The test is repeated several times to check the results.
Then a wire of one-half the previous length is tested and the additional weight it carries
15 recorded; than a wire of one-fourth length is tested and so forth, noting each time the
ultimate strength and the location of the fracture” |Da Vinci 1972|. Besides the same idea
of conceiving an ad hoc experiment to test the strength of a wire, independently from its
application, which is certainly the most revolutionary aspect of Leonardo’s approach, two
interesting points have to be noted in his description of the experiments: first, one single
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test is not enough, since its result has to be checked by several repetitions, suggesting that
Leonardo had the intuition that statistics are particularly relevant for those phenomena.
Five centuries afterwards, the work of Waloddi Weibull [Weibull 1939| will rationalize
this concept in mathematical terms. Second, Leonardo understood that the length of the
wire plays a role, longer wires carrying less load, which is indeed the starting point of
Weibull model, namely that real wires are heterogeneous, so that longer wires are more
likely to contain a critical defect [Lund 2001].

With a different accent, the question about the relationship between size and strength
was also addressed by Galileo Galilei at the beginning of XVII century. In his book
"Discorsi e dimostrazioni matematiche intorno a due nuove scienze", he investigates the
strength of materials in simple tension, like in Leonardo’s experiments, and he states
that the strength of a bar is proportional to its cross-sectional area and independent of
its length: this defines, for Galileo, the "absolute resistance to fracture". With respect
to Leonardo’s results, this remark suggests that Galileo worked with thicker and more
homogeneous materials, whose strength did not display marked size dependence. Having
the absolute resistance of a bar, Galileo then turns to a different experiment in which the
resistance of the same bar is tested in bending geometry (Fig. 1.3b). By analyzing the
deformation profile, he finds that geometrically similar bars are not equally strong, as
the bending moment increases as the square of the length, whereas the resisting moment
increases as the cube of the radius: thus, to keep the strength constant, the cross-sectional
dimensions must be increased at a greater rate than the length. For this reason, he argues,
"you can plainly see the impossibility of increasing the size of structures to vast dimensions
either in art or in nature; likewise the impossibility of building ships, palaces, or temples
of enormous size [...[; nor can nature produce trees of extraordinary size because the
branches would break down under their own weight. [...] Indeed, the smaller the body
the greater its relative strength” |Galilei 1638]. We see that the use of mathematics to
rationalize his findings and the extrapolation, from the particular experiment, of a general
result applicable to different systems characterizes Galileo’s approach to material failure.
For this reason, Galileo’s work represents the beginning of the science of solid mechanics
| Timoshenko 1953].

Later in XVII century, this new-born science evolved rapidly thanks to the contri-
bution of Robert Hooke, who is rightfully considered the father of the theory of elastic
bodies. In his manuscript "De potentia Restitutiva", Hooke explains the linear relation-
ship between elastic force and spring deformation, which is also known as Hooke’s law:
"Take a wire string [...] and fasten the upper part thereof to a nail, and to the other
end fasten a scale to receive the weights: then with a pair of compasses take the distance
of the bottom of the scale from the ground or floor underneath, and set down the said
distance, then put in weights into the said scale and measure the several stretchings of
the said string, and you will find that they will always bear the same proportions one
to the other that the weights do that made them". By investigating other deformation
geometries like torsion, bending and compression (Fig. 1.3c) he comes to the following
general conclusion: "It is very evident that the Rule or Law of Nature in every springing
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body is, that the force or power thereof to restore itself to its natural position is always
proportionate to the distance or space it is removed therefrom” [Hooke 1678|.
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Figure 1.4: (a) James and Galton’s fatigue-testing machine: a rotating eccentric is used
to deflect and release the bar, with a frequency from 4 to 7 rpm |Timoshenko 1953|.
(b) Torsional rheometer used by Taylor [Taylor 1934] to measure the viscosity of "highly
viscous" (presumably viscoelastic) fluids. (c-d) Rheo-optical cells to visualize the defor-
mation of a viscoelastic drop under biaxial deformation (¢) and shear deformation (d).
(e) Destabilization of a viscoelastic drop under biaxial deformation |Taylor 1934].

From seventeenth century to the modern era, contributions to this field, specially on
the mathematical formulation of the theory of elasticity with the new instruments pro-
vided by infinitesimal calculus, are numerous. Mentioning most of them would largely go
beyond the purpose of this section. However, it is fascinating to follow the close connec-
tion between the development of this science and the evolution of the practical problems
posed by the increasingly demanding technological applications. As an example, the de-
velopment of railroad transportation, combustion engines, and the introduction of steel
as structural material brought many new problems dealing with strength of structures.
Indeed, it was discovered that subjecting a metallic material to many cycles of stresses
can produce fracture, by much smaller forces than would be required for static failure
[Morin 1853|. This began the investigation of fatigue failure in iron, which initially aimed
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at estimating how frequently locomotives had to be inspected and maintained in order to
prevent fracture. To this aim, experiments applying a cyclic deformation to iron beams
were performed (Fig. 1.4a), and the development of plasticity under finite strains was
addressed, in connection with the onset of irreversibility of the macroscopic deformation
[Fairbairn 1864]. At the same time, the microscopic origin of fatigue was investigated, but
no consesus could be reached only based on macroscopic experiments. For this reason,
in 1850 came the first suggestion of coupling fatigue test and microscopic investigation,
from P.R. Hodge: "To arrive at any true results as to the structure of iron it would
be necessary to call in the aid of the microscope, to examine the fibrous and crystalline
structure” [Engineers 1851]. At the time such coupling was technologically out of reach,
so that the change in iron microstructure had to be investigated separately. This limi-
tation, coupled to the low sensitivity of existing imaging apparatuses, was such that no
relevant observation could be made, yielding the conclusion that no real difference could
be perceived between the sample before and after the fatigue treatment.

One has to wait almost one century before the first pioneering attempt, by G.I. Taylor
[Taylor 1934], of coupling macroscopic deformation to a simultaneous measurement of
microscopic structure and dynamics, with the aim of characterizing the destabilization
and rupture of "highly viscous" drops under large deformations. To achieve this, a
fixed stress was applied by controlling the deformation rate of the surrounding medium
(Fig. 1.4c-d), while an imaging system provided magnified picture of the drop under
increasing stress conditions, up to its failure (Fig. 1.4e). Interestingly, the mechanical
properties of the bulk materials were also tested, using a home-made instrument which
can be considered the ancestor of our stress-controlled rheometers (Fig. 1.4b).

1.3 State of the art

1.3.1 Steady-rate experiments

Many different protocols are used in literature to probe yielding and failure in soft ma-
terials. Probably the most straightforward of those protocols is represented by steady-rate
experiments, where the material, initially at rest, is deformed at a constant deformation
rate. Such an experiment can be performed in different deformation geometries, from
well-defined ones like shear |Costanzo 2016, Keshavarz 2017|, extension [Costanzo 2016|
and compression [Antonaglia 2014|, to more complex ones, like indentation or bending.
In the following, we will focus on shear deformation, whereas appendix B will show sim-
ulations and experiments in uniaxial extension.

In steady-shear rate experiments, the stress ¢ is measured as a function of time, start-
ing from the moment where the deformation rate is applied. An initial linear regime is
observed at small deformations, where the stress growth is dictated by the linear vis-
coelastic properties of the sample. Beyond the linear regime, o depends on the imposed
shear rate 7, in a way that can be rationalized in terms of the ratio between the largest



16 Chapter 1. Motivation and State of Art

(terminal) relaxation time 7 of the system and the experimental timescale 7., ~ 5!

When the product Wi = 47 (the so-called Weissenberg number)[Dealy 2010]) is small
(Wi <« 1), the deformation can be thought as quasistatic: the system relaxes faster
than it is sheared, and can be considered at equilibrium at any time during the defor-
mation. In this case, no deviations from linear rheology are expected. By contrast, in
the opposite limit of Wi 2 1, the sample has no time to relax during deformation, and
eventually is driven out of the linear regime. The linear to nonlinear transition can mani-
fest in qualitatively different forms: brittle materials break abruptly, almost without any
plastic deformation, whereas ductile ones exhibit substantial large plastic deformations
after yielding. Because plasticity dissipates elastic energy, ductile yielding is generally
associated to a downturn in the measured stress: eventually, after a first strain hard-
ening regime |Groot 1996, Gardel 2004, Storm 2005, Pouzot 2006|, the stress passes
through a maximum (defining the failure stress and strain) and decreases afterwards
[Mohraz 2005, Kabla 2007, Skrzeszewska 2010, Keshavarz 2017]. The detailed micro-
scopic processes associated to departure from linear viscoelasticity and plastic yielding
can be complex [Koumakis 2011, Costanzo 2016], so that in general their investigation
is challenging and can usefully be supported by numerical works. To highlight the main
open questions in this field, hereafter we review a few experimental studies, with partic-
ular focus on network forming systems and physical gels.
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Figure 1.5: Protein physical gel. Time-resolved stress response as a function of strain
(v = 4t) after start-up of steady shear. The reduced shear rates (47) are indicated near
the lines, with 7 equal to 3200 s. Extracted from [Skrzeszewska 2010].

As a first example, working with a recombinant protein able to form supramolecular
bonds with a well defined characteristic lifetime 7, Skrzeszewska et al. |Skrzeszewska 2010
show that a ductile to brittle transition is observed with increasing Weissenberg number
beyond 1 (Fig. 1.5). The authors argue that at the lowest shear rates the stress deviates
downwards because of the viscoelastic relaxation of the physical gel (associated to dis-
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sociation and reformation of physical bonds), which leads to simple viscous flow in the
steady state, whereas at larger shear rates this mechanism cannot happen anymore, and
one observes instead a slight strain hardening, associated to the finite chain extensibility,
followed by chain pull-out and brittle fracture.

In another work on a protein gel with no measurable terminal relaxation time, Ke-
shavarz et al. observe brittle fracture for all values of 7, since the condition Wi > 1 is
always met [Keshavarz 2017]. Interestingly, the authors show that the whole stress-strain
curve, up to the onset of mechanical instability, can be nicely predicted by a nonlinear
viscoelastic model based on time-strain separation (Fig. 1.6). In this case, the departure
from linearity can be accurately described in terms of a strain hardening and a strain
softening term, and the deviation from the model is attributed to fracture. Indeed, thanks
to direct visual inspection of the gel during deformation, the authors can detect the nu-
cleation and growth of cracks, which appear at the yield point and are clearly associated
to the subsequent stress drop. The authors argue that failure occurs as a consequence
of stress-induced damage accumulation, which becomes critical beyond a given thresh-
old. The rate of damage accumulation is assumed to be a function of stress alone, which
provides an excellent prediction of failure stress and strain based on a failure criterion
proposed by Bailey |Freeds 2002|. Therefore, one question that opens concerns the nature
of the plastic rearrangements considered by Bailey’s criterion. To elucidate this point,
standard rheology might benefit from a microscopic investigation of the local structure
and dynamics.

One example of such investigation can be found in the work of Mohraz and Solomon
[Mohraz 2005], who study the structure of weak fractal colloidal gels subject to start-up
of steady shear flow, by coupling shear rheology to time-resolved small angle light scatter-
ing. With increasing deformation, an anisotropic intensity pattern is detected in the light
scattering signal, which signs a slight orientation in the gel structure [Vermant 2005|. The
structural anisotropy initially increases as the gel is deformed, then reaches a maximum
value at the yield strain (defined by the locus of the stress maximum) and afterwards
decays to a plateau, in a qualitatively similar way to the macroscopic stress. Such simi-
larity suggests that structural reorientation determines the nonlinear rheology of the gel.
Moreover, by investigating the microscopic dynamics after flow cessation, the authors
argue that minor connectivity loss should take place before the stress peak. It is interest-
ing to compare this result to Bailey’s criterion evoked by Keshavarz et al., which rather
suggests a more progressive weakening. The comparison is not trivial, and calls for a
deeper understanding of the interplay between local plasticity and macroscopic rheology.
On the other hand, both works agree in interpreting the stress drop as the macroscopic
signature of gel rupture, which occurs abruptly at a large critical strain (around 100 %),
where the gel backbone should be fully extended. Accordingly, the rupture is associated
to a maximum in structural anisotropy, and is followed by a partial relaxation of both
stress and anisotropy, in a process read as the densification of fractal clusters.

More detailed insights on the microscopic processes occurring under shear are reported
by Masschaele et al. [Masschaele 2009], who observe in real space the shear deformation
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Figure 1.6: Protein gel. Stress response o vs time t (lower axis) and vs strain v = 4ot
(upper axis) to a constant shear rate 49 = 1073s7! initiated at ¢ = 0. The gray dashed
line corresponds to the linear viscoelastic response (a power law of time). The black
line corresponds to the nonlinear model (K-BKZ) constructed using only the strain-
hardening part of the damping function, whereas the red line corresponds to the full
K-BKZ equation, which includes both the hardening and the softening components of
the damping function. Insets: images of the side view of Couette cell at different strains
recorded simultaneously to the experiment reported in the main graph. Adapted from
|Keshavarz 2017|.

and rupture of 2D fractal gels at oil-water interface. Unfortunately, the shear stress could
not be measured in their experiments, so that the linear to nonlinear transition and gel
rupture are only investigated at the microscopic scale. The authors rely on the assump-
tion that the rheology of interfacial gels would show the same qualitative features as the
analogous three dimensional structures. In agreement with Mohraz and Solomon, Mass-
chaele et al. find that at small strains the gel network remains intact, and percolation is
only lost at higher strains, where rupture occurs abruptly, as a consequence of a cascade
of break-up events, which are monitored throughout deformation. Interestingly, break-up
events are found to be spatially localized and tend to cluster, which might suggest some
interesting correlations, neglected by the simple additivity of Bailey’s criterion. In the
regime of increasingly nonlinear deformation, the authors address various microscopic
structural indicators in order to quantify the increased heterogeneity of the structure
during deformation. Essentially all indicators show minor evolution prior to rupture,
whereas the heterogeneity increases after rupture, in line with the findings of Mohraz
and Solomon. Finally, the authors show that the pertinent lengthscale for breaking and
structural reorganization coincides with the lengthscale of structural heterogeneity, i.e.
the cluster size. More precisely, Fig. 1.7 shows an example of the typical plastic rear-
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Figure 1.7: 2D colloidal gel: details of yielding of one particle cluster. The snapshots
correspond to the network after a strain of, respectively, 0.25 (a), 0.5 (b), 0.75 (¢), and
1.25 (d). Adapted from |Masschaele 2009].

rangement occurring at yielding: the bonds between clusters break, and as a consequence
percolation is lost and groups of particles, which retain their integrity, are free to rotate
collectively relative to the surroundings. This mechanism is in agreement with previous
models for gel rupture, only based on rheological measurements [Shih 1990].

