Physical modeling of active bacterial DNA segregation

Jean-Charles Walter

Laboratoire Charles Coulomb, CNRS & Université de Montpellier, France

GDR Architecture et Dynamique Nucléaire Paris Jussieu March 30-31 2017

Outline

Bacterial DNA segregation: the system ParABS

2 Dynamics: complex surfing of protein waves

Segregation of bacterial DNA

How is the bacterial genome segregated?

Active segregation of bacterial DNA

Partition system ParABS is strongly conserved

The ParABS operon

- ParA: "motor" protein (ATPase, Walker-type)
- ParB: binding protein (specific or non-specific binding)
- parS: centromere-like DNA sequence

Physical dimensions of bacteria

How does ParABS work?

a) 2 proteins (ParA & ParB)b) specific binding sites (parS)

mechanisms

Bacterial DNA segregation: experimental facts

Equipositioning of the complexes

Oscillations of ParA

Bacterial DNA segregation: interactions of ParABS

Dynamical steps: Reaction-Diffusion equations

$$\frac{\partial u}{\partial t} = D_1 \Delta u - k_1 u(\mathbf{r}, t) + k_2 v(\mathbf{r}, t) \sum_i S(\mathbf{r} - \mathbf{r}_i(t))$$

$$\frac{\partial v}{\partial t} = D_2 \Delta v + k_1 u(\mathbf{r}, t) - k_2 v(\mathbf{r}, t) \sum_i S(\mathbf{r} - \mathbf{r}_i(t))$$

$$m\gamma \frac{d\mathbf{r}_i}{dt}(t) = \varepsilon \int_V \nabla v(\mathbf{r}', t) S(\mathbf{r}' - \mathbf{r}_i(t)) d^3\mathbf{r}'$$

- Feedback between the partition complexes and ParA densities
 - → Non-linear system with dynamical instability

How does ParABS work?

- Partition complexes: diameter $\sigma \approx 50 75$ nm containing ≈ 300 proteins
 - → porous particle with volumetric interactions

Dynamical instability

Threshold of dynamical stability obtained with TW ansatz:

$$u(x,t) = u(\xi)$$
; $v(x,t) = v(\xi)$, where $\xi = x - c_{TW} t$

Quasistatic hypothesis: calculation of the profiles

Screening length

Comparison with experiments

Summary

- Minimal reaction-diffusion system without extra mechanism:
 - → sufficient to explain segregation and positioning in ParABS
- Equation of motion of the complex
 - → coupling with the density of ParA allowing a transient regime
- Volumetric interaction within the complex with ParA ("porous particles")

ChIP-sequencing

R. Diaz

A. Sanchez J. Rech

J-Y. Bouet

Super-resolution microscopy PALM

D. Cattoni

A. Le Gall

M. Nollmann

Physical modeling

G. David

J. Dorignac

F. Geniet

V. Lorman

J. Palmeri

A. Parmeggiani

