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Chapter 1

Introduction

“God made the bulk; the surface was invented by the devil.”

W. Pauli

There is a place in Belgrade where the Danube makes a turn, merging its waters with
those of the Sava river. The difference in colour between the two balkan rivers gave birth
to the story that their waters do not actually mix, and that the two rivers flow one close to
the other instead of becoming one: the separation between the green waters of the Danube
and the darker ones of the Sava is visible long after their meeting point. Setting aside the
legendary aspect of this tale, how would it be possible for water not to mix with water?
And what actually happens when two fluids mix?

When two different liquids are brought in contact, the compositional change character-
ising their interface locally induces a stress anisotropy, with the result that the molecules
feel a net force opposing the formation of new interface. This general description captures
the character of surface tension between immiscible fluids. Indeed, we all have the experi-
ence that some liquids mix well while some others tend to remain separate, such as oil and
vinegar when one wants to dress a salad. We also know that this changes when mustard
is added to the two liquids, allowing the cook to form an emulsion. Mustard acts as an
emulsifier for the two normally immiscible fluids by reducing the interfacial tension between
oil and vinegar. This is an everyday-life example of the importance of interfacial tension,
which constitutes an indispensable background for understanding phenomena ranging from
salad dressing to soap bubbles, oil recovery, biological life, and many others.

By contrast, capillary phenomena between miscible fluids constitute a much less ex-
plored and settled topic. From a thermodynamic point of view, when two fluids interdiffuse
interfacial tension cannot exist, since the equilibrium state of the system corresponds to a
homogeneous mixture. Nevertheless, as early as in 1901, the physicist and mathematician
D. Korteweg postulated that the out-of-equilibrium compositional change in the interfacial
region could induce stresses acting as an equilibrium interfacial tension [1], before diffusion
brings the system to its final mixed state. In the case of the Danube and Sava rivers,
such transient Korteweg stresses should affect the region immediately after the confluence,
arising from compositional differences in the water. But does such an effective interfacial

5



1.1. Interfacial tension at equilibrium 6

Figure 1.1: The confluence of the Danube and the Sava rivers in Belgrade, as seen from
the Belgrade fortress of Kalemegdan.

tension actually exist, and what would be the difference with respect to the conventional
thermodynamic quantity that we usually refer to as to the “interfacial tension”? These
questions are not settled yet and are still actively investigated. Furthermore, their interest
is not purely academic. In spite of its transient character, the presence of an effective inter-
facial tension (EIT) would be important for many practical applications, from multiphase
polymer flows during industrial processes [2], to the motion of magma in the Earth’s mantle
in geophysics [3], where gradients in minerals concentration or in temperature exist.

In this thesis we present an experimental work aiming at measuring and understanding
the effective interfacial tension between miscible molecular fluids. It is thus important to
start with an overview of the state of the art.

1.1 Interfacial tension at equilibrium

Interfacial tension is a well understood quantity for interfaces between two different phases
or substances at equilibrium, such as oil and vinegar in our salad dressing example. It is
generally treated in literature following one of two possible approaches, namely a mechanic
or a thermodynamic approach. Here we briefly recall the two approaches, in order to
introduce the subtle difference between interfacial tension and surface free energy.

According to Shuttleworth [4], the mechanical description of surface tension dates back
to 1629, when Cabeo first introduced it [5]. It can be simply understood by considering a
water and soap film suspended between two walls of a frame. If one of the walls can move,
an external force is necessary to maintain it fixed, since the soap film has the tendency to
reduce its area, pulling on the wall itself. In this framework, the surface tension of the film
is simply given by the force ~F per unit length which is required to maintain the frame wall
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Figure 1.2: Scheme of a soap film suspended in a frame, whose right wall can slide. A force
~F is required to maintain the wall fixed, balancing the one applied by the film.

in its position:

Γ =

∣∣∣~F
∣∣∣
l
, (1.1)

where l is the length of the wall (Fig. 1.2). The film behaves indeed as if it was an elastic
membrane under the action of a tension, the surface tension. The same happens for the
interface between two immiscible liquids, which, due to the different molecular interactions
between molecules of the two species, opposes deformations. From a thermodynamic per-
spective, one could think to describe this phenomenon by considering that an energy is
associated to the interface, and define the interfacial tension as the free energy per unit
area. This last assumption would be correct for simple immiscible liquids and for the soap
film if the motion of the wall is much slower than the time needed for soap molecules to
diffuse to the surface, but it is not correct in general. Indeed, following Shuttleworth [4],
it is worth stressing that interfacial tension and interfacial energy are in general different.
As we will detail it in Sec. 6.2, the difference between the two quantities can be immedi-
ately understood for the case of crystals. In particular, the surface free energy Fs is the
work per unit area required to create an interface in a state of mechanical equilibrium,
such as in cleaving a crystal. On the contrary, following the mechanical definition of Eq.
1.1, interfacial tension is the tangential stress per unit area needed to deform the surface
(or to prevent retraction, such as for the soap film of Fig. 1.2). If we imagine stretching
the surface of a crystal, the interatomic distance will change, introducing a dependence
of the surface energy on the deformation state of the material. Taking into account this
dependence, the relation between surface tension and surface free energy is given by [4]:

Γ = Fs +A

(
∂Fs
∂A

)
. (1.2)

Equation 1.2 will be important in Chapter 4 and in Sec. 6.2, and it highlights that even in
the equilibrium case care is needed to properly define interfacial tension.
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1.2 Non-equilibrium Effective Interfacial Tension: state of
the art

Korteweg postulated the existence of an effective interfacial tension between miscible fluids
from a mechanical perspective [1], but one can recast his conclusions in thermodynamic
terms following Cahn and Hilliard [6]. Given the non-equilibrium character of miscible
interfaces, standard equilibrium thermodynamics cannot be applied. Nevertheless, one can
assume local equilibrium and expand the free energy F of the system in powers of the
concentration gradient ∇ϕ, with ϕ the spatial-dependent concentration of one of the two
fluids:

F =

∫

V
f(ϕ,∇ϕ)dv =

∫

V
{f0(ϕ) +

1

2
k(ϕ)(∇ϕ)2 +O[(∇ϕ)4]}dv . (1.3)

Note that here F is the total free energy of the system, f0(ϕ) is the free energy per unit
volume of a homogeneous mixture with concentration ϕ, and V the volume of the system.
k is the Korteweg parameter, which can in principle depend on the concentration. It is
worth noting that the expansion cannot contain odd power terms, since the latter would
change sign upon inversion of the coordinate system. The effective interfacial tension Γe is
then defined as

Γe =
∂F

∂A
. (1.4)

We will discuss in Sec. 6.2 the consequence of a possible dependence of the surface-specific
free energy on the surface area itself. The simple case of a flat interface in the xy plane
yields [6]:

Γe =

∫ + δ
2

− δ
2

k(ϕ)(∇ϕ)2dz , (1.5)

where δ is the interface thickness; the factor 1
2 in Eq. 1.3 disappears taking into account

the contribution of f0(ϕ) [6]. When the concentration gradient is small enough to be
approximated by a linear function across the interface, and neglecting the dependence of k
on ϕ, Eq. 1.5 can be written as

Γe = k
(∆ϕ)2

δ
. (1.6)

Here ∆ϕ = ϕ1 − ϕ2 is the concentration difference between the two bulk fluids. Clearly,
the EIT decreases over time and becomes negligible as diffusion smears out the interface.
Nevertheless, it can be important at short times and for slowly diffusing systems, such as
in the case of polymers or complex fluids [7].

In recent years experimental and theoretical effort has been devoted to the study of
Korteweg stresses [7–15]. On the experimental side, the most recent works leverage on
the analysis of the shape of threads and drops [10–12], on light scattering experiments
characterizing capillary waves [13, 14], and on hydrodynamic instabilities [7, 15]. All these
experimental techniques have been applied to a variety of systems, notably miscible fluids
both close and far from a critical point, and complex fluids. Despite this effort, there is no
general consensus on capillary phenomena in the miscible case, as we shall detail below.
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Figure 1.3: Scattered intensity as a function of the scattering vector, measured over time
after a critical mixture of aniline and cyclohexane was brought in the coexistence region.
Adapted from Ref. [16].