Many of the above results are corroborated and extended by numerical simulations,
for which steady-rate experiments represent a particularly convenient framework. For
example, the work of Park et al. |[Park 2013, Park 2017| agrees on the observation of
a structural anisotropy under shear, which reaches its maximum at yielding, whereas
Boromand et al. [Boromand 2017] focus on bond distribution as an efficient way to
characterize y-dependent structural evolution during shear. In the same vein, Colombo
and Del Gado |Colombo 2014| follow the bond breaking and reformation, emphasizing
the relevance of bond orientation relative to shear. In agreement with Masschaele et
al., they show that bond breaking only starts occurring beyond 30% deformation, and
that the onset of bond breaking is connected to the overstretching of the weakest chains,
where the stress gets localized. Interestingly, the authors also discuss the microscopic
reversibility of the deformation, by inverting the shear direction after reaching a given
strain 7;,, and bringing back the system to the initial v = 0 state. A comparison between
the system at the beginning and at the end of this strain cycle shows that irreversible
nonaffine displacements start to occur around ~;,, ~ 10%, significantly before the onset
of bond breaking.

In conclusion, we learn from steady-shear rate experiments that the yielding of network
forming systems such as physical gels can occur in a brittle-like fashion under specific
conditions. Brittle rupture is associated with a sudden drop of the measured stress, which
is caused by a cascade of break-up events weakening the stress-bearing backbone of the
network and triggering mechanical instability. This occurs at a characteristic lengthscale
equal to the network mesh size, which for a colloidal gel corresponds to the size of the
fractal cluster. During the deformation preluding rupture, such materials exhibit minor
structural rearrangement, and the network connectivity is mostly preserved. At the same
time, strain hardening is observed in the mechanical response, and it is associated to the
orientation of the gel network in the shear direction.

A question that remains to a large extent open concerns the amount of bond breaking
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events occurring during the deformation, and their eventual space and time correlations.
If no bond breaking at all is expected in the linear regime, it is likely that, as it is
observed by Masschaele et al. and in computer simulations, some bonds will break during
nonlinear deformation. The amount of those breaking events, their nature and their
relevance for the observed mechanical properties are usefully disclosed by simulations,
but experiments are still blind to such information, which is presumably sample- and
experimental-protocol dependent. A first indication can be obtained thanks to the models
accounting for the macroscopic rheology. For instance, the applicability of durability
criteria to model the onset of mechanical instability discussed by Keshavarz et al. seems
to suggest that in some cases plasticity should occur throughout the deformation, at
a well defined and stress-dependent rate (thus precluding avalanche-like dynamics as
observed for some other systems |Antonaglia 2014, Kurokawa 2015]). The impressive
agreement between the nonlinear model and the experimental data encourages deeper
investigation on its microscopic implications: in this perspective, it was shown with
the above examples that novel experiments accessing at the same time the mechanical
response and the microscopic structure and dynamics tremendously increase our insight
in the material behavior.

1.3.2 Creep experiments

Because of the rather robust rheological features observed and the well-defined ex-
periment duration, steady-rate experiments are particularly convenient to study yield-
ing. This explains their widespread application since Leonardo’s ancient times |[Timo-
shenko 1953|. The main disadvantage of this technique is perhaps that the shear history
imposed to the sample is usually quite distant from the one typically experienced by
materials in real life applications. For example, as mentioned above, snow avalanches,
rockslides and sandslides occur under the constant force exerted by gravity, which may
also cause the delayed collapse of civil structures like buildings and bridges as well as soft
materials, whereas earthquakes and volcano eruptions are triggered by a nearly-constant
stress due to the underground activity of earth’s inner layers. On a smaller scale, failure
of cables, fibers or adhesives usually occurs as well under a controlled stress. The latter
case is particularly frequent, as it is well known to those who have tried to fix a post-it, a
poster or a picture to a vertical surface with the help of an adhesive tape. Those people
might have noticed with great disappointment that, despite its apparent initial stability,
their creation had a limited lifetime, and it would eventually collapse after a while. The
above examples push to address material failure with a second experimental protocol,
where the sample is subject to a constant load and its deformation is monitored over
time until delayed failure it eventually observed. Because the material is often observed
in these experiments to progressively weaken, the term fatigue is sometimes used. In
particular, when the external load is constant, one speaks about static fatigue (or creep),
as opposed to dynamic fatigue, which is typically probed under cyclic stress or strain
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[Poncelet 1839].

There is also a second, more fundamental reason for considering static fatigue of mate-
rials. Namely, in most of the models introduced in the literature, failure is regarded at the
miscroscopic scale as a stress-controlled phenomenon. Remarkable examples include the
Eyring model |Eyring 1936], the original fiber bundle model [Daniels 1945 and many of
its derivations [Pradhan 2005, Kun 2003, Jagla 2011|. For this reason, a straightforward
comparison between the various models’ predictions and experimental results obtained
in steady-rate is sometimes difficult to obtain, whereas static fatigue represents a much
more natural framework.

1.3.2a Linear and nonlinear creep

The main disadvantage of static fatigue experiments is that sample deformation is not
controlled. As a consequence, the duration of the experiments is often long and difficult
to predict, sometimes because of experimental reasons like sample to sample variations
and uncertainties on the applied stress, and sometimes for more fundamental reasons,
like the intrinsically stochastic nature of fracture nucleation and growth |Griffith 1921,
Weibull 1939, Bonn 1998]. During the potentially very long induction times, which on
structural materials can extend to several years [Maekawa 2016], the effect of fatigue is
observed at the macroscopic scale as a slow deformation called creep, which is usually
well described either by a logarithm of time |Phillips 1905, Nabarro 2001, Nechad 2005b,
Siebenbiirger 2012|, by a power law [Andrade 1910, Plazek 1960, Caton 2008, Rosti 2010,
Grenard 2014, Leocmach 2014, Koivisto 2016, Ballesta 2016], or by combinations of the
two [Wyatt 1951, Cheriere 1997, Siebenbiirger 2012].

A major fundamental issue related to creep is to understand the underlying micro-
scopic processes responsible for the observed sublinear deformation. If this is rather un-
derstood in crystalline materials [Poirier 1985] like metals [Andrade 1910, Miguel 2002,
Cottrell 1952| or ice |Ashby 1985] in terms of defect motion, for amorphous materials
the problem is complicated by the fact that structural defects are not as well defined
[Widmer-Cooper 2009, Schoenholz 2014|. In particular, amorphous materials are often
viscoelastic, thus a time-dependent response may arise as well as a simple consequence
of linear viscoelasticity, in absence of damage or plastic events. Decoupling the two con-
tributions is generally far from trivial, all the more since several models, based on radi-
cally different assumptions, from pure linear viscoelasticity [Mainardi 2010, Hilfer 2000,
Friedrich 1991, Heymans 1994|, to pure plasticity [Pradhan 2005, Eyring 1936, Zap-
peri 2000, Bocquet 2009|, to a combination of both |Kun 2003, Jagla 2011|, can equally
account for the observed macroscopic deformation.

In general, in the limit of small applied stresses, and consequently small deformations,
creep is linear viscoelastic: the measured deformation can be described in terms of a linear
creep compliance, which can be compared with independent measurements in the linear
regime, say in the frequency domain [Evans 2009]. This can be exploited in order to
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probe linear viscoelastic processes occurring on timescales too long to be characterized
by oscillatory rheology (cf. chapter 5). Upon increasing the applied stress, however,
an additional contribution to structural relaxation is introduced by emerging nonlinear
processes, which lead to faster (shear thinning) flow in the steady state observed in the
long time limit [Erwin 2010].

104
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Figure 1.8: Typical aspect of deformation vs time curves for different stress levels
o (increasing from bottom to top) applied to the following soft-jammed systems: (a)
Mustard, (b) Bentonite suspension, (¢) Hair gel. The inclined dotted line is the curve of
slope 1. Adapted from [Coussot 2006|.

This is discussed in detail by Coussot et al. [Coussot 2006|, who introduce the concept
of viscosity bifurcation to explain the experimental observation that for a small increase
in the applied stress o from below to above a given threshold o, (the so-called yield stress)
the steady-state shear rate increases from zero in the solid regime (o < o) to a finite
value, apparently larger than a critical strain rate . (Fig. 1.8). This phenomenon appears
to apply quite generally to a class of yield stress fluids which are called thixotropic.
However, from Fig. 1.8 it is clear that the steady state is not reached instantaneously and
that transient regimes, e.g. separating solidlike behavior at rest from liquidlike behavior
beyond yielding, convey tremendous physical information on the yielding process. In
particular, Coussot et al. remark that in some cases, close to the yield stress, the induction
time can exceed the experiment duration, and that in those cases it is difficult to say
whether the material will ultimately stop or reach a steady flow over very long times.

The transient creep deformation before fluidization is addressed for example in the
work of Siebenburger et al. on colloidal glasses [Siebenbiirger 2012]. Their data (Fig. 1.9)
show distinct regimes: (i) an initial transient, dominated by the coupling between sample
viscoelasticity and inertia of the measurement tool (called creep ringing [Ewoldt 2015]),
is followed by (ii) a first linear viscoelastic response, which corresponds to a quasi-plateau
in the measured deformation. Later on, plastic deformation is observed, and takes differ-
ent forms according to the applied stress o. At large o, a steady state characterized by
viscoplastic flow (iii) is reached after a superlinear deformation regime (iv), whereas at
low o sublinear creep continues indefinitely (v): creep appears to be logarithmic in the
long time limit, but before that a power-law transient is also found, whose duration may
extend to nearly one week depending on sample age. Whereas no real explanation is given
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Figure 1.9: Colloidal glass. (a) Deformation ~(t) for increasing applied stress (different
colors from bottom to top), and increasing waiting times after shear-induced rejuvenation
(for each color, increasing from left to right). Time is rescaled using the diffusion time 7y =
R?/Dy = 4ms (R being the particle radius and Dy being the free diffusion coefficient). The
different regimes described in text are marked with roman labels (i)-(v). (b) Associated
normalized shear rate /(¢)7y. Dash-dotted line: Andrade creep law, 5(t) ~ t~2/3; dashed:
logarithmic creep, ¥(t) ~ 1/t. Extracted from [Siebenbiirger 2012].

for the transient power law creep, the authors propose a nonlinear model accounting for
the logarithmic creep, based on the assumption that the nonlinear relaxation modulus is
described by a nonlinear generalized Maxwell model [Voigtmann 2011|, whose essential
ingredient is that in the high shear rate limit the material displays shear thinning as a
simple yield stress fluid (n oc 4~1). Other models can be found in literature, relating
the logarithmic creep to more microscopic quantities like the activation energy for plas-
tic rearrangements. Nabarro reviews two of them, the work-hardening model and the
exhaustion model [Nabarro 2001]. These models were developed to describe the deforma-
tion of granular materials, and are essentially elasto-plastic, with no account for linear
viscoelastic deformation. Without entering into details, we observe that the amount of
different models existent in literature and producing identical predictions for the rheology
should be regarded as an indication that it may be hard to get a true microscopic insight
from macroscopic measurements alone.

In this regard, an instructive example is discussed by Chériére et al., for the torsional
creep of PMMA, a polymer glass [Cheriere 1997]: at low temperatures a simple logarith-
mic creep is observed, but as temperature is increased the first logarithmic creep regime
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Figure 1.10: Polymer glass. (a) Experimental creep and recovery at 90°C. Creep is
partly recoverable. The magnitude of the recoverable creep is Jg ma; this allows deter-
mination of the maximal compliance Jg(t;) reached by the recoverable creep at ¢ = ;.
(b) Beyond of the end of the logarithmic creep, t. = 500 s, analysis of the experimental
creep curve obtained by addition of two creep contributions: a recoverable creep deduced
creep recovey and a nonrecoverable creep obtained by difference from the total creep.
Extracted from [Cheriere 1997].

is eventually followed by a power-law regime. At still higher temperatures, approaching
the glass transition from below, a third regime follows, described by a different power
law. This is analogous to the behavior of many metals [Wyatt 1951]. The originality of
the work of Chériére et al. consists in a thorough discussion of the recoverability of creep
deformation, which is probed by releasing the applied stress after a given time and by fol-
lowing the relaxation of the strain. If the stress is released during the logarithmic creep,
the authors observe a logarithmic strain recovery, which completely recovers the initial
zero-deformation state after a time equal to the time spent under stress. Complete recov-
ery is also found when the stress is released during the first power-law creep, but in this
case the recovery process takes longer than the creep time. Finally, the second power law
creep is only partially recovered. The complete picture is represented in Fig. 1.10. Such
observation about macroscopic reversibility is very interesting, because it is contrary to
the intuitive notion of creep as presented by the previous works. In those works, creep was
regarded as the result of a series of irreversible structural rearrangements, which should
leave behind them no or minor driving force for recovering the unstrained state once the
macroscopic stress is released. Here, by contrast, the authors correctly point out that
plasticity might be reversible, as long as the main stress bearing structure is not damaged:
in that case, upon stress release, the system will maintain the tendency of recovering its
initial rest state. Moreover, this also explains why recovery is also a gradual processes,
since it can attain completion only after a number of plastic rearrangements comparable
with the ones that occurred during creep, which explains the symmetry between the two
processes as observed by rheology. Following this line of thought, the authors speculate
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that entanglements start to be lost only during the third regime, which is only partially
recovered.

The potential recoverability of creep is conceptually intriguing and hides a subtle
distinction between recoverability of macroscopic strain and reversibility of the single
microscopic processes occurring under creep. For example, one may wonder whether the
final state after complete strain recovery corresponds to the same microscopic configu-
ration as the one before stress application. In this regard, such a distinction is strongly
related with the key questions mentioned above, and deserves deeper investigation. In
particular, Fig. 1.10b reveals a rather well defined transition between fully recoverable
and only partially recoverable creep. From that same figure, it is clear that a clear dis-
tinction between the two regimes can hardly come from an observation of the shape of
the creep curve, and that complementary observations may be usefully coupled to the
macroscopic rheology.
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Figure 1.11: Protein gel. (a) Normalized shear-rate responses 7(t)/¥min for different
values of the applied stress and plotted as a function of the rescaled time t/7;, where 7¢
is the failure time and +,,;, is the minimum shear rate reached at 7,,;,. Inset: Linear
viscoelastic moduli G’ (top) and G” (bottom) as a function of frequency f for a strain
amplitude of 0.1%. Red lines are power laws G’ o G” o< f%1°. (b) Same data as in (a),
but with the time axis in linear scale to emphasize the secondary creep. Inset: 7,,;, vs
7¢. The red line is 7,,;,, = 0.5567;. Extracted from [Leocmach 2014].

