Surfing on protein waves: modeling the bacterial genome partitioning

Jean-Charles Walter

Laboratoire Charles Coulomb, CNRS & Université de Montpellier, France

Modeling phase separation in health and disease: from nano- to meso-scale Toulouse, France Sept. 30 - Oct. 2 2019

- Bacterial DNA segregation: the ParABS system

Segregation of bacterial DNA

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

-Bacterial DNA segregation: the ParABS system

The ParABS operon

- ParA: "motor" protein (ATPase, Walker-type)
- ParB: binding protein (specific or non-specific binding)
- parS: centromere-like DNA sequence

(日)

-Bacterial DNA segregation: the ParABS system

The ParABS segregation system: molecular actors

3 components: 2 proteins (ParA & ParB) + specific binding sites (parS)

How to describe formation, segregation and positioning of macromolecular assembly in a fluid phase ?

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- Bacterial DNA segregation: the ParABS system

Liquid-Liquid Phase Separation

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

æ

- Bacterial DNA segregation: the ParABS system

The Spreading and Bridging Model (S&B)

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

- Bacterial DNA segregation: the ParABS system

The Spreading and Bridging Model (S&B)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Bacterial DNA segregation: the ParABS system

Mapping the S&B onto a Long Range Lattice Gas

$$G_{ij} = 4\pi\beta^{-1} \int_0^{+\infty} dR R^2 \left[e^{-\beta U(R)} - 1 \right] P_{ij}(R) \quad \rightarrow \quad H_{LRLG} = H_{SRLG} - \frac{1}{2} \sum_{i,j}^N \phi_i G_{ij} \phi_j$$

▲御▶ ▲理▶ ▲理▶

- Bacterial DNA segregation: the ParABS system

Existence of a phase transition

Asymptotic behavior

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Bacterial DNA segregation: the ParABS system

ParBS complexes are in the metastable region

Jean-Charles Walter Bacterial genome partitioning

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・ ・

-Bacterial DNA segregation: the ParABS system

The ParABS segregation system: molecular actors

3 components: 2 proteins (ParA & ParB) + specific binding sites (parS)

How to describe both segregation and positioning of macromolecular assembly in a fluid phase ?

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- Dynamics: complexes surfing on protein waves

Molecular interactions and diffusion

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・ ・

Reaction-Diffusion equations (ParA) coupled to Brownian motion (ParB*S*)

ParA-slow (ATP):
$$\frac{\partial \mathbf{v}}{\partial t} = D_2 \Delta \mathbf{v} + k_1 u(\mathbf{r}, t) - k_2 \mathbf{v}(\mathbf{r}, t) \sum_i S(\mathbf{r} - \mathbf{r}_i(t))$$

ParA-fast (ADP): $\frac{\partial u}{\partial t} = D_1 \Delta u - k_1 u(\mathbf{r}, t) + k_2 \mathbf{v}(\mathbf{r}, t) \sum_i S(\mathbf{r} - \mathbf{r}_i(t))$
ParBS: $m\gamma \frac{d\mathbf{r}_i}{dt}(t) = \varepsilon \int_V \nabla \mathbf{v}(\mathbf{r}', t) S(\mathbf{r}' - \mathbf{r}_i(t)) d^3\mathbf{r}'$

Feedback between the partition complexes and ParA densities
 → Non-linear system with dynamical instability

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Dynamical instability: supercritical pitchfork bifurcation

Threshold of dynamical stability obtained with Traveling Waves (TW) *ansatz*: $u(x, t) = u(\xi)$; $v(x, t) = v(\xi)$, where $\xi = x - c_{TW} t$

э

Comparison with experiments

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Summary

- Complexes are formed by LLPS mechanisms in the metastable regime: → bound particles are interacting at long range due to polymer fluctuations David G., JCW, Broœdersz C., Dorignac J., Geniet F., Parmeggiani A., Walliser N. & Palmeri J. Long range interactions generated by polymer fluctuations induce phase separation, submitted, [arXiv/1811.09234] Guilhas B., JCW, Rech J., Mathieu-Demaziere C., Palmeri J., Parmeggiani A., Walliser N., Bouet J-Y., Le Gall A. & Nollmann M. ATP-driven separation of liquid phase condensates in bacteria, submitted.
- ATP-driven segregation of equilibrium complexes via ParA
 → Reaction-diffusion mechanism with a dynamical transition

JCW, Dorignac J., Lorman V., Rech J., Bouet J.-Y., Nollmann M., Palmeri J., Parmeggiani A. & Geniet F., Surfing on protein waves: proteophoresis as a mechanism for bacterial genome partitioning, Phys. Rev. Lett. **119**, 028101. arXiv:1702.07372 [q-bio.SC]

• □ ▶ • □ ▶ • □ ▶ • □ ▶ •

- Dynamics: complexes surfing on protein waves

Jean-Charles Walter Bacterial genome partitioning

Density profiles obtained with biological paramaters

・ロト ・四ト ・ヨト ・ヨト

æ

Screening length

(3)

< 一型

æ

Supercritical pitchfork bifurcation

Infinite system (left) Supercritical pitchfork bifurcation diagram of reduced system in the (K, v) space. (right) Dynamical phase diagram in the plane (K, σ) where $K = \alpha m_0/(4D\ell)$ and σ is the dimensionless width of a gaussian source. The red curve represents the boundary (critical value K_c vs. σ).

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

- Dynamics: complexes surfing on protein waves

Supercritical pitchfork bifurcation

Periodic Boundary Conditions (left) Dynamical phase diagram in the plane (K, μ) where $K = \alpha m_0/(4D\ell)$ and $\mu = L/\ell$ is the dimensionless ratio between *L* (size domain 2*L*) and the screening length $\ell = \sqrt{D/k}$. (right) TW dimensionless velocity *v* (positive) vs. parameter $K = \alpha m_0/(4D\ell)$ for different values of $\mu = L/\ell$ from 0.5 to 2 and for $\mu \to \infty$. The blue curve is the same as the upper part for infinite system, thus the right limit is recovered.

Supercritical pitchfork bifurcation

No-Flux Boundary Conditions (Log-log plot of the instability threshold $K_c(\mu)$ versus the system size to screening length ratio $\mu = L/\ell$ for a Dirac source.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・