Among the works on Korteweg stresses, many of the most important ones investigated
the case of near-critical mixtures. The reason for this is that such mixtures offer a simple
way to form a well-defined interface between the two phases when brought to the two-phase
region of their phase diagram. The two well-separated phases can subsequently be made
miscible by means of a sudden change in temperature. This is a way to attain miscibility,
but still finely controlling the initial state of the system. Cicuta and coworkers [13] used
this approach in a paramount work investigating the EIT between near-critical mixtures. In
particular, they measured by means of light scattering the non-equilibrium fluctuations at
the interface between the two phases of a near-critical aniline-cyclohexane mixture. They
considered separately the contributions to the small-angle scattered intensity coming from
the interfacial (i.e. capillary waves) and bulk fluctuations. These two contributions can
indeed be resolved, since they give rise to two different dependencies of the intensity on the
scattering vector q (I ∼ q−2 and I ∼ q−4, respectively). Remarkably, the authors observed
that shortly after the mixture was brought in the coexistence region the scattered intensity
was still dominated by the interfacial contribution, which faded with time as diffusion
smeared out the interface. Figure 1.3 reports the time evolution of the scattered intensity
as a function of q, shortly after the system was brought in the coexistence region: over
time, the intensity signal evolves from a q−2 to a q−4-dependence, demonstrating that at
short time capillary waves are present at the interface.

A different set of measurements on near-critical mixtures were performed by Pojman
and coworkers by means of Spinning Drop Tensiometry (SDT) [10]. As we will detail in
Sec. 2.1, a spinning drop tensiometer consists in a glass capillary filled with liquid, which
is set in rotation after the injection of a drop of a second, less dense liquid. Inspecting the
shape of the drop at a given angular velocity allows for measuring the interfacial tension
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Figure 1.4: Retraction of an IBA-rich drop spinning in a miscible IBA-poor background
upon reduction of the rotational speed. Adapted from Ref. [16].

between the two fluids. This technique has gained popularity in recent years [10, 17, 18]
due to its ease of use and because it is suitable to measure particularly low values of the
interfacial tensions (10−3 - 10−2 mN/m [19,20]). Pojman and coworkers [10] exploited SDT
to perform a series of very accurate experiments on the EIT between the two miscible phases
of a near-critical water/isobutyric acid (IBA) mixture. One of the main results of their work
is the fact that the spinning drop retracted upon reduction of the rotational speed of the
capillary, as shown in Fig. 1.4. This is a clear demonstration that a positive EIT existed
between the two phases. Furthermore, the analysis of the drop shape allowed for measuring
a value of 0.03 ± 0.02 mN/m, with the large uncertainty on the EIT coming from the one
on the imposed temperature jump. Despite the difficulty in extracting a precise value for
the tension between the two fluids, the drop retraction showed in this work is a remarkable
evidence for the presence of an EIT. Together with the work by Cicuta et al. [13], the work
by the group of Pojman [10] showed the existence of an EIT for near-critical mixtures. On
the other hand, the topic is less settled for the case of miscible fluids far from a critical
point, such as water and ethanol or glycerol.

The better understood case of non-critical, miscible liquids is that of complex fluids,
such as colloidal suspensions in contact with their solvent, or polymer suspensions. A thor-
ough investigation of the EIT in such a case was provided by Truzzolillo and coworkers [7],
who exploited hydrodynamic instabilities to characterize capillary phenomena at miscible
interfaces. In particular, they investigated the development of the Saffman-Taylor instabil-
ity at miscible interfaces. This “viscous fingering” instability arises when a less dense fluid
is injected in a more dense one. This is often achieved with a radial geometry in a Hele-Shaw
cell. In such experiments, the more viscous fluid is contained between two close plates, and
the less viscous one in injected from a small orifice, and expands radially. Interestingly, the
interface between the two fluids can become unstable and develop a finger-like pattern, with
the number of fingers depending on the viscosities of the two fluids, on the injection rate
and on the interfacial tension. Figure 1.5a shows an example of such an unstable pattern.
The analysis of the fingering pattern allowed for measuring the effective interfacial tension
between miscible complex fluids, namely colloidal suspensions displaced by their own sol-
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(a) (b)

Figure 1.5: (a) Image of the Saffman-Taylor instability in a radial geometry. Adapted from
Ref. [21]. (b) Effective interfacial tension between water and glycerol, and DA-PDA (empty
symbols), measured with spinning drop tensiometry, between colloidal suspensions and their
solvent (full symbols) and for solutions of linear polymers (semifilled symbols), measured
from viscous fingering experiments. Solid lines are power-law fits with an exponent 2 for
the case of polymer solutions, and fits of the refined model presented in [7] in all other
cases. Adapted from Ref. [7].
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vent and solutions of linear polymers [7]. Furthermore, by varying the concentration of the
colloidal particles and polymer in the samples, the authors investigated the dependence of
Korteweg stresses on the concentration ϕ. Their results are reported in Fig. 1.5b, where
the authors show that the EIT increases with ϕ2 in the case of solutions of linear polymers,
in agreement with Eq. 1.6, where Γe depends linearly on (∆ϕ)2. On the contrary, colloidal
suspensions in contact with their solvent do not show the same dependence, and additional
terms are needed in Eq. 1.5 to account for the concentration dependence.

Regardless of the exact dependence of the EIT on ϕ, the work by Truzzolillo and
coworkers provides clear evidence of the existence of Korteweg stresses in complex fluids.
It is worth stressing that for such a system diffusion can be extremely slow, depending on
the properties of the colloidal particles ans polymer suspensions. Hence, Korteweg stresses
remain important for several seconds after the two fluids are brought into contact, before
diffusion smears out the interface. On the other hand, for simple miscible fluids Korteweg
stresses are expected to decay much faster, making their experimental characterisation
much more complicated. As a consequence, for simple miscible liquids the value and the
very existence of the EIT is still debated, and no general consensus has been reached.

The analysis of hydrodynamic instabilities such as the Saffman-Taylor one would in
principle provide an interesting tool to investigate simple fluids, since the instability of-
ten develops milliseconds after the liquids are brought into contact. Indeed, the study of
hydrodynamic instabilities has gained importance in recent years as a tool to investigate
fluid-fluid interfaces and the interfacial tension in particular. Stability analysis constitutes
a fundamental and general problem of fluid mechanics, but since interfacial tension plays
a big role in determining stability, it has become an established way to indirectly charac-
terize interfacial phenomena. Maybe the clearest example of the intimate relation between
interfacial tension and stability is the Rayleigh-Plateau instability [22, 23]. In Rayleigh-
Plateau instability, interfacial tension causes a fluid jet to break in smaller droplets in
order to reduce its surface area and the associated free energy cost. Such a phenomenon
can be observed in a variety of practical examples, from ink jet printing to the dripping
of water from a faucet. In other cases, interfacial tension can contribute to stabilizing the
interface, such as in the Faraday instability, in which two stratified fluid layers are subject
to an oscillatory forcing and can develop ripples at their interface [24, 25]. Regardless of
the particular character of capillary phenomena in the instability under consideration, it
is clear that the importance of surface stresses on stability makes this an interesting way
to investigate interfacial tension in the first place. Furthermore, when the two fluid layers
are miscible, the study of hydrodynamic instabilities offers the possibility to set the degree
of mixing: in the case of parallel coflow of two fluids in a channel, for instance, the degree
of mixing depends on the distance travelled downstream. By observing the stability of
such an interface always at the same position, one can rule out the time dependency of the
interface due to diffusion.