Fully recoverable creep was also found by Leocmach et al. on a completely different
system, namely a protein gel [Leocmach 2014|. In this case, the creep deformation is
characterized by three regimes (Fig. 1.11), with a first power-law creep (called primary
creep), which, under large enough stresses, is followed by a secondary creep characterized
by an upward deviation from the power law, with a minimum in the deformation rate, and
finally a tertiary creep, where the deformation accelerates, exhibiting an ideal power-law
divergence at a finite time ¢; where macroscopic failure is observed. The authors find that
the power law characterizing primary creep corresponds to the linear creep compliance
as it can be inferred by independent measurements (Fig. 1.11a, inset). This rules out
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most of the mechanisms invoked by the above works, where significant creep was only
observed under large enough stresses (cf. Fig. 1.8), and calls for a linear deformation
mechanism, perhaps inspired by the rheology of critical polymer gels, which also display
extended power laws as a consequence of their fractal structure [Adolf 1990|. As a further
confirmation for linearity, the authors perform a series of creep and recovery tests, each
time finding a complete recovery, which suggests that no or minor damage is cumulated
by the material during primary creep. Thus, very interestingly, the authors point out that
the onset of secondary creep in the rheological signal corresponds at a more fundamental
level to the onset of irreversible processes, which introduce an additional contribution
to the macroscopic deformation, eventually becoming predominant during the tertiary
creep. Thus, a clear detection of such transition holds the promise of providing a means
of predicting the failure time ¢y before the material is excessively damaged, which is a
problem of fundamental practical interest. The authors point out that an analysis of the
shape of the 4(t) curves might allow such prediction. Indeed, as it is shown in Fig. 1.11b,
in every experiment 7 exhibits a minimum at a time ¢,, simply related to t; by a linear
relation (Fig. 1.11b, inset): a measurement of ¢,, would yield a straightforward prediction
of the failure time ¢;.

An analogous linear relation (first determined by Monkman and Grant in 1956 [Monkman 1956])
is also found on composite materials under tensile creep [Nechad 2005b, Rosti 2010,
Koivisto 2016|. In particular, Koivisto et al. explicitly discuss the possibility of achieving
a robust failure prediction based on the detection of ¢, [Koivisto 2016]. They show that
despite both ¢,, and ¢; individually suffer huge sample to sample variations, the ratio
tr/tm is very well defined (and equal to 0.83 in their case, whereas it is 0.556 for Leoc-
mach et al.), and it thus represents a very robust and reliable indicator. However, the
authors also remark that the experimental measurement of ¢,, is in practice very delicate,
because of both experimental noise and intrinsic fluctuations, and they conclude that such
a method for predicting ¢; would not be practical. In conclusion, the authors identify two
main challenges associated to creep failure time prediction: the first one is to find some
physical quantity measurable during the first stages of the creep and displaying strong
correlations with the failure time, and the second is to properly measure it, recognizing
precursory features as such. These are the same challenges faced by the attempts to
predict earthquakes: although foreshocks clearly do exist, the main problem is detecting
them on time and recognizing them in their precursural nature [McGuire 2005].

Therefore, it appears that also the effort of predicting delayed failure could largely
benefit from a more microscopic insight, where the smooth transition from sublinear
primary creep to accelerated tertiary creep observed in rheology might be sharper and
easier to detect.

1.3.2b Microscopic dynamics during creep

An insight on microscopic plasticity can be obtained in some cases by recording the
crackling noise emitted by the sample under creep. Indeed, many systems under creep
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emit a characteristic intermittent noise called crackling, which has been linked to sud-
den, collective plastic events occurring at the microscopic scale [Myers 2001]. Known
since long time in the framework of earthquakes |[Ben-Zion 2008| and snow avalanches
[Sommerfeld 1983, Van Herwijnen 2011b, Van Herwijnen 2011al, it first entered the frame-
work of material science through an investigation on crumpling paper [Houle 1996], and
was thereafter detected on a variety of other systems, from metals [Antonaglia 2014,
Abobaker 2015] and ice [Duval 2010, Gudipati 2012| to rocks [Agioutantis 2016|, wood
|Guarino 2002] and composite materials [Nechad 2005a, Nechad 2005b], including ex-
amples relevant to soft matter such as granular materials [Johnson 2013, Amon 2013|
or foams |Tewari 1999, Kabla 2007|. The statistical properties of crackling were shown
to follow characteristic power-law size distributions, and even the detailed shape of the
temporal evolution of one single event was shown to be universal [Antonaglia 2014|, and
common to a wide class of completely different phenomena, from solar flares [Lu 1993| to
fluctuations in the stock market [Bak 1997], with many other examples reviewed by Myers
et al. [Myers 2001]. This result has been read as an indication that creep and yielding
could be described in a sample-independent fashion, and studied in the larger frame-
work of nonequilibrium phase transitions |Hinrichsen 2000|, and as such it has whipped
up enthusiasm in the scientific community. For this reason, the shape and the statis-
tical properties of crackling noise have been addressed in several analytical [Papaniko-
laou 2011, Dahmen 2011] and numerical works [Durian 1997, Carmen Miguel 2001, Prad-
han 2005, Tsamados 2010, Jaiswal 2016, Bouzid 2017|, and concepts borrowed from this
field were used to interpret macroscopic stress fluctuations observed in experiments |An-
tonaglia 2014, Kurokawa 2015|.
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Figure 1.12: Ply glass / polyester composites. (a) Creep strain rate measured for 15
samples, plotted as a function of . — ¢ to emphasize the power-law divergence during
tertiary creep (adapted from [Nechad 2005b]). (b) Rate of AE events for three repre-
sentative samples plotted against t. — ¢t (adapted from [Nechad 2005a]). In both plots,
dashed lines correspond to the law 1/(t. — t).
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For instance, a remarkable experimental observation has been obtained for the delayed
creep failure of composite materials [Nechad 2005a, Nechad 2005b]. Nechad et al. show
that power laws govern the rate of acoustic emissions (AE) during both primary and
tertiary creep, in nice qualitative agreement with the evolution of the macroscopic strain
rate (Fig. 1.12). The authors use this observation to attribute the observed deformation
entirely to microscopic plastic events (associated to crackling), since the very beginning of
the experiment. This idea is supported by a theoretical model based on a modification of
the fiber bundle model (FBM) [Pradhan 2010|, complemented with ad-hoc viscoplasticity
attributed to each fiber in order to reproduce correctly the complete creep curves. Despite
the qualitative agreement between the measured 4 and the numerical predictions, the
model proposed by Nechad et al. suffers a few limitations, as pointed out by Jagla
|[Jagla 2011], the major defect being the fact that fiber ruptures in their modified FBM
happen independently from each other, without any mechanism able to produce collective
phenomena such as the microscopic avalanches associated to AE signal. Moreover, the
nonlinear rheology attributed to each fiber (or representative element, in the language of
Nechad et al.) is somehow artificial: both aspects leave the impression that the model
proposed is too much coarse grained, and it does not grasp the fundamental dynamics
actually occurring at the microscopic scale. Interestingly, it is shown by Jagla that other
modifications of the original FBM, based on radically different assumptions, are also able
to reproduce the #(t) measured by Nechad et al., and that some of these alternative
solutions exhibit linear viscoelasticity and collective phenomena, both aspects missing in
the original version. Once again, it appears that various models, profoundly different
in essence, can nearly equally account for the same rheological features. Thus, if on
the one hand AE data are very instructive, indicating the presence of plastic events
with well defined statistical features, on the other hand their interpretation in terms
of microscopic dynamics is not straightforward. Among the several questions that may
arise, it is unclear for example if and how it might be possible to quantify the entity
of the microscopic rearrangements producing one AE event, whereas the nature of the
microscopic rearrangement is most probably not accessible with this technique.

Studying the tensile creep of paper, another composite displaying the same three
creep regimes as the samples just discussed, Alava and coworkers resort to a more
straightforward mesoscopic investigation, studying the evolution of spatial fluctuations
in the local tensile strain as a way of addressing local plasticity and stress concentra-
tion |Rosti 2010, Koivisto 2016]. By coupling tensile creep and digital image correlation
(DIC), the authors find that spatial fluctuations of local strain exhibit power-law scal-
ing in time, indicating that power-law creep (also called Andrade creep regime) can be
understood in terms on a nonequilibrium phase transition between "jammed" immobile
states and "flowing", active states [Rosti 2010]. Moreover, the authors find a correlation
between the amplitude of spatial fluctuations and the failure time, which is intriguing in
itself, although again they conclude that this approach has only a limited benefit for the
prediction of the failure time ¢, [Koivisto 2016].
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Figure 1.13: Protein gel. (a) Spatiotemporal diagram of the local velocity (v(r, z,t)),
in the shear direction, averaged over the radial direction r and plotted in linear color
levels as a function of z (coordinate in the vorticity direction) and t/7; (7 being the time
to failure). (b) Standard deviation 6,v(t) of (v(r, 2,t)), taken over the vertical direction
z (thick black line) together with corresponding standard deviation 6,v(t) computed
over the radial direction 7 on the z averaged (v(r,z,t))_ (thin red line). Adapted from
[Leocmach 2014].

Hence, the analysis of spatial heterogeneities in the local strain field appears to be a
promising tool to achieve a better understanding of delayed creep failure. A very sensi-
tive and practical probe for such heterogeneities has been developed by Manneville and
coworkers, who in a long series of papers starting in 2004 [Salmon 2004, Manneville 2004]
and continuing nowadays [Saint-Michel 2017] study the local velocity profiles with a
novel ultrasound velocimetry technique. In an already mentioned example, Leocmach
et al. apply this technique to the study of the creep and fracture of a model protein
gel [Leocmach 2014], in order to elucidate in deeper detail the microscopic origin of the
deviation from the linear viscoelastic primary creep. This is particularly intriguing since
the authors show that the macroscopic 7(t) curve can be nicely described by the simple
sum of a power law decrease ~ t~“, accounting for the primary creep, and a power law
acceleration ~ (t; — t)~!, accounting for the tertiary creep (Fig. 1.11). Mathematically,
this corresponds to a very smooth and gradual transition, implying that in fact plastic
damage should occur throughout the experiment, even though it becomes macroscopically
relevant only starting from the secondary creep. As a consequence of its gradual nature,
this transition appears to be very elusive to macroscopic rheology. For this reason, the
authors complement their study with a direct space investigation of strain heterogeneities,
finding two interesting features: first, they observe the early nucleation, during secondary
creep, of mesoscopic crack patterns, which grow in a subcritical way during tertiary creep,
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a feature routinely observed in mechanical fatigue tests [Tomkins 1981]. They also show
that the crack growth rate is proportional to the macroscopic shear rate, which sets the
basis for a microscopic interpretation of the plastic deformation close to failure. Sec-
ond, in stark contrast with the smooth rheology, the authors find that cracks nucleate
in a discontinuous, intermittent way, which can be well characterized by space resolved
ultrasound velocimetry (Fig. 1.13). In particular, the authors observe that the spatial
fluctuations of the local velocities, quantified by their standard deviation dv (Fig. 1.13b),
exhibit sharp peaks during the secondary creep, which are attributed to sudden plas-
tic events like crack nucleation or intermittent growth. This suggests that the smooth
evolution of the deformation observed in rheology is actually the result of an intriguing in-
termittent plastic dynamics occurring at the micro/mesoscopic scale, potentially showing
common features with the crackling paradigm discussed above. This again demonstrates
that a microscopic insight into the microscopic details of the dynamics under shear could
provide a handy means of detecting the growing damage, which is a crucial parameter to
get a better understanding and control on fatigue and delayed failure.

In this perspective, other scattering methods (different from ultrasound) can be cou-
pled to shear rheology, namely light scattering, either in the single [Mohraz 2005 or in the
multiple scattering regime |Ballesta 2016|, X-ray scattering, either static [Denisov 2015]
or dynamic [Leheny 2015|, and neutron scattering [Kim 2014|. However, the already
mentioned challenge of extracting the signal due to plasticity from the background given
by affine deformation makes this technique more easily employed in oscillatory shear, as
we will see in a while, whereas in transient experiments the use of scattering techniques is
infrequent and limited to static scattering, which focuses on simple features like structural
orientation [Mohraz 2005].

The most commonly employed technique to characterize the microscopic structure
and dynamics under shear is microscopy. In particular, confocal microscopy has been
widely used thanks to the possibility of accessing a full 3D information, essential to detect
localized deformations, shear bands and complex microscopic rearrangements involving
out-of-plane particle motion. The challenge faced by microscopy is again related to the al-
ready mentioned problem of averaging measurements on a statistically relevant ensemble,
which typically limits the application of these techniques to the study of steady states,
mostly in steady-rate experiments, where statistics can be improved by averaging over
time. Nevertheless, there are a few fairly recent exceptions trying to investigate transient
creep. For instance, Chan and Mohraz |Chan 2014| compare the microscopic dynamics
under creep of a colloidal glass and a colloidal gel, and they observe that, despite their
similar rheological behavior, the two systems exhibit rather different microscopic dynam-
ics upon yielding. In particular, the dynamics observed in the gel accelerate abruptly
when yielding occurs, whereas in the colloidal glass this transition is more gradual. The
strong limitation of this work is that again, presumably because of poor statistics, the au-
thors perform long time averages, which a priori is not justified in a transient experiment
such as creep.
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Figure 1.14: Binary colloidal glass. Maps of average particle mobilities () normal-
ized by the diameter dj of large particles in the binary glass. Two different stresses are
shown, one close to the yield stress (¢ ~ o, top) and a larger one (o ~ 50, bottom).
Different images are taken at different times during creep deformation, increasing from
(a) to (f). Extracted from [Sentjabrskaja 2015].

On the other hand, the full space and time dependence of the observed microscopic
dynamics is addressed with confocal microscopy under creep on a colloidal glass by Sen-
tjabrskaja et al. [Sentjabrskaja 2015], in the attempt of characterizing the dynamics
occurring prior to the delayed onset of flow. The authors measure the particles’” mean
square displacement Ay? along the vorticity direction (thus removing all contributions
coming from the affine deformation), and observe a quantitative relation between Ay?
and the macroscopic strain, indicating once again that creep deformation is a simple con-
sequence of the plasticity that develops after the initial linear regime, as also suggested
by a comparison with numerical simulations. An intriguing feature emerging from this
work is that the onset of flow is associated to an increase of spatial heterogeneity in the
plastic activity, with the appearance of regions of high local mobility and super-diffusive
dynamics, whereas below the yield stress such heterogeneities remain almost constant in
time (Fig. 1.14).