Despite the promising aspects of the study of hydrodynamic instabilities for simple fluids
interfaces, Paterson [26] and more recently Bischofberger and coworkers [27] investigated the
EIT between water and glycerol by means of viscous fingering, but could not measure any
effect of Korteweg stresses, asserting that the instability pattern was dominated by viscous
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dissipation. Remarkably, spinning drop tensiometry measurements on the same system
yielded a value of 0.58 mN/m [28]. However, the latter experiments suffer from different
flaws which we will try to elucidate later [11]. This example shows that literature data on
such simple miscible fluids are conflicting, sometimes even by the same authors [28, 29].
Furthermore, Zoltowski et al. [17] performed a series of SDT experiments on drops of
dodecyl acrilate in poly(dodecyl acrilate), but they could not clearly measure an EIT.
While for complex fluids interfaces can remain sharp over time, in simple miscible liquids
diffusion constitutes a major difficulty in measuring the EIT, which is expected to decay
very rapidly over time. This is the general picture in which our work settles. In this
framework, this thesis intends to shed light on Korteweg stresses between simple miscible
liquids, and propose a new experimental method to characterise the EIT.

There is a further aspect worth discussing before tackling the problem of EIT between
simple miscible liquids. The absence of consensus in the literature on the nature of Korteweg
stresses [27–29] stems mainly from the plethora of different experimental results obtained
with various techniques. Therefore, it is not clear under which conditions the EIT behaves
as an equilibrium interfacial tension, and it becomes crucial to tackle this problem from
different viewpoints. As an example, one still unsettled question is whether or not Korteweg
stresses are present in absence of an imposed deformation of the interface, or only when
the latter is, for instance, stretched. We will try to discuss this problem in Sec. 6.2.
On the experimental side, exploiting different techniques is of fundamental importance for
understanding the intimate nature of Korteweg stresses. Therefore, in this work we will
study Korteweg stresses from two different perspectives. In particular, we will try to reduce
the confusion on the subject by proposing a new method to measure extremely low values
of interfacial tension using a spinning drop tensiometer, and will introduce the study of the
stability in miscible viscosity-stratified coflow as a second, independent tool to tackle the
problem.

1.3 Outline of the thesis

The two main parts of this thesis reflect the two approaches chosen to study the EIT. Since
for simple miscible fluids diffusion represents a major problem when performing static
experiments, we first characterize the possibility of carrying out dynamical measurements
in a spinning drop tensiometer. In particular, instead of looking at the equilibrium shapes
of drops at a given rotational frequency, we measure their elongation dynamics after a
sudden jump in angular velocity. The dynamics of drops spinning in both miscible and
immiscible backgrounds are presented in Chapter 2 and in [11]. Remarkably, drops spinning
in a miscible background do not always maintain an ellipsoidal shape, and for sufficiently
low interfacial tension they develop a so-called “dumbbell” shape, with two large heads
connected by a thinner central body. In Chapter 3 we exploit the time evolution of such
shapes to measure ultra-low values of interfacial tensions in SDT experiments. In particular,
we analyze the prototypical case of water and glycerol, solving the controversy arising from
conflicting literature values for the EIT in this system [30]. To conclude our spinning
drop tensiometry analysis, in Chapter 4 we demonstrate that SDT can have a much wider
application range than liquid drops, and that it can be used to measure simultaneously the
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interfacial tension and the elastic modulus of soft elastic beads. In particular, we discuss
the difference between interfacial tension and surface free energy for the case of amorphous
materials, namely polyacrylamide beads in contact with fluorinated oil [31].

As already stated, the lack of understanding of Korteweg stresses requires different
experimental techniques to be employed. In Chapter 5 we discuss from a theoretical and
experimental point of view the stability of parallel channel coflow in a microfluidic device,
which can be used to study the EIT from a different perspective.

Finally, Chapter 6 collects some general conclusions and perspectives of this work, no-
tably discussing the importance of an imposed deformation of the interface on the presence
of Korteweg stresses, and the conditions under which the latter behave alike an equilibrium
interfacial tension. On the experimental side, one possibility to investigate the effect of the
EIT in absence of imposed deformation would be to perform drop retraction experiments
in SDT, where the rotation of the capillary is suddenly arrested. However, such an experi-
ment cannot be performed on Earth due to buoyancy, which would quickly bring the drop
out of the axis of the SDT capillary after the rotation is stopped, hampering the measure-
ment of the drop dynamics. Therefore, in Sec. 6.2 we discuss a series of experiments to
be performed in microgravity conditions during the parabolic flight campaign organized by
CNES (Centre Nationale d’Études Spatiales) at the end of September 2020, to investigate
the intimate nature of Korteweg stresses.



Part I

Spinning Drop Tensiometry
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Chapter 2

Spinning drops dynamics in
miscible and immiscible
environments

Liquid droplets represent a model system to study phenomena whose relevant
length scales range from laboratory to geophysical ones. Nevertheless, their dy-
namics under different conditions are not always well established, especially
when the interfacial tension Γ can be neglected. In the present chapter, we
present our results on the elongation dynamics of spinning drops which are sub-
ject to a centripetal forcing, both in presence and absence of Γ , recently published
in [11].

2.1 Spinning drop tensiometry

Over the years, several experimental techniques were developed to measure interfacial ten-
sion. Some examples are the Wilhelmy plate technique [32], the Langmuir trough [33],
and the analysis of the shape of pendant [34] and sessile drops [35]. All these techniques
differ for their sensitivity, presence or absence of an imposed external field, and relevance to
specific systems, such as liquid-vapour, liquid-solid or liquid-liquid interfaces. In particular
for the investigation of the latter, one specific technique which allows measuring very low
values of Γ (10−3 - 10−2 mN/m [19, 20]) through a fine control of the forcing imposed on
the interface is spinning drop tensiometry (SDT). This is a technique which was initially
conceived by Vonnegut [36] to measure interfacial tension between immiscible fluids, and
was later developed by Princen et al. [37], Torza et al. [38], and Joseph et al. [39]. In an
SDT experiment, a drop of a given fluid is injected in a denser background fluid in a cylin-
drical capillary. When the capillary is set in rotation, the drop elongates on the axis of the
capillary due to the centripetal forcing, and the observation of its shape allows measuring
the interfacial tension between the background and the drop fluid.

Two types of experiments are possible with an SDT apparatus. The first and most
commonly used one leverages the original idea by Vonnegut, and implies measuring the

17
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equilibrium shape that the drop attains at a given rotational speed, when spinning in an
immiscible background. In such case, the equilibrium shape of the drop is simply dictated by
a balance of the centripetal forcing and surface tension: in order to obtain the equilibrium
shape of the drop, it is sufficient to compute the total energy of the drop and minimize it.
When the drop is sufficiently elongated, it can be approximately described as a cylinder of
radius r and length l, with hemispherical endcaps (Fig. 2.1). The surface contribution to

Figure 2.1: Scheme of the principle of spinning drop tensiometry: when the capillary is
spun, the drop elongates on the rotation axis.

the energy of the drop is then

Es = Γ(2πrl + 4πr2) , (2.1)

where Γ is the interfacial tension between the drop and the background fluid. By contrast,
the energy of the drop associated to rotation can be obtained by integrating over the drop

volume the pressure difference p = ∆ρω2y2

2 between the drop and the external fluid:

Er =

∫

V
pdv =

∆ρω2

2

∫ r

0
y2
[
2πly + 4πy

√
r2 − y2

]
dy , (2.2)

where ∆ρ = ρe−ρd is the density difference between the external background fluid and the
drop fluid and ω is the rotational speed. By differentiating the total energy E = Es + Er
with respect to r, one obtains for the interfacial tension:

Γ =
∆ρω2r3

4

(
1 +

2r

3l

)
. (2.3)

Equation 2.3 defines the drop shape at equilibrium, and allows measuring Γ from the known
values of ω, ∆ρ, l and r. In the case l� r, it is sufficient to measure only the drop radius,
and not its length, from the direct visualization of the spinning drop, since Eq. 2.3 becomes:

Γ =
∆ρω2r3

4
. (2.4)

Equation 2.4 is called the Vonnegut equation [36]. Even though one single experiment at
a given rotational speed would be sufficient to measure the interfacial tension, it is more
accurate to measure the equilibrium radius of the drop in a series of experiments at various
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ω in order to extract Γ from the linear fit of r2(ω−3). On the contrary, if the drop is not
sufficiently elongated (l ∼ r), Eq. 2.4 does not hold, and the interfacial tension has to
be inferred from a fit of the curved surface of the drop by means of the Young-Laplace
equation [40].