These examples show that the investigation of the slow dynamics occurring during
sublinear creep is very challenging, but it is also crucial in order to achieve a better under-
standing, and possibly a prediction, of delayed creep failure. This is specially interesting
since it could provide a means to monitor the health of a structure prior to its collapse.
Some works pointed out that macroscopic indicators might exist [Nechad 2005b, Leoc-
mach 2014|, although their detectability is arguable [Rosti 2010, Koivisto 2016], whereas
interesting dynamics are observed at a more local scale [Nechad 2005b, Leocmach 2014,
Rosti 2010, Koivisto 2016, Sentjabrskaja 2015|, potentially exploitable for predictions.

Clean experiments accessing at the same time the macroscopic creep deformation and
the microscopic dynamics are very scarce, thus the microscopic origin of creep is far from
being understood. Nevertheless, a few experimental works suggest the existence of a
general framework, potentially able to describe creep and yielding without relying on the
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specific details of the sample investigated.

One crucial step forward in this direction is therefore to identify the nature of the
microscopic activity observed in the experiments, with particular focus on distinguish-
ing reversible from irreversible processes. This is particularly challenging in transient
experiments such as the ones discussed so far, and for this reason creep and steady-
rate experiments are usefully complemented with measurements under a periodic stress
or strain, where irreversible processes emerge as the only contributions to microscopic
rearrangements observed across one or several periods.

1.3.3 Dynamic fatigue test

1.3.3a Reversibility and yielding in oscillatory shear

Thanks to the particularly simple mechanical response in the linear regime, oscillatory
shear has been widely used to characterize the viscoelastic response of soft materials.
By contrast, the mechanical response becomes generally very complex in the nonlinear
regime, and sophisticated analysis is required to obtain a consistent picture [Rogers 2011].
Despite its complexity, it turns out that large amplitude oscillatory shear (LAOS) provides
access to amazingly detailed information on the microscopic processes occurring during
deformation, and much can be learned by such experiments [Hyun 2011].

As an example, we consider here the work of Carrier and Petekidis on the nonlinear
rheology of a model soft colloidal glass [Carrier 2009]. The two main results of this work
are summarized in Fig. 1.15: the first-harmonic viscoelastic moduli plotted as a function
of the strain amplitude ~ exhibit a trend similar to the one of Fig. 1.2, with a linear regime
at small v, a concentration-dependent yielding transition with a characteristic peak of
G" and a terminal regime in the limit of large amplitudes. A Fourier analysis of the
detailed shape of the stress response of the sample reveals the appearance of higher order
harmonics at finite amplitudes, marking a linear to nonlinear transition which appears
to be sharper and shifted at higher strains for denser samples (Fig. 1.15b).

To account for the observed phenomenology, the authors propose a model based on
a modification of the fluidity model by Derec et al. [Derec 2003]. The main assumption

of this model is that the structural relaxation rate 7!

can be decomposed in the inde-
pendent (additive) contribution of a spontaneous relaxation rate 70_1 and a nonlinear,
shear-induced contribution, which is called fluidity and denoted with the letter D. The
structural relaxation time 7 is then employed in a Maxwell-type constitutive equation:
6 =—(D+ 15 )o + G(D)¥, where the elastic modulus G(D) of the Maxwell fluid is also
dependent on shear. Thus, the mechanical response to an arbitrary shear history can be
computed once the time evolution of the fluidity is described by a kinetic equation. The
expression postulated by Derec and borrowed by Carrier and Petekidis is very general,

and reads:
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Figure 1.15: Soft collidal glass. (a) Dynamic strain sweeps for three different volume
fractions, decreasing from top (¢ = 1.29, squares) to bottom (¢ = 0.77, triangles). Exper-
imental storage (closed symbol) and loss (open symbols) moduli. The model predictions
are depicted with solid lines. (b) Fourier transform rheology: fraction of third harmonic
versus strain amplitude for the same three volume fractions. Adapted from [Carrier 2009].
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where a set of 5 exponents (o, 5,\,v,e) and 3 coefficients (r,u,v) make the expression
rather involved, so that even though experimental data are nicely described, it remains
difficult to extract physical meaning from the model parameters. The relevant aspect of
this work is that it links the measured nonlinear viscoelasticity to a conceptually simple
microscopic quantity, which might be directly probed with techniques such as dynamic
light scattering. Not only such measurements would represent a much stronger test of
the fluidity model, but they could also provide a deeper insight on the nature of the
microscopic processes responsible for the postulated strain dependence of the structural
relaxation rate. More generally, a direct measurement of shear-induced structural relax-
ation would shed light on the microscopic origins of nonlinear rheology, which is one of
the major fundamental open questions currently debated in the soft matter community
[Schall 2007, Chan 2014|, despite decades of attempts to find a general framework for
these phenomena [Liu 1998, Trappe 2001].

To this aim, oscillatory rheology can be usefully coupled to more direct probes of
the microscopic structure and dynamics. This is specially true since, although the lin-
ear and the large amplitude regimes are shared with similar features by all soft solids
[Miyazaki 2006], the details of the yielding transition can be complex and reminiscent
of the microscopic details of the sample, in particular for samples with a multiscale
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structure such as star polymer glasses [Helgeson 2007| or colloidal gels [Koumakis 2011,
Brunel 2016, Moghimi 2017|. Such a complex yielding calls for more direct methods to
probe how the structure evolves under LAOS, and vice versa how yielding depends on
the sample structure.

A first attempt at addressing these questions can be found in the work of Kim et al.
[Kim 2014|, who employ neutron scattering in order to study the structural modification
of colloidal gels under large amplitude oscillatory shear. Focusing on the very large ampli-
tude limit (7 as large as 50 strain units), the authors observe that the large scale structure
of the gel is periodically modified, which reflects in a periodic, anisotropic modulation
of the scattered intensity at low scattering angles. This anisotropy is thoroughly char-
acterized by the authors in both the velocity-gradient and the velocity-vorticity planes,
and it is quantified by a structural parameter Ay employed in complicated 3D (o,~, Af)
diagrams inspired to the Lissajous plots (Kim et al. refer to those diagrams as structural
Lissajous plots). We will see similar diagrams in chapter 7, where we argue that the
concept of structural Lissajous plots has the potential to inspire and guide the delicate
analysis of rheological Lissajous plots.

One limitation of neutron scattering, however, is the typically poor contrast, which
limits the analysis to the highest strain amplitudes, preventing the authors from discussing
the evolution of the structural signature across yielding. This problem is overcome by
Schall and coworkers [Denisov 2015, Dang 2016 by employing synchrotron x-ray radiation
on colloidal glasses. In this work, an anisotropy in the structure factor following strain
amplitudes from the linear regime up to the large amplitude terminal regime is detected.
In particular, the authors focus on tiny variations detected at a scattering vector corre-
sponding to the position of the peak of the structure factor, where scattering techniques
probe a lengthscale comparable to the distance between two particles in close contact.
The authors argue that at such lengthscale the structural anisotropy stems from elastic
shear distortion of the "cage" environment felt by each particle, which is also responsible
for the elastic mechanical response observed in the linear regime (cage elasticity). Be-
yond the yield point, the observed response becomes prevalently liquid-like, a transition
that is interpreted as shear-induced out-of-cage particle motion. Coherently, the authors
find that the observed anisotropy vanishes beyond yielding. By introducing an ad-hoc
order parameter, they measure the quadrupolar symmetry of the scattered intensity, and
observe that it drops very sharply from 1 to 0 exactly in correspondence to the crossover
between G’ and G”. They interpret this fact as the sign that cage elasticity is instanta-
neously and abruptly lost in a sharp transition reminiscent of thermodynamic first-order
phase transitions. However, the authors admit that their interpretation is rather sur-
prising, given the smooth crossover observed in rheology, and a true explanation of this
apparent discrepancy is not proposed.

With the isolated (to the best of our knowledge) exception of this work, there is large
consensus in the scientific community on the fact that the microscopic origin of yielding as
it is observed in LAOS has to be attributed to a transition in the microscopic dynamics,
rather than in the structure [Kawasaki 2015|. A convenient way of addressing irreversible
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Figure 1.16: Concentrated emulsion. (a) Shear dependence of the rms displacement per
shear cycle in the y direction (perpendicular to the applied shear). Data are labeled by the
emulsion volume fraction. The dotted line is the threshold used to define the microscopic
yield strain, 7,. (b) Solid symbols: fraction f,, of the "supermobile" drops. The abscissa
of the open points correspond to the rheological crossover strain 7., where the sample is
fluidized. The dotted lines are guides to the eye, consistent with the hypothesis that full
fluidization may occur when all drops are supermobile, i.e. for f,, = 100%. Adapted
from [Knowlton 2014].

microscopic dynamics under oscillatory shear is to monitor the evolution of the system
across one full shear cycle, as it is done for example by Knowlton et al. on concentrated
emulsions [Knowlton 2014]. The macroscopic rheology of the emulsions again resembles
qualitively Figs. 1.2 and 1.15, with a rather smooth and broad yielding transition that
can be characterized by different "yield strains" (cf. Fig. 1.2). In order to shed light on
the microscopic origin of yielding, the authors consider as relevant parameter the root
mean square displacement (Ay?)%5 of droplets observed stroboscopically, i.e. at two times
separated by one full period, in the direction perpendicular to shear.

As expected, no significant irreversible motion is detected at the smallest strain ampli-
tudes, where the emulsion deforms in an elastic, reversible way and all drops appear to be
stroboscopically immobile within the measurement noise. With increasing deformation
amplitude, however, (Ay?)*® exhibits a sharp increase (Fig. 1.16a) beyond a microscopic
yield strain 7y, micro, Which proves to be much smaller than the crossover strain where
G' = G" (v in Fig. 1.2), and closer to the yield strain (7, in Fig. 1.2) defined as the
onset of the shear thinning regime. More in detail, the authors show that the sudden in-
crease in (Ay?)%5 is linked to the appearance of a population of mobile drops undergoing
large deformations. Mobile drops initially represent a minority of the total drops, and
they are spatially organized in mobile regions of the sample. Moreover, a careful analysis
of the probability density function for irreversible displacements shows that the mobile
drops can be further divided in two classes, with different mobilities. When the strain
amplitude is increased beyond v, ;micro, the drops belonging to the population with high-
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est mobility, called "supermobile", grow in number while maintain their mobility fixed,
until their fraction f,, approaches 100% at a finite strain amplitude (Fig. 1.16b), close
to the crossover between G' and G”. This is consistent with the idea that full fluidization
occurs when all (or at least the majority of) the particles are supermobile.

Besides demonstrating the power of real space analysis made possible by microscopy,
the global picture presented by Knowlton et al. appears to be very instructive in light of
the ongoing debate on the nature of the reversible to irreversible transition. In particular,
the abrupt jump of the mean square displacement, associated with the appearance of a
mobile population that counts an increasing fraction of the total drops, approaching unity
at complete fluidization, is strongly suggestive of a first-order transition. In the work of
Knowlton et al. a clear consistent picture could not be obtained, thus this remains a
fascinating hypothesis, which stimulates future work in the field.

If Knowlton et al. only focus on stroboscopic experiments, much can be learned as
well by following the full shear cycle, as it is done for example by Keim and Arratia
on a crowded amorphous 2D assembly of colloidal particles segregated at the oil-water
interface [Keim 2014|. An interfacial stress rheometer, based on a magnetic needle actu-
ated by an electromagnetic field, is used to impose a controlled oscillatory stress to the
suspension, and the macroscopic deformation, together with the local particle rearrange-
ments, are probed by direct imaging of the interface. Although the general concept of the
experiment is similar to the previous one, here the discussion is pushed beyond the stro-
boscopic analysis, and considers the detailed trajectory followed by each particle during
the cyclic deformation. A purely stroboscopic analysis portraits a picture consistent with
the one suggested by Knowlton et al., with a first linear regime, where the mechanical
response is elastic and reversible, with no microscopic rearrangements, and a well defined
onset of microscopically irreversibility, marking a clear microscopic yielding transition
beyond a critical amplitude ~,. However, by analyzing the detailed particle trajectories,
the authors argue that a more complex phenomenology hides behind this simple picture.
Indeed, even in the linear elastic regime, particle motion is not perfectly affine, a phe-
nomenon that can be interpreted as a consequence of the disordered structure. Even
more interestingly, between the true linear regime and -,, an interesting intermediate
regime is found, characterized by the presence of reversible plastic events. In this regime,
the material is still stroboscopically static, but time-reversibility is broken by reversible
plastic events that introduce hysteresis in the structural response. As a consequence, this
dynamics, while being reversible upon one full cycle, dissipates energy, and contributes to
the increase of the loss modulus, which indeed is found to deviate smoothly from its lin-
ear value slightly before ~,. According to the authors, this observation might explain the
apparent contrast between the sharp onset of microscopic irreversibility and the smoother
transition observed in the viscoelastic properties.

An analogous result is obtained by Hohler et al. on aqueous foams, by using multiple
light scattering in the DWS regime as a microscopic probe [Hohler 1997|. This technique
allows one to probe extremely small rearrangements of the foam bubbles, which are
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Figure 1.17: Aqueous foam. (a) Intensity autocorrelation data go(7) plotted as a
function of delay time 7. The curve labeled A has been obtained for a quiescent foam,
whereas the other data sets have been measured at increasing strain amplitudes from B to
E. The arrow indicates the period of the externally applied oscillating strain (correlation
echo). (b) g2(7) represented as a function of the reduced variable Asin(w7/2) chosen
to make plastic rearrangements apparent. The full line corresponds to the reversible
plasticity model. To facilitate the comparison with the correlation produced by purely
elastic deformation, one amplitude from the true linear regime has also been included,
using small filled circles. Adapted from |[Héhler 1997].

quantified in terms of an intensity correlation function g¢o(7), represented in Fig. 1.17a
as a function of the time delay 7. The oscillatory deformation of the foam reflects in
the observed oscillations of go(7), which displays peaks for time delays equal to integer
multiple of the oscillation period 7', and it drops for intermediate 7 values of an amount
depending on the strain amplitude vy. The peak at 7 = T is the so-called correlation echo,
and it contains information on microscopic reversibility: the peak value around 1 proves
that at all strain amplitudes investigated the deformation is entirely reversible. On the
other hand, detailed information on particle trajectories is encoded in the full shape of
g2(7), which reveals that, within each shear cycle, reversible plastic rearrangements start
occurring beyond 7, ~ 0.05%, remarkably below the yield point probed by rheology. The
observation of reversible plasticity with DWS is much less straightforward than it would
be in direct space analysis, and in order to make plastic rearrangements apparent, the
authors replot their correlation data as a function of a rescaled variable (Fig. 1.17b). In
this representation, go(7) functions at different values of vy are expected to collapse if the
deformation is purely elastic. The fact that large amplitudes (open symbols in Fig. 1.17b)
exhibit an upwards deviation from the trend observed in the linear regime (small filled
symbols) is the sign that during each cycle the foam is periodically rearranged, such
that each particle on average is displaced less than expected. This result, together with
the previous ones, shows that the interplay between microscopic dynamics and nonlinear
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rheological properties is complex, and it might exceed the intuitive notion of microscopic
reversibility.