A second strategy to perform an SDT experiment aiming at measuring Γ involves the
characterization of the drop dymamics after a sudden jump of the imposed centripetal
forcing. This approach is much less explored though it offers one major advantage when
systems with ultralow interfacial tension are concerned: it does not require attaining a
stationary state. For this reason, it is viable even in the case of miscible fluids, for which
the equilibrium state is a homogeneous mixture of the fluids in the capillary. This method
was initially introduced by Patterson et al. [41] and theoretically investigated by Hu and
Joseph [42], and Stone and Bush [43], and is the one that we adopt in [11]. In the case of
drops spinning in an immiscible reservoir, the elongation (or retraction) dynamics follow
an exponential decay as they go towards the equilibrium shape dictated by the value of the
rotational speed after the jump, with a characteristic time given by [43]:

τ =
ηea

Γ
f(λ) . (2.5)

Here ηe is the viscosity of the background fluid, a the radius of the undeformed (e.g. at
rest) drop, λ = ηd/ηe the viscosity contrast, with ηd the viscosity of the drop fluid, and

f(λ) = (3+2λ)(16+19λ)
40(1+λ) . Even though Eq. 2.5 was derived for the limit of small deformations

of nearly-spherical drops, we show in [11] that it captures well the dynamics of more
elongated drops as well.

On the other hand, drops that are miscible with their background and for which surface
tension is negligible elongate indefinitely following a power law dynamics, as we shall show
in [11] for one specific couple of fluids with a low concentration mismatch (namely, a drop
of 5% wt/wt H2O-glycerol mixture spinning in a reservoir of pure glycerol). In particular,
in the case of low viscosity ratios between the drop and background fluids, the elongation
dynamics of drops with negligible interfacial tension follows:

l(t) '
(

∆ρω2V 3/2

ηe

)2/5

t2/5 , (2.6)

where V is the drop volume. No stationary state is reached, and the drops elongate indef-
initely.

2.1.1 Experimental set-up

All SDT experiments have been performed with a Krüss spinning drop tensiometer, as de-
tailed in [11,30], at rates of rotation sufficiently high so that buoyancy could be neglected.
Indeed, when the capillary is not spun sufficiently rapidly, gravity can push the drop out
of the rotation axis, hampering the correct measurement of the drop shape. Currie and
Van Nieuwkoop [44] characterised experimentally the critical rotation speed ωc for which
buoyancy becomes negligible. For the case of a butanol drop spinning in water, they ob-
served SDT measurements to be accurate for angular velocities ω > ωc = 5000 rpm. Currie
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Figure 2.2: Image of the SDT apparatus used for the experiments, with the system of
cylindrical lenses used as an objective assembled in front of the SDT rotation chamber.

and Van Nieuwkoop developed a hydrodynamic model which allowed them rationalizing
the effect of buoyancy [44]. They found that the drop displacement from the rotation axis
can be written as:

d =
2
√

2

3

g

ω2

∆ρ

ρ
, (2.7)

where g is the gravitational acceleration, ρ the density of the background fluid, and ∆ρ the
density difference between the drop and the background fluids. Moreover, d is independent
on the drop volume. For a drop of butanol in water, this leads to a displacement from the
axis of about 5 µm at 5000 rpm. Therefore, in order to set ourselves in the same operating
conditions of Currie and Van Nieuwkoop, to estimate a critical angular velocity ωc when
performing our SDT experiments we calculate the rotation speed that corresponds to a
displacement of d = 5 µm using Eq. 2.7. It is worth noting that the 5 µm threshold is also
lower than the experimental resolution with which we determine the drop radius. For the
case of a drop of pure water spinning in pure glycerol, ωc ' 6000 rpm.

Consequently, all experiments were performed with rates of rotation ranging from
6000 rpm to 15000 rpm, accurate to 1%. Temperature was set to 25.0 ± 0.5◦C using a
temperature-controlled air flow. For low values of interfacial tension, drops in an SDT
experiment become very elongated and slender. Therefore, we use as an objective a system
of two cylindrical lenses sharing the same optical axis to increase the imaging resolution.
As detailed in [11, 30], the lenses expand the field of view in the vertical direction y and
compress it in the horizontal direction x, with magnification My = 0.3 and Mx = 3.36,
respectively. The different vertical and horizontal magnification allows us to follow the
dynamics of very elongated drops, while increasing at the same time the resolution in the
vertical direction, so as to be sensitive to small variations of the drop radius.
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The SDT is equipped with a blue LED for illumination, with a dominant wavelength
of 469 nm, and a CMOS camera for imaging. When the drop and the background fluids
are immiscible, the former is easily visualized thanks to the difference in refractive index
between the two fluids. On the contrary, for miscible drops the refractive index difference is
not sufficient to unambiguously determine the drop boundary. Therefore, when performing
experiments on miscible fluids we dissolved fluorescein in the drop fluid, at a concentration
of 0.2 % wt/wt. Fluorescein strongly absorbs at the wavelength of the illuminating blue
LED, thus allowing one to clearly visualize the dyed drops. For each experiment on miscible
fluids, the drop was injected in the capillary, pre-filled with the background fluid, with a
1 µL syringe. Care was taken to avoid the presence of a tail of fluoresceinated drop fluid
when the needle was extracted, by slightly pulling the syringe piston while removing the
syringe to prevent the injection of additional fluid. The time between the drop injection and
the beginning of rotation was about 10 - 15 s. By contrast, for experiments on immiscible
fluids (silicone oil drops spinning in glycerol), the viscosity of the drop fluid was too high
to allow injection. Consequently, a drop of silicone oil was directly deposited in the the
capillary. The tensiometer capillary is closed on the two sides by a moving piston and a
cap, respectively. In order to introduce silicone oil drops, we dipped the piston in silicone
oil before inserting it in the capillary, which was then filled with glycerol. Subsequently, an
isolated drop was obtained either exploiting viscous pinch off by slightly moving the piston
with the capillary still open on the other side, or via Rayleigh-Plateau instability once the
capillary was closed with the cap and spun in the tensiometer. After each experiment,
both for miscible and immiscible fluids, the capillary was flushed and the background fluid
replaced.

The possibility to clearly observe both miscible and immiscible drops and to follow their
elongation dynamics up to very large aspect ratios allowed us to experimentally verify Eqs.
(2.5-2.6). In particular, Eq. 2.5 was derived under the assumption of small deformations,
but it proved to remain applicable over a much wider parameter range. On the contrary,
when the interfacial tension between the drop and background fluids is negligible, no sta-
tionary state is attained. A more detailed discussion is presented in [11].
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ABSTRACT: We report on the extensional dynamics of spinning drops
in miscible and immiscible background fluids following a rotational
speed jump. Two radically different behaviors are observed. Drops in
immiscible environments relax exponentially to their equilibrium shape,
with a relaxation time that does not depend on the centrifugal force. We
find an excellent quantitative agreement with the relaxation time
predicted for quasi-spherical drops by Stone and Bush (Q. Appl. Math.
1996, 54, 551), while other models proposed in the literature fail to
capture our data. By contrast, drops immersed in a miscible background
fluid do not relax to a steady shape: they elongate indefinitely, their
length following a power-law ∼l t t( ) 2/5 in very good agreement with
the dynamics predicted by Lister and Stone (J. Fluid Mech. 1996, 317, 275) for inviscid drops. Our results strongly suggest that
low compositional gradients in miscible fluids do not give rise to an effective interfacial tension measurable by spinning drop
tensiometry.