A slightly different insight into this interplay comes from a series of papers from
Petekidis et al. [Petekidis 2002a, Petekidis 2002b, Petekidis 2003|, who study the shear-
induced microscopic rearrangements in colloidal glasses of hard spheres at different con-
centrations. The microscopic dynamics are probed again by DWS, giving access to in-
tensity correlation functions qualitatively similar to the ones of Fig. 1.17. With respect
to Hohler et al., here the deformations are much larger, so that the authors have to re-
strict their analysis to time delays very close to the correlation echoes, since elsewhere
g2(7) — 1 = 0. Another relevant difference with respect to the previous work is that here
the spontaneous Brownian motion of the particles contributes to a substantial decorre-
lation of higher order echoes even in the linear regime. Thus, in order to emphasize
the role of shear-induced rearrangements, the authors normalize the echo peak height
by its low strain amplitude limit. The result is shown in Fig. 1.18 as a function of ~y
for samples at different volume fractions ¢. The complexity of the figure is rationalized
by identifying, for each strain amplitude, two characteristic strains: a smaller one, 7.
(top arrows), indicating the first departure from unity, and a larger one, 7., indicating
complete disappearance of the echo. A parallel with the work of Knowlton et al. can be
drawn by interpreting 7., as the onset of microscopic irreversibility, and 7., as the strain
at which complete fluidization occurs. In particular, the authors discuss the unexpected
large values of ., which can be as large as 15% at ¢ = 0.623 and comes together with
the surprisingly large recoverable elastic strains (again around ~ 10 — 15%) that those
materials can tolerate before yielding. The authors explain this behavior with the concept
of cage elasticity, which they define as the ability of a particle and its cage of neighbors
to undergo significant distortion while still retaining its identity. A comparison with rhe-
ology shows that for the concentrated samples deviations from linearity can be observed
already at strains significantly smaller than ~.: thus, reversible plastic rearrangements
must take place in colloidal glasses as well.

The result is even more apparent at the lowest concentrations (still beyond the glass
transition), where 7. is small, implying that complete reversibility is lost rather early,
but the correlation remains significant up to very large deformations, beyond 50%, a
value several times larger than the yield strain of the material. This implies that several
rearrangements have to occur in sequence within one oscillation: therefore the trajectory
of particles must be tortuous, but it must also be largely reversible, which is rather
unexpected. In an attempt to explain this phenomenon, the authors refer to an argument
that would be more completely disclosed by Pine et al. in more recent years, with reference
to microscopic reversibility in diluted suspensions [Pine 2005|. They argue that since the
equations describing hydrodynamic flow at low Reynolds numbers are symmetric upon
time reversal (¢ — —t), particles’ trajectories should always be reversible in absence of
Brownian motion. Thus, they attribute the onset of irreversibility to Brownian motion,
whose effectiveness at introducing irreversibility into the particle trajectories increases
steeply on approaching random close packing, which explains the monotonic decrease of
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Figure 1.18: Hard sphere colloidal glass. Strain dependence of the relative first echo
height (P/lim,,_,o P) at several volume fractions as indicated. Presenting the data in
this form removes the effect of Brownian motion. Thus, when P/lim, o P = 1 the
sample strains elastically, and any reduction below 1 implies irreversible shear-induced
rearrangements. Adapted from |Petekidis 2002a].

These examples show that, by comparing the system before and after a cyclic shear
of amplitude 7y, a rich and complex phenomenology is found, which is further compli-
cated by the observation of reversible plastic deformations, contributing to nonlinear

rheology but not to stroboscopic dynamics. In an attempt to rationalize the results,

we can identify several regimes: (1) a true linear regime at small 7y, where microscopic
dynamics are thermally-activated, and eventual nonaffine deformations only stem from
the heterogeneity of the structure; (2) a regime where nonlinear rheology might coexist
with microscopic (full-cycle) reversibility, as a consequence of reversible plasticity; (3) the
onset of microscopic irreversibility beyond a microscopic yield strain; (4) a gradual and
generally complex transition where microscopic reversibility is progressively lost and the
mechanical response evolves towards full fluidization; (5) a terminal regime, characterized
by liquid-like, microscopically irreversible response.

This picture is intriguing, and calls for a deeper investigation of the microscopic
processes observed under shear. One natural way to complete the above observations is
to extend the analysis from one to several shear cycles, which can help elucidating the
nature of irreversible rearrangements (e.g. diffusive, ballistic or something still different)
observed in the various regimes. This will be discussed in the next paragraph.
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1.3.3b Dynamic fatigue and damage accumulation

Oscillatory shear has the very appealing property of allowing one to investigate the
sample in a stationary state: provided that such state exists and can be experimentally
reached, it represents a convenient way to investigate the sample mechanical properties,
since successive repetitions of the same measurement yield the same result, regardless
the complex history of the material. However, when working with disordered, out-of-
equilibrium materials, stationarity becomes a delicate concept because of the intrinsic
aging dynamics characterizing most of them. As a consequence of aging, the viscoelastic
moduli measured in the linear regime display a typically slow evolution in time, which
may be safely neglected if the experimental time is short enough. However, one rarely
discussed yet important aspect is that nonlinear rheology calls stationarity into play once
again. Indeed, the slow time evolution of the mechanical properties measured in the
linear regime can be accelerated by additional shear-induced processes, as it is captured
for example by the above mentioned fluidity model [Derec 2003] or in a more complex
way by theories like mode coupling theory [Yamada 1975, Reichman 2005] or soft glassy
rheology [Sollich 1998|. Therefore, under nonlinear solicitations, stationarity may be
more difficult to guarantee, so that care has to be taken in the interpretation of the
experimental results. This remark might include as well the works mentioned above, since
in the presence of strong shear-induced aging the yielding transition can look different
when probed with different protocols [Perge 2014]. This effect is very well known since
XIX century, when engineers discovered that a bridge designed to withstand the weight
of several trains could collapse under the repeated transit of just one train. In a more
controlled experiment, one would observe that oscillatory shear with amplitude slightly
beyond the linear regime progressively weakens the material, until delayed failure may
be observed. This weakening is sometimes called dynamic fatigue, as opposed to the
static fatigue observed during creep. Despite the important similarities shared by the
two phenomena, which have sometimes inspired intriguing, yet arguable direct analogies
|Gibaud 2010], the two delayed failure mechanisms are distinct, and a comparison between
the two may be very instructive. We will see an example in chapters 6 and 7. Moreover,
the possibility of controlling and predicting delayed dynamic fatigue failure would have an
enormous impact in real life applications, which further motivate to address this second
mechanism in detail.

The delicate interplay between aging and yielding is discussed in detail using a soft
colloidal glass as a model system by Rogers et al. |Rogers 2011|, who investigate the
complex memory of the sample by subjecting it to different oscillatory shear histories,
both in a strain-controlled and in a stress-controlled fashion. As expected, the authors
observe that aging is only slightly affected by small amplitude oscillations, whereas under
large shear amplitudes the sample is fully rejuvenated during each cycle, so that stress
and strain imposed protocols yield similar results in the two opposite regimes. However,
as intermediate shear amplitudes are imposed, the behavior becomes more complex and
dependent on whether the aging protocol was stress- or strain-imposed. A first conclusion



1.3. State of the art 41

drawn by the authors from this observation is that under moderately nonlinear shear the
material exhibits a faster evolution towards stiffer, more homogeneous configurations,
since the imposed deformation helps the system to explore the free energy landscape,
sooner locating deeper minima. Moreover, by further increasing the shear amplitude
closer to the yield point, the authors argue that yielding is a gradual process: when the
applied stress or strain in an amplitude sweep causes an event that would ultimately lead
to yielding under those conditions, sufficient time must be allowed to elapse in order for
that event to fully propagate and for yielding to occur.
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Figure 1.19: Carbon black gel. (a) Time-resolved LAOStress experiment illustrating
the yielding and fluidization under an oscillatory stress of constant amplitude o. Gray
dashed lines indicate two characteristic times: the time 7, such that G'(1,) = G" (1),
which defines apparent yielding, and the time 7; at which dvy/d¢ reaches a global max-
imum, which corresponds to full fluidization as inferred from ultrasonic imaging. (b)
Spatiotemporal diagrams of the ultrasonic speckle images recorded simultaneously to the
rheological data shown in panel (a). White dashed lines indicate 7,, and 7¢. (c¢) Images of
the displacement field A(r, z,t) between two successive ultrasonic pulses at various times
during the yielding process. Adapted from |[Perge 2014|.

If this result is true for a colloidal glass like the one investigated by Rogers et al., it is
all the more true for network forming systems like colloidal or polymer gels, where a small
damage in the stress bearing network reflects in a significant change in the mechanical
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properties, which may also imply catastrophic delayed failure beyond a given level of
damage. This effect is extensively addressed by Manneville and coworkers with stress
imposed LAOS on different gels, namely carbon black gels |Gibaud 2010, Perge 2014]
and protein gels [Saint-Michel 2017|. Their experiments consist in applying an oscillating
stress with amplitude oy below the yield stress and to follow the amplitude ~y(¢) of the
resulting deformation as a function of time spent under oscillatory stress. The authors
observe that even for stress levels much below the yield stress, 7o(t) is not constant,
but slowly increases over time, in a sublinear growth which is read as a manifestation
of fatigue. This interpretation is confirmed by the direct observation of delayed fatigue
failure, occurring after a waiting time 7,, (Fig. 1.19a). At 7, the amplitude ~,(¢) displays
a strong, sudden acceleration, and enters in an unstable regime characterized by strong
temporal fluctuations of its time derivative d~y,/d¢. This unstable regime lasts until a
second characteristic time 77, after which the strong fluctuations disappear and ~y(¢)
approaches a plateau value. While Saint-Michel et al. try to predict such delayed failure
by looking at an intriguing, yet obscure, power-law scaling of higher order harmonics as a
function of the instantaneous amplitude [Saint-Michel 2017], here we are rather interested
in understanding the microscopic processes occurring in the sample during the three
regimes identified by rheology, with particular focus on the change in dynamics detected
close to the two characteristic times 7,, and 7;. To this aim, Perge et al. complement their
rheological measurements with a more local insight obtained by the already introduced
ultrasound scattering technique. In particular, here the authors fully exploit the coherence
of their scattering signal S(z,,t): following its stroboscopic evolution (Fig. 1.19b), they
find that the speckles are mostly static until 7, which means that the scatterers are
essentially stroboscopically immobile during the first induction time. This is reminiscent
of a solid-like behavior, corroborated by the fact that here G’ > G”. In the opposite
regime, after 74, the opposite situation holds, and the scatterers are completely rearranged
after each shear cycle: this is instead suggestive of a liquid-like behavior, consistent with
the dominating loss modulus G”. The intermediate situation is also intriguing, and it is
better addressed in Fig. 1.19¢, where a cross-correlation of the speckle images was used
to extract the displacement maps. The authors argue that for waiting times between 7,
and 7y, the results can be interpreted as the gradual fluidization of the gel, starting at
time 7, with slip at the inner moving wall and attaining completion at time 7.

The gradual fluidization process observed by Perge et al. consolidates the result ob-
tained by Rogers et al., and suggests that the gradual nature corresponds to a progressive
erosion of solid-like domains starting from the boundaries (Fig. 1.19¢).

The slow process of damage accumulation can also be usefully investigated by coupling
the macroscopic deformation to a more direct probe of the microscopic dynamics. With
respect to the previous experiments discussed, dynamic fatigue experiments are partic-
ularly challenging for direct space approaches based on particle tracking, which proved
to be very effective in detecting displacements across one cycle, because of the impor-
tant and potentially out-of-plane rearrangements. For this reason, scattering techniques
prove to be more convenient, because they measure collective dynamics, with no need
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Figure 1.20: (a) Hard spheres colloidal glass. Decay of high order echoes at various
strain amplitudes is represented by the ratio of the amplitude of the mth echo at a strain
7o to the corresponding amplitude at the lowest strain. This ratio takes into account the
decay of the high order echoes due to Brownian motion (adapted from [Petekidis 2002al).
(b) Colloidal gel. Decay of high order echoes at various strain amplitudes, fitted by
stretched-exponential functions Adapted from [Laurati 2014].

of identifying single particles. For example, Hébraud et al. |[Hébraud 1997| study shear-
induced rearrangements in concentrated emulsions with DWS, by following the decay
of higher order correlation echoes. They find that, after the first correlation drop from
92(0) — 1 =1 to the value of the first correlation echo, a quasi-plateau is reached, with
the level higher order echoes remaining essentially the same of the first one. The authors
conclude that most of the rearrangements occur within one shear cycle, and they only
discuss the decay of the first correlation echo. On the other hand, Petekidis et al. perform
a similar experiment on colloidal glasses [Petekidis 2002a|, and find that actually higher
order correlation echoes slowly decay towards an apparent plateau value, which they call
nonergodicity parameter (Fig. 1.20a). Again different is the result obtained by Laurati
et al. |Laurati 2014] on colloidal gels, where full decorrelation is observed in the long
time limit, which suggests that the apparent plateau value observed by Petekidis et al.
might correspond to a slower relaxation mode. Interestingly, here the authors find that
the decay of higher order correlation echoes is well described by a stretched exponential
relaxation with a characteristic time rapidly decreasing with increasing strain amplitude
beyond yielding (Fig. 1.20Db).

Such an acceleration of microscopic dynamics observed at large amplitudes is very
interesting if compared with the above mentioned models like the fluidity model, where
a y-dependent structural relaxation time was postulated: although to the best of our
knowledge a comparison has never been attempted, perhaps the correlation echo experi-
ments might represent an interesting way to check the microscopic implications of those
models, which prove to describe rheology very accurately. In order to achieve such a
quantitative comparison, however, one needs to obtain information about the nature of
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the dynamics and their spatial heterogeneities. DWS can easily be performed in a space-
resolved fashion [Nagazi 2016], but it is much more difficult to distinguish e.g. ballistic
from diffusive motion with such technique. For this reason, single scattering techniques
are also appealing, because such distinction can be done by comparing the relaxation
times at different scattering vectors ¢ (cf. chapter 2).
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Figure 1.21: Colloidal gel. (a) Echo-peak amplitudes at one representative scattering
vector ¢ = 0.09nm ! along the vorticity direction as a function of delay cycle for different
strain amplitudes. Also shown are echo peaks obtained at v = 12% along the flow
direction (open green triangles). Solid lines are exponential fits. (b) Echo-decay rate I'
(in 1/cycle) at one representative amplitude v = 8% as a function of scattering vector ¢
oriented in the flow direction (red circles) and in the vorticity direction (blue squares).
Solid lines represent power-law fits. Extracted from |Rogers 2014].