■ INTRODUCTION
Over the last century, liquid droplets have attracted the
attention of physicists,1 since they are fairly simple to study
and control under different conditions, and because they
represent a model system to understand the physics of
phenomena occurring on different scales, ranging from
laboratory2,3 to astrophysical ones.4 A droplet, for example,
can spread out or ball up and spin depending on the
interaction with the surface it lies on,5 and its shape can be
drastically modified by external fields6 or when it is set in
motion.7,8 In particular, rotating droplets are among the most
studied cases of liquids deformed by an external field as they
are relevant in many situations: rotation plays a pivotal role on
the structure and evolution of large-scale flows taking place in
oceans, the atmosphere, and in the very body of planets and
stars.4,9

Freely suspended droplets rotating at high speed tend to
deform due to centrifugal forcing. Droplets change shape
following a minimum energy principle, taking the lowest
energy state for a given rotational frequency. This results in a
series of nontrivial equilibrium shapes, strongly affected by
surface tension.3,10 The equilibrium shape of a weightless
spinning droplet under the action of capillary forces was first
discussed by Lord Rayleigh (1914).1 He found a solution in
which the bubble is a surface of revolution which meets the
axis of rotation. If the angular speed is zero, then the bubble
has a spherical form, while under the influence of rotation the
sphere elongates along the rotation axis, and the oblateness
increases upon increasing the angular velocity. However, more
complicated shapes are obtained above a critical velocity that
depends on interfacial tension and drop size, as shown by Hill
et al.3 for magnetically levitated water droplets. Magnetic
levitation is indeed one appealing way to isolate and suspend

single drops, however it is experimentally challenging,
requiring the use of strong magnetic fields, especially for
molecular fluids that display weak diamagnetic properties.
An alternative experimental configuration is that of a drop of

liquid immersed in a denser background fluid, both confined in
a horizontal cylindrical capillary. When the capillary is set in
rotation, centrifugal forces confine the drop on the axis,
avoiding any contact with the capillary wall. Furthermore, the
shape of the drop is dictated by the balance between the
centrifugal force and interfacial tension, allowing the latter to
be measured. This is the principle of spinning drop
tensiometry, originally introduced by Vonnegut11 to measure
interfacial tensions between immiscible fluids and further
developed by Princen et al.,12 Torza,13 and Cayias et al.14

Thanks to their work, spinning drop tensiometry (SDT) has
become a versatile method, particularly well suited for
measuring ultralow interfacial tensions (down to 10 μN/m).
Such low tensions can occur, for example, in water−
hydrocarbon−surfactant systems and are of considerable
scientific interest as well as of great importance for industrial
applications.
While the majority of works on spinning drops tensiometry

focused on the equilibrium shape of the drops, several authors
have characterized their relaxation after a jump in rotational
speed, when suspended in an immiscible environment.15−19

However, a general consensus on the mechanisms driving drop
relaxation is still missing and different models have been
proposed to capture the experimental behavior of Newtonian
drops for both small and large deformations.17−20 On the
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experimental side, Joseph et al.17 performed relaxation tests
using polydimethylsiloxane (η = 105 mPa s) drops in glycerol, a
system similar to that investigated in the present work, using a
spinning drop tensiometer described in ref 21 at only one
angular speed (ω = 3208 rpm). They found that the drop
relaxes exponentially to its equilibrium shape. The same
authors17 reported a similar exponential relaxation for drops of
polystyrene in poly(methyl methacrylate) (PMMA), drops of
standard oil in water−glycerol mixtures16 and drops of low-
density polyethylene in PMMA.22 In all cases, the value of the
relaxation constant departed from that predicted theoretically
by the same authors for largely deformed drops (see below eq
3). To summarize, several experiments suggest that largely
deformed spinning drops in immiscible fluids relax exponen-
tially toward an equilibrium shape after a jump of centrifugal
forcing. However, a quantitative description of the relaxation
time and a clear understanding of the relevant parameters that
determine its value are still missing.
Research on drops in a miscible background fluid is less

advanced. A full experimental characterization of drops
showing pure extensional dynamics is missing: indeed, in
most cases miscible drops also undergo a radial deformation
due to secondary flows that set in a spinning capillary,23 and
this greatly complicates both measurements and modeling. P.
Petitjeans24 was the first to study fluids miscible in all
proportions with SDT. In a series of measurements involving
drops of water immersed in water−glycerol mixtures, he
observed the stabilization of the drop radius after about 100 s
for mixtures containing more than 40% glycerin mass fraction.
By measuring the drop radius and using Vonnegut’s formula
(see below), he inferred the effective (transient) interfacial
tension between the fluids. Similar measurements were
performed by J. Pojman and co-workers,25−28 who investigated
the existence of an effective interfacial tension (EIT) between
miscible fluids and discussed its importance, using (i) mixtures
of Isobutyric acid and water close to their critical point and (ii)
dodecyl acrylate drops in poly(dodecyl acrylate). They
concluded that capillary forces are at work at the boundary
between these fluids and quantified the EIT, again using
Vonnegut’s theory.
An important assumption in refs 24 and 26 is the fact that

the drop reaches a quasi-equilibrium state or at least a steady
state under rotation. Unfortunately, in these works the
temporal evolution of the drop length is not reported:
monitoring it would allow one to unambiguously ascertain
the existence of such a steady state. Moreover, Pojman and co-
workers observed the formation of dog-bone-shaped drops,26

suggesting that secondary viscous flows may perturb the
system. Such effect has been first pointed out by Manning et
al.,23 who discussed the role of secondary viscous flows in
spinning drop tensiometry, underlining that they may lead to
significant deviations with respect to the ideal case of
Vonnegut’s theory even for immiscible fluids, provided that
the interfacial tensions is sufficiently low, Γ ≲ 10 μN/m.
In this work, we circumvent these difficulties and system-

atically investigate the temporal evolution of the drop length in
SDT experiments that probe both immiscible and miscible
systems, aiming in particular at detecting the existence of
transient capillary forces at the interface between miscible
fluids. Using a custom imaging setup, we follow the evolution
of very elongated drops, assessing unambiguously whether or
not a stationary state is reached. By focusing on the drop
length, we furthermore avoid the complications inherent to the

measurement of the drop radius, stemming from the curvature
of the cylindrical capillary-air dioptre. Moreover, tracking the
drop length of dyed viscous drops in miscible fluids, as those
employed in this work, allows neglecting possible mismatches
between the measured dye profiles and the concentration
profiles of the drop fluid, arising from the difference in
diffusivity between dye and fluid molecules. Indeed, the drop
length evolves much faster than the width of the concentration
gradient at the drop boundary, such that the measurement of
the drop length is very precise. We compare the results of our
experiments to existing theories for the stretching behavior of
drops, for both the immiscible and miscible cases. We find that
immiscible drops relax to their equilibrium shape exponen-
tially, with a characteristic relaxation time τ independent of
both the magnitude of the jump in ω and the equilibrium
length of the drop. Our experiments therefore support the
notion that for a given pair of fluids τ is an intrinsic property of
the system, in excellent agreement with the prediction for small
deformations of quasi-spherical drops by Stone and Bush.20

The scenario for miscible fluids is strikingly different. We find
that the drop shape never reaches a stationary state. Instead,
for drops with a low concentration gradient with respect to the
background fluid, the drop length increases indefinitely
following asymptotically a power law: ∼l t t( ) 2/5. The drop
retains a cylindrical shape with spherical end-caps, indicating
that in the experiments reported here radial deformations due
to secondary flows are absent or negligible. The elongation
behavior of our miscible drops is very well captured by a model
originally proposed by Lister and Stone29 for immiscible fluids,
in the limit of vanishing surface tension and vanishing viscosity
of the drop fluid (“bubble-like” dynamics).
The rest of the work is organized as follows. We briefly recall

the theoretical background and the existent predictions for the
elongational dynamics of spinning drops. We then present the
materials employed and the experimental setup. Next, we
discuss the results on the elongational dynamics for drops in an
immiscible and miscible background fluid. In the last section,
we make some concluding remarks and summarize the key
results of this work.