One of the first examples is represented by the work of Rogers et al., who probe the
internal dynamics of a colloidal gel under cyclic shear using X-ray photon correlation
spectroscopy (XPCS) [Rogers 2014]. The authors discuss different scattering vectors
oriented both along the flow direction and perpendicular to it (in the vorticity direction).
An overview of their results is represented in Fig. 1.21a. For the representative scattering
vector shown, the decay of correlation echoes coincides with the spontaneous dynamics
for strain amplitudes lower than 6%, whereas it becomes much faster starting from 8%
deformation. This allows to locate the transition to irreversible deformation to a threshold
Ye ~ 7%, higher than the strain at which the deviation from linear viscoelasticity is
observed (7, ~ 2%), which suggests the presence of reversible plasticity. In the probed
range of scattering vectors and strain amplitudes, the authors find that the decay of the
correlation echoes is well fitted by single exponential decays, from which a relaxation
rate I'(¢,7o) can be extracted, shown in Fig. 1.21b. Interestingly, there is evidence that
dynamics is non-isotropic, but it is faster in the vorticity direction, which is unexpected.
Even more interestingly, I'(g, 7o) exhibits a clear power-law dependence on the scattering
vector, which is exploited by the authors to infer the spatial-size distribution of the single
plastic events occurring under shear. By means of a simple scaling argument, the authors
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conclude that the characteristic length scales rearranged by plastic events during LAOS at
one given strain amplitude follow a power-law distribution, which is read as the sign that
yielding can be described as a non-equilibrium critical transition. Without entering into
the details of this discussion, we observe that an analysis of this kind has the potential
to truly shed new light on the interdependence of microscopic dynamics and macroscopic
nonlinear rheology, which is a key aspect determining the dynamic fatigue of materials.

1.3.4 Conclusion

To conclude, this (far from exhaustive) overview has shown that a huge effort has been
put in recent years to characterize the failure mechanisms of soft materials. Although
the phenomenology is generally very rich and complex, showing features that are often
sample- and protocol-related, some knowledge has been acquired on the conditions under
which a sample may flow viscoelastically or exhibit failure, either in a ductile-like manner
or in a brittle-like manner. Failure process is most easily investigated in steady-rate ex-
periments, where failure is expected to occur at large Weissenberg number Wi = 57 > 1,
where 7 is the imposed shear rate and 7 the longest relaxation time in the system. In
those experiments, it was shown that deeper insight on the microscopic origin of failure
can be obtained by coupling rheology with a microscopic characterization of the micro-
scopic structure and dynamics, coming either from microscopy or from static scattering.
These works have shown that brittle fracture occurs as a consequence of a cascade of
break-up events weakening the stress-bearing backbone of the structure and triggering
mechanical instability. However, the amount of bond breaking needed to produce such
failure is still unclear, and likewise it is somehow controversial the nature and the amount
of plastic events occurring during sample deformation before failure.

The investigation of delayed failure under a constant load is slightly more complex,
not only because of the long and often unpredictable failure times, but also because of
the complex time-dependence of the deformation rate during the induction time, which
represents an additional challenge for techniques oriented at a microscopic characteriza-
tion of the dynamics during creep. However, it turns out that the nature of those plastic
dynamics and their temporal and spatial distribution might represent an important in-
dicator, potentially opening the way towards a better control of delayed failure. To this
end, a crucial aspect emerging from experiments is to be able to distinguish reversible
from irreversible dynamics. At the macroscopic level, such distinction is addressed with
creep recovery, which shows that, depending on the specific sample and experimental
conditions, creep may be completely or partially reversible. Since failure is typically
an irreversible phenomenon, the detection of a transition from reversible to irreversible
deformation can represent a fundamental first step towards failure prediction. It turns
out that such detection, although possible in principle, is in practice extremely delicate,
since the yielding transition observed by rheology is typically very smooth and gradual.
However, it has also been shown that such smooth rheological behavior might correspond,
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at the microscale, to a nontrivial, intermittent behavior, and it has been proposed that
indeed the precursors of failure might be identified by an investigation of the microscopic
dynamics. Therefore, such observation during creep appears to be very promising, but it
is also very challenging, and despite some attempts to the best of our knowledge this has
not yet been clearly demonstrated.

On the other hand, similar investigations have been performed under oscillatory shear,
where a comparison between the system before and after a cyclic shear with a given ampli-
tude makes irreversible displacements apparent. As a result of these investigations, a rich
phenomenology has been revealed. Deformations are elastic and reversible in the linear
regime and completely irreversible in the large amplitude limit, but the transition between
the two regimes is far from well understood. Interestingly, recent experiments have shown
that the shear-induced acceleration of structural relaxation can be characterized following
the evolution of the system after many shear oscillations. This is experimentally challeng-
ing, but also very promising, since addressing the amplitude-dependent relaxation time
might provide a quantitative link between microscopic rearrangements and macroscopic
mechanical properties, which is a rather old but still very debated topic.

1.4 Qutline of the thesis

In our work we address some of the above challenges by means of a novel experi-
mental setup coupling a stress controlled shear cell, which will be described in chapter
3, with a small angle static and dynamic light scattering apparatus. We cope with the
challenges described above, related to performing dynamic light scattering experiments
under transient shear, by means of an advanced data analysis technique, which is intro-
duced in chapter 4. As a first model system we choose to investigate a colloidal gel, which
exhibits a peculiar power-law rheology discussed in chapter 5. The well-controlled fractal
structure and dynamics, as well as the simple phenomenological model accounting for its
linear rheology, make this sample the ideal system to study how structure and dynamics
are affected by shear. Creep and delayed failure are addressed in chapter 6. We show
that affine and nonaffine dynamics can be effectively observed. Although the shear rate
appears to be smooth and featureless, at the microscale we can clearly detect a sharp
transition to irreversible microscopic dynamics, which we can consider a microscopic dy-
namic precursor of the failure that would only happen hours later. Moreover, a detailed
analysis of the precursor shows an intriguing interplay with the microscopic architecture
of the sample, which represents an additional step in the investigation of the microscopic
origin of the rheological behavior. On the other hand, in chapter 7 we investigate the
linear to nonlinear transition as it is observed in oscillatory shear, and we show that such
transition, which is again smooth when probed by rheology, corresponds to a very sharp
acceleration of the structural relaxation, which eventually leads to delayed failure under
oscillatory stress with moderate amplitudes. In chapter 8 we check the generality of our
previous findings by investigating another sample, with completely different microscopic
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structure, namely a dense packing of soft microgel particles. Finally, a conclusive chapter
closes the thesis with a general discussion on the results obtained and on the perspectives

that our work opens to future investigations.
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As anticipated in chapter 1, the ability to couple the macroscopic characterization of
the mechanical properties with an insight on the microscopic structure and dynamics is
fundamental to tackle the challenging and fascinating issue of material failure and failure
precursors. In this chapter, we briefly review the light scattering (section 2.1) and rheology
(section 2.2) methods, which will be used throughout this thesis.

2.1 Light Scattering

A scattering experiment can be understood by drawing an analogy of how vision
works. When we observe an object, what our eye detects is the response of the object to
light illuminating it, and which we interpret as a property of the object itself (color, shape,
...). The general idea underlying a light scattering experiment is similar: an incident light
beam interacts with the sample, and as a result a part of it is scattered in a different
direction and collected by an optical system, which plays the role of our eye. The main
difference with respect to sight is that instead of focusing on the image of the object,
therefore distinguishing light coming from different parts of it, a scattering experiment
typically studies the intensity scattered by the entire sample in the far field, for example
by placing the detector in the focal plane of a lens, thus losing space-resolved information.
This is a good method to access average (statistical) properties of the sample, related to
its internal microscopic structure.



50 Chapter 2. Experimental Methods

Different types of radiation other than visible light (for example X rays or neutrons)
can also be employed in a scattering experiment, providing valuable complementary in-
formation to light scattering thanks to the specific interactions with the sample and the
different length scales probed. However, once those differences are taken into account,
all scattering experiments can be described to a large extent in a unified way: for this
reason, the present section will only focus on light scattering.

2.1.1 Basic principle

A schematic of the basic scattering geometry is shown in figure 2.1. Coherent light
from a laser is directed towards the sample, and the intensity scattered at a well defined
scattering angle 0 is collected by a photosensitive element, e.g. a photodiode. In what will
follow, we will take the so-called first Born approximation, in which only a small fraction
of the incoming beam is scattered: this corresponds to the single scattering regime, where
light is scattered no more than once before reaching the detector.
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Figure 2.1: (a) General scheme of a light scattering experiment (top view): laser ra-
diation (characterized by an incoming wavevector /;1) illuminates the sample, and light
scattered at a given scattering angle 6 (with wavevector Es) is detected in the far field. In
the first Born approximation, the transmitted beam is always much more intense than the
scattered beam. (b) Closer look at the scattering volume, highlighting the contribution of
two scatterers, at relative distance 7. The difference in optical path between the two scat-
tered waves is represented by the thick lines, whose total length As is given by Eq. 2.2.
(¢) Geometric construction of the scattering vector ¢, whose modulus is calculated using
Eq. 2.3

In order to understand the intensity pattern of scattered light and extract from it
some information on the sample, a theoretical model is needed. Two complementary
approaches are possible:

e A continuous, statistical approach: one can define a response function (¢, w) (well
defined in the Fourier space, thus nonlocal), which relates the external perturba-
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tion to the system response, i.e. the variation of an observable quantity coupled
to the perturbing field. For light scattering, the probe is the electric field, and the
response function is the polarizability, a quantity simply related to the refractive
index n(Z,t). The scattered light can thus be linked to the presence of local fluc-
tuations in n(Z,t), from which one can learn important details about the structure
of the sample. Moreover, the time dependence of n(Z,t), revealed by temporal
fluctuations in the scattered light, can be analyzed to get an insight on the sample
dynamics.

e A discrete approach, starting from one point-like constituent. Its interaction with
the incoming beam results in a scattered spherical wave, with a characteristic inten-
sity distribution. Waves scattered by each particle inside the sample superpose in
the far field, creating a complex interference pattern (a speckle pattern), encoding
detailed information about particle shape, size, position and dynamics. This section
will follow this second approach, showing how to extract valuable information from
the static properties of the speckle pattern and from its temporal fluctuations.

From classical electrodynamics [Jackson 2007], it is known that, when a single charge
is accelerated by an electromagnetic wave, it emits a spherical wave, whose intensity
profile follows the so-called dipole distribution:

dP, ck?® . .
de = 8—7Tp2 sin? (2.1)

where ¢ is light’s speed, k = 27n/\ is the wavevector of the incoming beam, with A its

wavelength in vacuum and n the refractive index of the medium, p is the induced dipole
and ¢ is the angle between the scattered beam and the polarization axis of the incoming
beam, assumed to be linearly polarized. A speckle pattern can be understood as the
interference of all spherical waves scattered by the sample: their number is huge, but
the basic underlying principle can be grasped by considering the contribution of just two
scattering elements (Fig. 2.1b). What makes the interference nontrivial is the relative
phase factor coming from the different distance As traveled by the waves, which can be
expressed as a function of the relative position 7 of the two scatterers:

Ap = kAs = (ks —k;) -F=q-7 (2.2)

Here ES and /;1 are the scattered and the incident wavevectors respectively, which have
2mn

A — —
incident light. Their difference ¢ = kg — kj is called the scattering vector, which is the

the same modulus k£ = since dipoles scatter light with the same wavelength as the
relevant parameter defining the lengthscale being probed by a scattering experiment.
Indeed, one can easily see that the interference changes from constructive (A¢ = 0) to
destructive (A¢ = m) for particle relative displacements dr = 7/q along the ¢ direction.

The scattering vector is related to the scattering angle 6 by the simple relation
(Fig. 2.1¢):
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q= 2krsing (2.3)

Thus, the larger the scattering angle, the smaller the lengthscale probed, with a lower
bound set by 7/¢ma: = A/4n in the backscattering direction.

2.1.2 Small angle light scattering

Equation 2.3 shows that light scattering typically probes matter on lengthscales com-
parable to the visible wavelength, but that larger lengthscales (up to more than 100 \)
can be probed by analyzing light scattered at small scattering angles, which can be very
interesting in some cases, like the ones we will show in the next chapters.

A great advantage of small angle light scattering is that, as it is represented in Fig. 2.2,
a multichannel detector (e.g. a CMOS camera) can be used to acquire the intensity scat-
tered at several scattering vectors at the same time. Such detectors are typically much
slower than photodiodes, and they also have a smaller dynamic range, but smart acqui-
sition schemes like the one we have developed (see appendix A) and multiple exposure
times can be used to improve the detection performance.
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Figure 2.2: (a) General scheme of a small angle light scattering experiment: a flat
scattering cell is chosen to improve the quality of the optical interfaces, and a multichannel
sensor is used to detect several scattering vectors at the same time. In general, an optical
system (not shown) is employed in order to collect the scattered light and send it to
the sensor. More details can be found in [Tamborini 2012]. (b) Example of the speckle
pattern detected in the far field. The transmitted beam is hidden by the beam stop in the
top left corner, the scattering angle 6 increases radially. (c¢) Radial intensity distribution
(blue) observed along the blue sector highlighted in panel b, plotted together with the
azimuthal average (red), obtained by averaging each scattering angle 6 on the azimuthal
angle (red circle in panel b).

The detection of light scattered at small angles poses a few technical challenges that
have to be addressed with a specific experimental geometry, which may change signifi-
cantly according to the desired range of scattering angles, the required sensitivity or other
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technical constraints. The main challenge associated to small angle scattering comes from
imperfections in the optic elements, which typically produce a spurious scattering signal
greatly increasing at the smallest angles. The presence of the intense transmitted beam
in the field of view of the detector also requires special care in the design of the setup.
As a last challenge associated with small angle light scattering, aberrations in the opti-
cal system that collects the scattered light usually set a strong upper limitation in the
accessible scattering angles.

In our work, we face these challenges with a custom made setup [Tamborini 2012,
which uses a flat scattering cell and a complex optical system allowing one to remove
the transmitted beam and reducing the effect of aberrations. The range of scattering
angles that are typically accessed using this instrument lays in the intermediate range
(0.5° < 0 < 25°) between the angles typically probed in wide angle (6 = 20°) and small
angle (0 < 5°) light scattering.