Theoretical Background. Spinning drop tensiometry
assumes the gyrostatic equilibrium of the drop, i.e., a state of
uniform rotation in which every fluid element in a spinning
rigid container is at rest with respect to the container wall.
Consider a small drop of fluid A placed in a more dense fluid B
contained in a cylindrical capillary. When the capillary is spun
around its axis, the drop elongates axially and takes an
ellipsoidal shape. At gyrostatic equilibrium, the normal
component of the interfacial tension balances the hydrostatic
pressure difference across the interface. If the drop length l
(measured along the direction of the capillary axis) exceeds
four times its equatorial diameter 2r (measured perpendicu-
larly to the capillary axis), then the magnitude Γ of the
interfacial tension can be calculated very simply from the drop
radius r, the density difference Δρ = ρB − ρA, and the angular
velocity ω, via the well-known expression,

ρωΓ = Δ r
4

2 3

(1)

first derived by Vonnegut.11 Note that other methods of
determining the interfacial tension based on the shape of a
drop require a measurement of the two- or even three-
dimensional profile of the drop and involve complicated
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calculations, e.g., in the pendant drop method.30 By contrast,
the simplicity of Vonnegut’s expression is one of the main
advantages of the spinning-drop method.
Equation 1 holds at equilibrium, once a steady state has been

reached. The time evolution of the drop upon a step change of
ω has also been investigated. Theoretical models17,19,20 and
experiments,15,16,18 both for immiscible fluids, suggest that
drops relax exponentially toward their equilibrium state.
Nevertheless, models developed for nearly spherical20 or very
elongated19 drops predict qualitatively different expressions for
the typical relaxation time τ. Stone and Bush20 derived an exact
solution for the fluid motion and time-dependent drop shape,
provided that the following conditions are fulfilled: the drop
remains nearly spherical, wall effects can be neglected, and
fluid flows both inside and outside the drop are dominated by
viscous effects. The last assumption allows the drop dynamics
to be described in terms of centrifugally forced Stokes flows. In
this case, the relaxation time after a rotation speed jump Δω =
|ωf − ωi| of a drop with viscosity ηd immersed in a surrounding
liquid with viscosity ηe reads:

τ
η

λ=
Γ

a
f ( )e

(2)

where a is the radius of the drop at rest, λ = ηd/ηe the viscosity

contrast, and λ = λ λ
λ

+ +
+f ( ) (3 2 )(16 19 )

40(1 )
a dimensionless prefactor.

The relaxation time described by eq 2 turns out to be identical
to that obtained for drops in an extensional flow.20,31

Interestingly, according to eq 2, τ does not depend neither
on the angular speed ω nor on its change Δω.
The theory of ref 20 is limited to nearly spherical shapes. Hu

and Joseph have investigated the opposite limit of very
elongated drops,19 proposing a semiempirical expression to fit
the results of numerical simulations and experiments. The
relaxation time may be cast in the following form:

τ
η

λ=
Γ
r

f l r R( , , , )d eq
J eq eq c (3)

where f J(λ, leq, req, Rc) is a function of the viscosity contrast,
the inner radius of the cylindrical container, Rc, and the radius,
req, and length, leq, of the drop once equilibrium is reached at
the final rotation speed ωf. This expression was derived for
elongated drops, contrary to the theory of ref 20. However,
both theories deal with the case where the change of the drop
shape results from a small speed jump. Equation 3 is
qualitatively different from eq 2, since it predicts a dependence
of τ on the equilibrium shape of the drop via req and leq, and
hence on ωf. Hu and Joseph noticed that their theoretical
expression for τ typically underestimates the time observed in
experiments.17,19 They argued that the detailed form of the
flow around the end-caps of the drop may slow down its
relaxation and account for this discrepancy.
So far, we briefly reviewed the theoretical background for the

case of immiscible fluids displaying a non-negligible surface
tension, for which spinning drop tensiometry was originally
conceived. However, SDT has been also used, albeit much less
frequently, to investigate the drop shape in miscible environ-
ments, aiming at measuring capillary forces between miscible
fluids.24−26 Unfortunately, there is no theoretical prediction
available so far for this case. Capillary phenomena are expected
to be weak, if not negligible, in miscible fluids. It is therefore
interesting to briefly recall available results on the behavior of
immiscible drops in the limit of vanishing interfacial tension.

We focus mostly on the “bubble” limit, i.e., for the vanishing
viscosity ratio λ between the drop and the surrounding fluid,
and for intermediate ratios, as these cases will turn out to be of
interest in our experiments.
In the cases of vanishing or intermediate viscosity ratios,

Lister and Stone29 have obtained asymptotic scaling laws for
spinning drops in an unbounded geometry. The drops are
assumed to be long and slender, with (time-dependent)
equatorial radius a0 much smaller than the length l. At all
times, the interface between the two fluids is supposed to be
infinitely sharp and stable, and the surface tension is supposed
to be negligible. The rate of elongation and thinning is
estimated by imposing a balance between the centrifugal
pressure ρωΔ a1

2
2

0
2 times the area πa( )0

2 over which it acts,

and the dominant resisting viscous stress times the area over
which it acts. The viscous stress is found to depend on both
the viscosity ratio λ and the aspect ratio l/2a0. We anticipate
here that for the drop-background fluid system that we will
consider hereafter, namely a drop containing 5 wt % H2O and
95 wt % glycerol suspended in pure glycerol, λ = 0.537 and 1 ≲
l/2a0 ≲ 50.
As it will turn out to be relevant for our drops, we first

discuss the low viscosity ratio limit (λ ≪ 2a0/l≪ 1), for which
the motion of the internal fluid as the drop extends generates
less viscous dissipation than the deformation of the external
fluid. Because of the centrifugal pressure, the shape of very
elongated drops is expected to be close to that of a cylinder
with domed end-caps. For small λ, the primary resistance to
deformation is due to the displacement of the background fluid
as the drop elongates. A force balance in the neighborhood of
the end-cap, which has radius a( )0 , surface area πa(2 )0

2 and

m o v e s a t v e l o c i t y =U dl dt/1
2

, y i e l d s

π η ρω π≃ Δa U a a a2 /0
2

e 0
1
2

2
0
2

0
2. Using volume conservation in

the approximate form V ≃ 2πa0
2l and estimating the velocity as

U ≃ l/2t yields the time-dependent length,

i

k
jjjjj

y

{
zzzzz

ρω
η

≃ Δ
l t

V
t( )

2 3/2

e

2/5
2/5

(4)

where for clarity we have dropped multiplicative numerical
constants.
For more viscous drops, the shear stresses generated by the

motion of the internal fluid along the rotation axis toward the
drop ends become relevant and along the (half) length of the
drop a pressure gradient Δρω2a0

2/l is established. The shear
within the drop occurs on a length scale a( )0 , whereas the
external shear occurs on a somewhat larger scale

a l a( ln( / ))0 0 , as shown in refs 32,33 by analyzing the axial
motion of a slender body with radius a0 and length l. The
relative magnitudes of λ and 1/ln(l/2a0) controls which shear
term contributes most. For the case λ ≪ 1/ln(l/2a0), the
internal shear is dominant and is η U a( / )d 0 , while the total
resistance along the whole drop length is π ηl U( )d . The rate
of extension is then,29

i

k
jjjjj

y

{
zzzzz

ρω
η

≃ Δ
l t

V
t( )

2 2

d

1/4
1/4

(5)

In the opposite case, λ ≫ 1/ln(l/2a0), similar estimates lead
to the following:29
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≃ Δ
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l t
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2 2

e

1/4 1/4

(6)

where t ̅ = ηe/(Δρω2V2/3) and the factor ln(t/t)̅ arises from a
leading-order expansion of ln(l/2a0), which is assumed much
larger than 1. It is worth noting that for our drops with 5 wt %
H2O and 95 wt % glycerol in a bath of pure glycerol one has t ̅
= 0.032 s and the logarithmic correction is negligible on the
typical experimental time scale.
For a larger viscosity ratio, λ ≫ (l/2a0)

2/ln(l/2a0) ≫ 1,
extended drops resist deformation under the centrifugal
pressure primarily owing to the internal gradient of the axial
velocity. The deformation is analogous to the stretching of a
piece of toffee.29 This case is not relevant to our experiments
and will not be discussed further.