Figure 2.2b shows an example of speckle image acquired with our setup. Each pixel
is associated to a scattering vector. The position of the ¢ = 0 transmitted beam is on
the top left corner, where the shadow of a beam stop is clearly visible. Superimposed
to a radial smooth intensity decay, a speckle pattern of characteristic size slightly higher
than one pixel is clearly visible. Different configurations of the same system would have
the same overall ¢ dependence of the scattered intensity, but the speckle pattern would
be totally different, as a consequence of scatterers’ microscopic rearrangement. This
suggests that two distinct pieces of information can be extracted: the first deals with
the slow smooth intensity decay, which is related to the internal structure of the sample,
whereas analyzing the speckle pattern time fluctuations can provide information related
to the scatterers’” dynamics. These two different kinds of information are provided by
static and dynamic light scattering, respectively.

2.1.3 Static light scattering (SLS)

2.1.3a Form factor and structure factor

Static light scattering provides averaged information on the internal structure of the
sample, in terms of correlations between the scatterers’ positions. For this purpose, the
speckle pattern of Fig. 2.2b must be smoothed, by time or ensemble averages, for example
by averaging over rings of pixels corresponding to nearly the same scattering angle 6 in
the case of isotropic samples. Starting from such an averaged profile (red line in Fig. 2.2¢),
we briefly sketch how static light scattering works by extending the previous discussion,
from the interference between the electric field scattered by two scattering elements to a
sum over all elements belonging to each of the N particles in the scattering volume. Each
particle is indexed by 7 = 1,..., N, and contains a number A/; of scattering elements.
The total scattered field is:
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where Eﬂ((j‘) is the electric field scattered by a single element (indexed by /) belonging to
particle j. The position of the element in the sample is 7 +Fl( 2 7; being the j-th particle
center of mass position, whereas rl ) denotes the position of the charge in the particle
reference frame. In the second equality the sum over all the M; scattering elements
composing the j-th particle was factorized and called E;(7) = Zf\i’l _’jl((jjei‘ﬁl(]). This
represents the electric field scattered by particle j (to within the phase factor ¢7).

If all particles are identical and are illuminated by a uniform field, the scattered field
E;(Q) = Ep(q) is the same for all particles and can be taken outside the sum. The
scattered intensity can then be calculated as:

1) = B@ - B (@) = |Br(@| 3 70 = AP@)5(q) (25)

jl=1

where P(q) = |Ep(q)[2/|Ep(0)[? is the so-called particle form factor, accounting for the
single particle shape and size, S(q) = N~! Z;V,l:1 e is the sample structure factor,
only dependent on the relative positions between the particles, and A is a proportionality
constant, which will depend on instrumental parameters such as the laser beam size and
intensity, as well on physical parameters such as the particle size, number density and
refractive index contrast.

2.1.3b P(q) and S(q) for colloidal gels

The power of the factorization of the scattered intensity in the product of a form
factor times a structure factor can be sketched in the case of the colloidal gels that will
be presented in part II. Figure 2.3 shows three scattering curves, obtained by matching
the results of several scattering techniques (small and wide angle light scattering, as
well as small angle X ray and neutron scattering), for three different samples: (1) a
diluted (particle volume fraction ¢ = 0.037%) suspension of colloidal particles, (2) a
more concentrated (¢ = 5%) suspension of the same particles interacting via a repulsive
electrostatic potential, (3) a ¢ = 5% suspension of the same particles with short range
attractive interaction.

1. In the dilute suspension, the average interparticle distance is large and there is no
correlation between the particle positions: as a consequence, the structure factor
reduces to Sg;(q) = (¢“77) = 1, and the measured scattered intensity is simply pro-
portional to the particle form factor. The form factor of a sphere can be calculated
by casting the sum over individual scattering elements into an integral over the
particle volume V:
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Figure 2.3: Static scattering signal plotted for three different colloidal systems, contain-
ing the same colloidal particles 1) diluted suspension (¢ = 0.037%, black), from which the
form factor can be extracted, carrying information about the average radius R = 12.5 nm
and size polydispersity og = 10%, 2) slightly concentrated suspension (¢ = 5%, blue),
with a structure factor peak at ¢R ~ 2 and a suppressed [(g) at small scattering vectors,
3) an attractive colloidal gel (¢ = 5%, red), displaying a fractal structure with fractal
dimension dy = 2 up to a characteristic lengthscale of about 0.5um.

P(q) x /Ap(f')e“ﬁd?’r (2.6)
Vj
where Ap is the contrast function, essentially proportional to the local density of
scatterers. By assuming a uniform density inside a spherical volume, one obtains
the form factor of a homogeneous spherical particle of radius R:

3 2
Pald) = {ﬁ sin (R) — qR cos <qR>J} (2.7

In Fig. 2.3, the form factor Pr(q) was convoluted with a Gaussian size distribution
peaked around an average particle size R, to take into account sample polydispersity.

A fit to the experimental data yields R = 12.5 nm with a polydispersity o = 10%.

2. As the number density of the particles is increased, the particle positions start
to become correlated as a consequence of the interparticle interactions, and the
structure function starts to play a nontrivial role in the observed intensity profile.
A direct link between the pair correlation function ¢(7) (i.e. the probability of
finding a pair of particles whose relative position is 7*) and the structure factor S(q)
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comes from a decomposition of the double sum defining S(q) in a "self" (j = 1)
term, which is exactly 1, and a "cross" (j # [) term, which can be cast into an

—\

integral corresponding to the Fourier transform of ¢(7)

S(@) =1+ / o(F)e T b (2.8)

For example, in a diluted suspension, a virial expansion of the equation of state
provides an expression for the pair correlation function: ¢(7) = exp[—v(r)/kgT],
where v(7) is the interaction potential [Landau 2013]. A similar starting point leads
with more sophisticated calculations to the Percus Yevick structure factor, which is
used in Fig. 2.3 to fit the experimental intensity, using the factorization of equation
2.5 and the form factor obtained from the diluted sample [Vrij 1979]. Note that
for the ¢ = 5% suspension, the measured intensity clearly exceeds the value for
the form factor at ¢R ~ 2: this is the sign of an emerging peak in S(q), reflecting
the fact that as particles get closer to each other the density fluctuates strongly on
the length scale of the particle diameter, whereas a suppression of S(q) for small ¢
values reflects the fact that at large lengthscales the density is still rather uniform.

3. Finally, as the interparticle potential is turned into attractive, particles aggregate
and form a complex structure spanning a large range of lengthscales. As a result,
the structure function develops several interesting features, like a power-law regime,
which is a consequence of the fractal structure of the particle clusters, terminating
with a shoulder corresponding to the typical cluster size (see part IT for more de-
tails about the sample structure). Here P(q)S(q) was fitted by an analytic model
assuming a distribution of fractal aggregates with fractal dimension d; = 2 and an
exponential size distribution with a typical size around 100 nm [Sorensen 1999].

2.1.4 Dynamic light scattering (DLS)

2.1.4a Conventional dynamic light scattering

While static light scattering deals with the smooth variation of the intensity with
q, neglecting the detailed appearance of the instantaneous speckle field, dynamic light
scattering focuses precisely on the latter, relating intensity fluctuations to the sample
dynamics. Indeed, as already pointed out with Eq. 2.2, the bright (dark) spots that one
calls speckles are regions of constructive (destructive) interference of light emitted by all
scatterers, where the constructive or destructive nature changes if particles are displaced
over a distance of the order of ¢ !.

Thus, the basic principle of dynamic light scattering is to record the intensity fluc-
tuations measured at one specific ¢ vector, and to measure the characteristic time 7
needed for a bright speckle to become dark or vice versa. In the schematic represen-
tation of Eq. 2.2, where only two scatterers contribute to the observed signal, this im-

plies that the relative phase between the two interfering waves has changed of the or-
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der of unity over that characteristic time, which in turn reveals a particle displacement
(AT(7))e = (Tt + 7) — 7(t))r ~ N/ sin(0/2)t,. Here 4, is a unit vector pointing in the ¢
direction, which emphasizes that the relative displacement that one observes in dynamic
light scattering is projected along the scattering vector. This observation is very relevant
in the case of anisotropic dynamics, like the one induced by shear flow, and it will be
developed in chapter 4.

An analogous result holds for the more realistic picture of N particles contributing
to the scattered intensity. In this case, time dependence can be easily incorporated into
Eq. 2.5, by assuming a time-independent form factor and a time-dependent structure
factor:

N
I(q,t) = AP(9)S(q,t) Z el (2.9)
=1
Thus, fluctuations of I(g,t) provide information on the average particle displacements
along the scattering vector. Again, a decomposition of the double sum allows to dis-
tinguish between "self" dynamics and "collective" dynamics (typically dominant when
S(q) > 1), which are linked to collective relaxation of particle density fluctuations
[Pusey 1978|. A quantitative measurement of the temporal fluctuations of I(g,¢) can
be obtained by computing the time autocorrelation function of the scattered intensity:

(@t + DI@.Y)
1@t + ) 1(@1)

where (...) denotes an ensemble average, which for ergodic samples can be measured

(2.10)

experimentally by performing a time average lasting much longer than the characteristic
relaxation time 75 of go (typically an average over 10*> — 10%7% is needed). The intensity
autocorrelation function can be related to quantities that can be modeled theoretically,
like the intermediate scattering function f(g,7), which essentially coincides with the
ensemble averaged field correlation function:

E(q,t+7) E*(@1) N .
(@, 1) ={qa(q,t, 7)), = < ‘<E( )> 5 >t . <Z ezq~[rj(t+r)—n(t)1> (2.11)
q,t =1 .

The Siegert relation, which holds as long as the scattered field has Gaussian statistics,

relates the intensity and field correlation functions [Berne 2013]:

97t 7) =1+ |gi(q.t,7) (2.12)

The intermediate scattering function, in turn, can be directly related to the internal dy-
namics of the sample: indeed, it represents the (spatial) Fourier tranform of the van
Hove distribution function G(7,t), which is the dynamic counterpart of the pair correla-
tion function ¢() [Hopkins 2010]:
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G(r7) = <%/P(7ﬂ+ﬁt+7)p(7ﬂ,t)d3r’>

t

N (2.13)
= <%/Z6[r’+F—Fj(t+r)]5[r’—ﬁ(t)]d3r’>

jl=1

where p(7,t) = Zjvzl 0|7 — 7;(t)] is the density of a system comprising N particles and
d(7) represents Dirac’s delta function. G(7,7) is the probability of finding at time 7 a
particle at position 7, given that a particle (not necessarily the same) was in the origin
(7= 0) at time 0. A substitution of Eq. 2.13 into Eq. 2.11 directly yields

f(q,7) :/G(ﬁT)e"q’"Fd?’r (2.14)

Thus, the intermediate scattering function can be considered as the dynamic counterpart
of the structure factor (Eq. 2.8).

As an example, we consider Brownian diffusion. In this case, the van Hove function is
a Gaussian with variance (Ar?(7)) = 6D7, D being the diffusion coefficient. By Fourier
transforming such distribution one obtains f(q,7) = exp(—Dg?7). One thus predicts an
exponential decay of the field correlation, with a characteristic time 7z = 1/Dg?. Thus,
from the intensity correlation function measured on a Brownian suspension one extracts
the diffusion coefficient D. In turn, D can be used to determine the hydrodynamic radius
Ry, of the particles if the solvent viscosity is known, using the Stokes-Einstein relation
D = kgT/(6mnRy), as it is routinely done in DLS-based particle sizing [Berne 2013|.
Conversely, one can use known particles as probes, and extract from the DLS signal
physical information about the solvent, like the viscosity: this is the essence of DLS-
based microrheology.

2.1.4b Multispeckle and time-resolved correlations

Operationally, conventional DLS is based on the assumption that the ensemble average
in Eq. 2.10 can be replaced by a time average. Ensemble and time averages are equivalent
if, over the averaged time interval, the sample has been able to explore a statistically
relevant subset of the phase space, i.e. for the so-called ergodic systems. Ordinary diluted
suspensions usually fall in this class of systems, since their relaxation time is usually much
smaller than 1 s, so that many independent configurations can easily be sampled within
the duration of an experiment. However, there are several instances where the relaxation
time exceeds 1 s by many orders of magnitude, as is the case for very viscous suspensions
studied at small angles or even more importantly for out of equilibrium systems, like
colloidal gels or glasses: these systems are said to be nonergodic, and require special care
for the ensemble average in a DLS experiment to be properly evaluated.

One method is to sample g;(q,t,7) for several independent speckles. This can be
done by translating or rotating the sample during the measurement, or more conveniently
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by detecting the fluctuations of several speckles at the same time using a multichannel
detector, like a CMOS camera, and by averaging the contribution of all speckles. The
resulting correlation function is:

- B <Ip(t + T)]p(t)>peROI(¢j)
9(417) = (Lt + 7)) peror@ L)) pe ror@ o

where I,(¢) is the intensity detected by pixel p at time ¢, and (...) cpo; corresponds
to an average over all pixels belonging to a region of interest (ROI) associated to a small
region in ¢ space centered around ¢.

Such a technique, called multispeckle, allows one to achieve a good sampling of the
gray levels of the speckle pattern, which corresponds to a good sampling of the microscopic
configurations of the sample, provided that the scattering volume is larger than any
structural and dynamical correlation length. Of course, the speckles averaged with this
technique should provide equivalent information, thus they should correspond to nearly
the same scattering vector, which sometimes sets a strong limitation, for example in the
case of large speckles or of a strong ¢ dependence of the dynamics, as it is the case under
shear, as discussed in chapter 4.

More generally, this method provides properly averaged results without time averages,
and thus allows one to characterize time-dependent dynamics, like ageing or transient
processes. For this reason, such a method, called Time Resolved Correlation (TRC)
[Duri 2005|, is particularly adapted for probing a sample under shear.

2.2 Rheology

Rheology, as the Greek origin of the name suggests, is the study of the flow of matter.
One commonly thinks of gases and liquids as mobile substances subject to flow and of
solids as rigid materials that do not flow, but before the critical eyes of the rheologist,
nature shows a much more rich and complex variety of behaviors, which one classifies
as wiscoelastic. Indeed, rephrasing the well known statement of Heraclitus from which
the name "rheology" was coined (Ta lldavTa pei), everything flows, depending on the
timescale and the external conditions |Traxler 1939].