■ EXPERIMENTAL SECTION
Materials. Glycerol (≥99.5 wt %) was purchased from Sigma-

Aldrich and used without further purification. Silicone Oil (SO) has
been purchased from Brookfield Ametek and used as-received. Milli-Q
ultra pure water has been employed to prepare the water−glycerol
mixtures. Densities ρ and zero-shear viscosities η at T = 25 ◦C of these
liquids are reported in Table 1. Fluorescein (disodium salt) (from
Merck KGaA) was dissolved in all water/glycerol drops (at a
concentration of 2 × 10−3 wt/wt), for which pure glycerol was the
background fluid.

Experimental Setup. All experiments were performed with a
Krüss spinning drop tensiometer. Rates of rotation were accurate to
1%. The temperature was always set to 25.0 ± 0.5◦C and kept
constant using a flow of temperature-controlled air. Different tests
were performed with rotation rates ranging from 6000 to 15 000 rpm,
such that buoyancy effects were negligible compared to centrifugal
ones: the displacement of the drop off the rotation axis due to
buoyancy was always smaller than 5 μm, as calculated following ref 35.
All drops were illuminated by a blue Light Emitting Diode (LED)
with a dominant emission wavelength of 469 nm. Measurements were
performed using a cylindrical capillary with internal diameter 2Rc =
3.25 mm. A CMOS camera (Phantom Miro 310 by Vision Research)
run at 100 frames per second was used to record movies during the
relaxation of immiscible drops of SO in glycerol. The camera was
equipped with an objective by Nikkor (AF-Micro Lens 60 mm f/2.80,
yielding a magnification M = 1). No dye labeling was used for the
immiscible fluids, since the persistent, sharp contrast of refractive
index between the drop and the surrounding fluid allows the drop
boundary to be clearly visualized and its position to be accurately
tracked in time, with an accuracy of 1 pixel, equivalent to 20 μm. For
the immiscible SO/glycerol systems, the lighter fluid (SO) was

deposited on one cap of the capillary. The capillary was spun at high
speed and ω was then reduced by an amount Δω. This resulted in the
formation of an isolated drop due to the viscous pinch-off mechanism
induced by surface tension.36 Drops of different volume V were
obtained by depositing a larger initial volume of SO in the capillary. In
all cases drops were in full contact with the surrounding fluid once the
capillary was spun. The equilibrium between SO drops and glycerol
was further tested by checking the reversibility of drop shapes
performing a few elongation-retraction cycles.

Imaging the “interface” between two miscible fluids, by contrast, is
more challenging. First of all, the sharp optical contrast characterizing
the boundary between the two fluids when they are initially brought
in contact vanishes in few seconds, due to diffusion that smears out
the concentration gradient. The smearing time is much smaller than
the typical duration of our experiments, which is on the order of
several minutes. Fluorescent labeling was therefore needed to track
the drop elongation. Under the illumination of the blue LED light,
fluorescein-rich drops appear as bright green-yellow regions, since the
fluorescein adsorption and emission spectra (in polar solvents) are
peaked at λ ≈ 485 nm and λ ≈ 511 nm,37,38 respectively. The good
contrast with the dark background allows for a precise measurement
of the position and shape of the miscible drops as a function of time.
In particular, we measure the drop length from the intensity profile on
the drop axis: we define l as the distance between the two apical
points of the drop end-caps where the intensity profile reaches half of
its maximum value.

In order to follow the evolution of very elongated miscible drops,
we have extended the field of view in the direction of the capillary axis
(the x direction in Figure 1). The custom imaging setup designed to

this end is sketched in Figure 1. The setup consists in a set of two
plano-convex cylindrical lenses (Newport CKX17-C) sharing the
same optical axis. The first lens, labeled Y-lens in Figure 1, expands
the image in the vertical direction with magnification My = 3.36, while
the second one (X-lens) contracts it the horizontal direction, with
magnification Mx = 0.3. Both lenses have an effective focal lens of 7.5
mm, and distances p1 = q2 = 9.5 cm and p2 = q1 = 32 cm as indicated
in Figure 1. With this configuration the field of view in the x direction
is 3.25 cm (half of the capillary length) while it is of 3 mm in the y
direction. The setup allows the fluorescein concentration profile to be
measured accurately in the y direction, while retaining a large field of
view in the x direction, as required to follow very elongated drops. A
blue-light filter removes the background light emitted by the source.
In this configuration, a B/W CMOS camera (Toshiba Teli BU406M)
run at a frame rate ⩽90 Hz was used, the image size being 2048 ×
2048 pixels. The magnifications Mx and My were measured by
inserting a calibrated plastic grid into the capillary filled with the
external fluid (glycerol). The lattice spacing was then measured in

Table 1. Mass Density and Viscosity of the Fluids Used in
This Work

liquid ρ (g/cm3) η (mPa s)a

SO 0.971b 91 680
Glycerol (cw ≤ 0.02) 1.260 ± 0.001 800.0 ± 0.1
H2O-Gly (cw = 0.05) 1.250 ± 0.001c 430.8 ± 0.1

aThe viscosity of the water−glycerol mixture and the pure glycerol
were measured performing steady rate rheology experiments at shear
rates ranging from 10 s−1 up to 300 s−1, using a stress-controlled AR
2000 rheometer (TA Instruments) equipped with a steel cone-and-
plate geometry (cone diameter = 50 mm, cone angle = 0.0198 rad).
All samples showed pure Newtonian response with no dependence of
viscosity on the shear rate. bThe viscosity and the density of SO are
those quoted by the supplier company. cThe density of the water-
glycerol mixture was inferred from the measured zero-shear viscosity,
using tables reporting both η and ρ as a function of cw.

34
Figure 1. Setup used to characterize the extensional dynamics of
fluorescent drops (water-glycerol mixture, cw = 0.05) in a miscible
background fluid (pure glycerol, cw ≈ 0). The drop is retro-
illuminated by a series of LED (not shown for clarity).
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both the x and y directions, yielding calibration constants of 63 pixel/
mm and 730 pixel/mm in the x and y directions, respectively.
For miscible fluids, all drops were injected directly in the capillary

flushed and prefilled with glycerol. Care was taken to make sure that
air bubbles were removed from the capillary before sample injection.
All drops were formed in the prefilled capillary at rest, using a 1 μL
syringe, and their volume has been fixed to 1 μL. The microsyringe
was smoothly removed from the capillary, to avoid the formation of
tails of fluoresceinated water−glycerol mixtures that would have
hampered the formation of initially quasi-spherical drops.
In the following we shall compare our experimental results to

theories assuming that, upon a change of ω, the final rotational speed
is attained instantaneously and the fluids move solidly with the
capillary. In experiments, however, changing ω and attaining a new
rotational speed, uniform everywhere in the capillary, require a finite
time due to the setup inertia and finite momentum diffusivity. It is
therefore important to estimate these time scales and compare them
to that of the drop evolution. In order to estimate τsetup, the time
required for the setup to change ω, we consider the worst-case
scenario, ωi = 6000 rpm and ωf = 15 000, and measure the relaxation
dynamics of a fast-relaxing drop of butanol in water, for which the
theoretical relaxation time according to eq 2 is τ ≪ 0.1 s. We measure
a much larger relaxation time of about 0.3 s, which we thus identify
with the setup response time τsetup. The time for the system (capillary,
drop, and background fluid) to move uniformly at one single ω can be
estimated as the ratio between the squared capillary radius and the
momentum diffusivity. Typical values are of the order of

τ ≃ ≈ρ
η

0.01R
diff

0
2

e
s. In our experiments on both miscible and

immiscible fluids, the drops always evolve on time scales much larger
than both τsetup and τdiff; thus, we shall consider that the final rotation
speed and the rigid motion of the fluids are attained instantaneously.