2.2.1 Shear deformation: stress and strain

The above distinction between liquids, solids and viscoelastic materials concerns the
mechanical properties of an object, i.e. the relationship between any force applied to it
and the subsequent change in its shape and size. Both quantities can be generally quan-
tified by tensorial variables: the stress g, representing the force per unit surface acting
on different faces of a small cubic element from different directions, and the deformation
7 (or its time derivative ), describing the relative changes in dimensions and angles of



60 Chapter 2. Experimental Methods

that cubic element. In a generic deformation geometry, both stress and strain depend on
the position 7, so that the relation between g and ¥ (the so-called rheological constitutive
equation) is a very complex tensorial equation. However, there are a few specific types of
uniform (homogeneous) deformations where stress and strain are independent of Z and
assume a relatively simple form. One of them is simple shear, where two opposite faces of
the cubic element are displaced by sliding. In this geometry (Fig. 2.4a), one can measure
the shear couple M = eF, e being the gap separating the two surfaces and F' being
the force applied to them, and the relative linear displacement ¢ of the two surfaces. In
terms of these quantities, the above tensorial relations reduce to scalar ones, connecting
the (scalar) stress o(t) = F(t)/S, S being the area of the two opposite faces, to the strain
~(t) = 0(t)/e. In this thesis, with the only exception of appendix B, we will only focus
on the shear geometry.
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Figure 2.4: (a) Schematic view of shear rheology: the initial shape of the sample (dashed
line) is a prism with base surface S and height e equal to the gap between the two confining
surfaces (top and bottom plates). A sliding force F'is applied to one of the two surfaces,
while the other one is kept fixed. This corresponds to a shear couple M = eF', and a
scalar shear stress 0 = F'/S homogeneously distributed inside the sample volume. The
scalar deformation v = §/e is also uniform, and corresponds to the relative displacement
of the two surfaces § normalized by the gap. (b) Representative experimental protocol
for strain-controlled small amplitude oscillatory shear rheology: as described in text, a
sinusoidal deformation ~,(¢) (blue, solid line) is imposed, and the stress response o,,(t)
(red, dashed line) is measured. The relative amplitude and phase of the two harmonic
signals define the modulus and the phase of the complex modulus G*(w). The result
would be the same in stress-controlled rheology, where o, (t) is imposed and ~,(t) is
measured.

Experimentally, it is possible to access both o(t) and «(t) using sophisticated instru-
ments called rheometers, which can be controlled either in stress or strain. In both cases
the geometry can be chosen according to the properties of the sample: liquid-like samples
are typically tested in a Couette cell, where the sample fills the gap between two coax-
ial cylinders, one of which rotates with respect to the other. Solid-like samples, on the
other hand, are generally confined between a flat, fixed surface and a cone that is rotated
to apply a given deformation (cone-plate geometry). In both cases, strain-controlled
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rheometers measure the torque needed to achieve a given rotation, and conversely stress-
controlled rheometers apply a controlled torque and measure the rotation. The geometric
parameters are then used to convert the torque into a shear stress and the rotation an-
gle into a shear strain. Different shear geometries, like parallel sliding plates are also
employed in custom-made shear cells, typically designed to meet special mechanical re-
quirements (e.g. very small sample thickness or very high frequencies) or to be embedded
into more complex experimental systems, like the one that will be presented in chapter
3.

When an external shear stress o(t) is applied to a sample, the sample reacts with a
shear deformation () following Newton’s second law. If inertial effects can be ignored,
as is often the case (cf. chapter 3), the internal stresses developed as a consequence of the
shear deformation are such that the applied stress is exactly balanced, so that a measure
of 7(t) for a known stress history o(t) allows one to extract the constitutive equation.
Conversely, a strain history 7(¢) can be imposed, and a measure of o(t) allows the same
constitutive equation to be obtained.

As an example of a simple constitutive equation, Hooke’s law describes the behavior
of elastic solids, for which stress is always directly proportional to strain but independent
on the shear rate 4 = dvy/dt. On the other hand, the classical theory of hydrodynamics
deals with viscous liquids, for which stress is always directly proportional to the shear
rate, but independent of the strain itself. Both categories are idealizations, and although
many solids approach Hooke’s law for small strains and many liquids approach Newton’s
law for small shear rates, under other conditions deviations from these simple, linear laws
are observed. Moreover, even if the strain or the shear rate are infinitesimal, a system
may exhibit behavior which combines liquid-like and solid-like characteristics: to describe
such a wviscoelastic system, a more general model must be introduced.

2.2.2 Linear viscoelasticity

2.2.2a Viscoelastic moduli

As a starting point for a theoretical description of linear viscoelasticity, a response
function G*(w) (called complex modulus) can be defined, in the spirit of Sec. 2.1. In
the small perturbation limit, the so-called linear regime, G*(w) is a well defined complex

t is associated to a

function of frequency: a harmonic strain perturbation v, (t) = yoe™
stress o, (t) oscillating at the same frequency w, with amplitude and phase set by the
complex modulus: o, (t) = G*(w)7,(t) (Fig. 2.4b) [Macosko 1994].

The ideal cases of purely elastic or viscous materials can be described in terms of real
or imaginary complex moduli, respectively: G*(w) = Gq defines the elastic modulus in
Hooke’s law (0 = Gyy), whereas G*(w) = iwn characterizes the viscosity of a Newtonian
liquid (o = 77). A complex modulus having both a real and an imaginary part describes a
viscoelastic material, whose solid-like and liquid-like behaviors are ascribed to a storage

modulus G’ = Re(G*) and a loss modulus G” = Im(G*), respectively. In practice,
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oscillatory rheology consists in imposing a small amplitude harmonic perturbation (either
in stress or in strain), and recording the amplitude and phase of the response, from which
G’ and G” can be extracted for a given frequency: a complete spectrum of G’'(w) and
G"(w) provides a full description of the linear viscolasticity of a material.

The form of the frequency dependence of the viscoelastic moduli G’ and G” can in
general be reproduced by the behavior of a mechanical model with a sufficient number
of elastic elements (springs) and viscous elements (dashpots imagined as pistons moving
in oil). The force applied to the ends of this mechanical model is analogous to o, and
their relative displacement is analogous to 7. The simplest fully viscoelastic models
contain one spring and one dashpot, connected either in series (Maxwell model) or in
parallel (Kelvin-Voigt model) [Ferry 1980]|. Their complex moduli can be calculated by
assigning an elastic modulus Gy to the spring and a viscosity n to the dashpot, and by
developing the mechanical models, obtaining G (w) = Go + iwn for Kelvin-Voigt and
G (w) = Go(s? +is)/(1+s?), with s = wn/Gy, for Maxwell. Both results are represented
in Fig. 2.5a, from which a characteristic angular frequency w = Gg/n emerges as the point
where G’ and G” cross each other: for w > w the Maxwell model will be predominantly
elastic, with G’ > G”, whereas for Kelvin-Voigt G” > G’ indicates a rather liquid-like
response. The opposite holds for w < @.

The characteristic frequency @ can also be read, in the time domain, as a characteristic
time 7 ~ @~! separating the elasticity-dominated from the viscosity-dominated regime,
as can be clearly observed in transient experiments.

2.2.2b Transient experiments in the linear regime

Oscillatory shear is of widespread use, and is an extremely practical tool to charac-
terize the linear viscoelasticity of a material, since it probes a stationary state, where the
mechanical response of the system depends on frequency but not (or negligibly) on time.
However, precious physical information is often contained as well in the time evolution
of the system approaching the stationary state, specially when finite, "nonlinear" de-
formations are attained. To access this information, transient experiments, intrinsically
time-resolved, can be performed. Creep, shear start-up and stress relaxation are the most
common examples of transient rheological experiments.

The result of transient experiments in the linear regime can be rationalized in terms
of two time-dependent quantities related to the viscoelastic moduli: the stress relaxation
modulus G(t) and the creep compliance J(t), which are used to calculate the stress o(t)
starting from a generic strain history (¢) or vice versa [Macosko 1994]. Their definition
is based on Boltzmann’s superposition principle, stating that in the linear regime the
effects of sequential changes in strain (or stress) are additive:
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Figure 2.5: (a) Viscoelastic moduli G’ (solid lines) and G” (dashed lines) for Maxwell
(red) and Kelvin-Voigt model (blue), normalized by the spring modulus Gy and as a
function of frequency normalized by the relaxation time 7 = 1/Gy. A solid sample would
have the same G’ as the Kelvin-Voigt (G’ = Gy), whereas a Newtonian fluid would have
the same G” as the Kelvin-Voigt (G” = nw). (b) Normalized creep compliance GgJ(t)
as a function of normalized time t/7 for the two viscoelastic models. As a reference, the
creep compliance of ideal elastic solids (black, solid line) and Newtonian liquids (dashed
line) is also shown.

- (2.16)

—00

From the knowledge of either G(t) or J(t), the stress-strain relation for any kind of
experiment with a prescribed time dependence of stress or strain can be predicted: for
example, the particular choice of an oscillating strain allows one to identify the complex
modulus G*(w) as the Fourier transform of G(¢). In practice, however, direct calculation
of the Fourier transform is not possible, since any transient experiment accesses a limited
window of timescales, ranging from a generally small enough t%,,;, to a maximum time ¢,,4,
limited by the duration of the experiment (typically a few days at most), and numerical
methods are needed to convert linear transient data into viscoelastic moduli covering a
frequency range from wy,;, ~ t5 [Evans 2009]. This reveals another
side advantage of transient experiments, which can typically probe a much larger window
of timescales, beyond the small frequency regime that can be typically be accessed in

1
10 Wimaz ~ toin



64 Chapter 2. Experimental Methods

oscillatory tests. For this reason, creep or stress relaxation experiments in the linear
regime are sometimes used to extend the spectrum of viscoelastic moduli at the smallest
frequencies [Bird 1987|.

Among the typical transient experiments, this chapter discusses the case of creep,
where a step stress o(t) = 0¢0(t) is imposed, 0(t) being the Heaviside’s Theta function,
and the strain v(t) = ooJ(t) is measured as a function of time. Apart from inertial
effects, discussed in detail in chapter 3, the deformation is constant (y(t) = 7. = 00/Go)
for an ideal elastic solid subject to Hooke’s law, whereas it grows linearly in time for
a viscous liquid (y(t) = At, where 4 = 0o/n). The deformation of a Maxwell model
is approximately constant over times shorter than the characteristic time 7, and starts
growing at a constant rate for longer times: vp/(t) = 7.(1 +¢/7). On the other hand, a
Kelvin-Voigt model flows at short times and reaches a constant deformation for ¢t > 7:
Yrv(t) = e[l — exp(—t/7)]. Both creep curves are represented in Fig. 2.5b.

The reversibility of creep deformation can be directly addressed by creep recovery, i.e.
by releasing the external stress after an arbitrary creep time 7. for ¢ > T the deformation
~(t) decreases again, reaching a plateau value 74, in the long time limit. 7., = 0 would
then imply that the deformation obtained during creep is completely reversible: this is
the case of Kelvin-Voigt model. On the other hand, a partially irreversible deformation
would reflect into a strictly positive v (for example, v, = 7.7"/7 for a Maxwell model).

The two fully viscoelastic models (Maxwell and Kelvin-Voigt) introduced so far are
described by a single characteristic time 7, corresponding to the clear transition between
solid-like and liquid-like behavior, which one can observe in Fig. 2.5b. However, as the
term "creep" itself suggests, the deformations observed in creep experiments are often
characterized by a sublinear growth of ~(¢) spanning several decades in time. This is
for example the case of Rouse motion in polymeric materials, where ~(¢) increases as
a power law with an exponent a = 0.5 [Schiessel 2000]. To mimic this behavior more
complex mechanical models are required, generally displaying a distribution of relax-
ation times. For example, a generalized Maxwell (or Kelvin-Voigt) model is composed
of N elementary modes, each one with its characteristic time, connected in series (or in
parallel). Other models can be imagined as well, like for example branched or nested
structures, particularly suited to describe self-similar dynamics. More recently, the con-
cept of fractional element (also called a springpot) has also been introduced [Blair 1947|,
to provide a compact mathematical description of power law distributions of relaxation
times [Bagley 1983, Bagley 1989, Jaishankar 2013|. A fractional element is defined by
two parameters: a so-called quasi-property V and a fractional exponent «, and it bridges
the mechanical behavior of a spring and a dashpot, where (V, ) reduces to (Gg,0) and
(n, 1) respectively. Its constitutive equation involves the concept of a fractional derivative
of order a:

o(t) = % =V / (t — ')~ 4(¢)dt (2.17)

—0o0



2.2. Rheology 65

This definition of fractional derivative compared with Eq. 2.16 allows to identify the
relaxation modulus G(t) o t~®, which emphasizes the interpretation of a springpot in
terms of a power law distribution of relaxation times. A physical example of such a
fractional element is represented by the so-called fractional Maxwell model, which will
be introduced in chapter 5.

2.2.3 Nonlinear viscoelasticity

All the results obtained so far are bound to the underlying assumption that the defor-
mations are infinitesimal. This assumption characterizes the so-called linear viscoelastic
regime, where stress and strain should be regarded as a probing field: since the (linear)
response functions do not depend on the magnitude of the probing field, linear rheology
teaches us about the mechanical properties of the unperturbed sample. However, from a
practical point of view, it may remain unclear how to identify the range of deformations
where this assumption holds. Moreover, mechanical stimuli beyond the linear regime can
be used on purpose to change the sample structure, and the mechanical properties of
the modified structure can be probed by nonlinear rheology, which can provide valuable
information both from a fundamental point of view and for applications. For this reason,
in this section a few relevant aspects of nonlinear viscoelasticity will be briefly discussed.

Nonlinear rheology represents an appealing technique thanks to its straightforward
implementation in modern rheometers. However, from a theoretical point of view it is
extremely delicate, for several reasons. First of all, when strains are not infinitesimal,
the strain tensor itself has to be handled with care, since various alternative ways of
defining finite strains are possible [Macosko 1994|. Moreover, the deformation measured
macroscopically may deviate significantly from the local deformation actually experienced
by the sample, which may become unstable and heterogeneous in a way that may exhibit a
delicate dependence on the experimental geometry and boundary conditions. Finally, as a
consequence of a nontrivial coupling between spatial dimensions, nonlinear deformations
along one direction may produce measurable stresses along orthogonal directions, as is
the case for normal stresses in shear rheology, for example. A thorough discussion of those
aspects would go far beyond the purpose of this chapter: in the following we will take a
phenomenological approach, assuming that a macroscopic shear strain v is imposed and a
macroscopic shear stress o is measured under specific experimental conditions. Under the
working hypothesis (to be verified experimentally) that « and o are still representative
of the local mechanical perturbation and response of the sample, this section will discuss
how the stress-strain relation changes as the strain is increased beyond the linear regime.

2.2.3a Large Amplitude Oscillatory Shear

We start considering the nonlinear transition as it is observed in oscillatory shear
at one fixed frequency w as the strain amplitude 7, is increased. For one given g, a
convenient way of showing the stress-strain relation is to plot the two variables against