■ RESULTS AND DISCUSSION
Drop Extension in Immiscible Liquids. In order to test

the predictions of existing theories, we investigated the
relaxation dynamics of SO drops in an immiscible glycerol
background, upon a rotational speed jump.
We start by showing in panels A to C of Figure 2 the

equilibrium shape of a 2.95 μL SO drop in glycerol at different
rotation speeds ω. In agreement with Vonnegut’s and Laplace’s
theories,39 we observe an increased stretching of the drop as ω
grows. As predicted by Vonnegut’s theory11,39 for drops with
aspect ratio l/r ≳ 4, we observe a direct proportionality
between r−3 and ω2 once the equilibrium shape of the drops is
attained (Figure 2D). From the slope of the linear regression
we obtain the surface tension between SO and glycerol: Γ =
(17.81 ± 0.02) mN/m. It is worth noting that this value is less
than half of that reported for SO and water (39.8 mN/m40)
and is in agreement with recent results obtained for Γ in
systems of nonpolar mineral oils in contact with water−
glycerol mixtures with variable glycerol fractions.41 We
emphasize that by fitting r−3 vs ω2 one reduces the
experimental uncertainty affecting Γ with respect to measuring
the drop radius at one single rotation speed. While yielding a
very precise measurement, this procedure reduces the
complications inherent to methods relying on the detection
of the whole drop shape, e.g., the Young−Laplace fit of the
drop surface, which are more sensitive to refraction effects due
to the cylindrical capillary and are affected by any change in
the illumination conditions.
The relaxation of the drop toward its equilibrium shape

following a sudden jump of rotation speed Δω = ωf − ωi has
been investigated in a series of tests. In most experiments, the
drop volume is fixed to V1 = 2.95 μL and the initial speed is ωi
= 8000 rpm. The relaxation dynamics are measured for a series

of rotational speed jumps ranging from Δω = 1000 rpm to Δω
= 7000 rpm. The time dependent drop length normalized by l0
is shown in Figure 3A. Some of the relaxation tests have been
repeated for smaller drops with volume V2 = 0.66 μL. Finally,
we have performed drop retraction experiments, corresponding
to Δω < 0.
Equation 2 predicts that the relaxation time τ normalized by

the drop radius at rest a is independent of the drop volume V
and of Δω, while τ should depend on the value of the
interfacial tension and on the viscosities of the two fluids. We
test this prediction by showing all the normalized relaxation
times τ/a in Figure 3B. Indeed, the measured normalized
relaxation times are neither affected by the drop volume, nor
by the magnitude or the sign of Δω. To further corroborate
this scenario, we report in Figure 3C the normalized relaxation

curves −
−∞

l l
l l

0

0
, where l∞ and l0 are measured at equilibrium for

each rotation speed. All data collapse onto the mastercurve

τ= − [− ]−
−∞

t1 exp ( / )l l
l l av

0

0
, with (τ/a)av = 4.9 ± 0.2 s/mm the

scaled relaxation time averaged over all the experiments.
We find an excellent agreement between the scaled drop

relaxation time and the theoretical value predicted by the
Stone and Bush theory,20 τ λ= =η

Γa f( / ) ( )th
e 4.97 ± 0.01 s/

mm. Remarkably, the theory of ref 20 turns out to be an

Figure 2. Spinning drops of SO at equilibrium in a reservoir of
glycerol. A: ω = 8000 rpm. B: ω = 12 500 rpm. C: ω = 15 000 rpm.
The white arrows show the length of the drops. D: r−3 vs ω2 for one
SO drop of volume V1 = 2.95 μL in glycerol. The equilibrium radius is
measured at the midsection of the drop. The solid line is a linear fit of
the data, from which Γ has been calculated using Vonnegut’s formula
(eq 1). Error bars are calculated from the standard deviation of the
radius over time.
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excellent predictive tool for the relaxation dynamics of viscous
drops well beyond the limit of nearly spherical drops and small

Bond number = ≪ρωΔ
ΓBo a2 3

1, for which it has been derived.

Indeed, for our SO drops the aspect ratio l/2r ranges from 1.00
to 5.25 and 1.4 ≤ Bo ≤ 9.1. Our findings suggest that higher
order spherical harmonics that should be added to model the
shape of elongated droplets, leading to corrections to the
expression derived in ref 20 for the velocity and pressure fields,
do not influence appreciably the drop dynamics. More
theoretical work will be needed to confirm this scenario.
Evolution of Drops in a Miscible Background Fluid.

Studying the drop evolution in a miscible background fluid is
not an easy task as capillary effects due to a gradient of
concentrations42,43 are transient and their magnitude is
expected to be very weak in miscible molecular fluids, for
which typical estimates of the EIT are smaller than 1 mN/
m.24−26 Moreover, stresses induced by secondary flows in the
spinning capillary may be comparable to or even larger than
those due to surface tension, resulting in permanent drop
deformation or time dependent instabilities.23 Indeed, when a
capillary starts rotating, the background fluid within the shear
layer is pushed toward the drop center, as pointed out by

Currie et al.35 and Manning et al.,23 who showed that this
effect is large enough to deform drops in water−hydrocarbon−
surfactant systems with an equilibrium interfacial tensions of
the order of 10 μN/m. Secondary flows cause long lasting dog-
bone drop shapes that are unusable for determining the
interfacial tension with eq 1, and affect the drop elongation
dynamics. For our miscible systems, we have observed dog-
bone shapes for all drops composed of a water−glycerol
mixture with a water mass fraction cw > 0.05 and immersed in
pure glycerol. We shall discuss the evolution of these dog-bone
shaped drops in a forthcoming publication. Here, we report
data for drops with cw = 0.05, which retain a end-capped
cylindrical shape over (at least) thousands of seconds, for all
probed ωf. A typical drop is shown in Figure 4, for different
times t following a jump of the rotational speed from ωi = 0 to
ωf = 15 000 rpm at t = 0.

Figure 5A shows the drop length as a function of time for
four identical drops, with V = 1 μL and cw = 0.05. In all
experiments, ωi = 0, while the final angular speed has been
varied in the range 6000−15 000 rpm, as shown by the labels.
In all cases, the increase of the drop length is very well fitted by
a power-law: l(t) = l0 + αtm. The fitting parameters α and m are
reported in Table 2. To monitor possible deviations from a
power-law behavior, we compute the time-dependent (local)

exponent = [ − ]m t( ) l t l
t

dlog ( )
dlog( )

0 , shown in the inset of Figure 5B.

For all data sets, m is very close to 0.4 throughout the duration
of the experiment, with no systematic deviations.
The values obtained for m are in very good agreement with
=m 2

5
as predicted by Lister and Stone for the “bubble-like”

regime (eq 4), e.g., for drops with negligible effects of
intradrop stresses. To further test the applicability of eq 4, we
inspect the ωf dependence of the prefactor α. We find α ∼
ωf

0.83 ± 0.12, very close to the scaling α ω∼ f
4/5 predicted by eq

4. Indeed, Figure 5B shows that all the data nicely collapse
onto a mastercurve when using the scaled variable (l − l0)/ωf

4/5

as suggested by eq 4. Interestingly, we find that the bubble-like
regime extends beyond the limits described originally in ref 29.
Indeed, in our experiments λ = 0.537 < 1 and the aspect ratio

Figure 3. A: Normalized length l/l0 of silicone oil drops in glycerol as
a function of time for different rotation speed jumps (ωf − ωi), with
ωi = 8000 rpm. B: Relaxation time normalized by the drop radius at
rest as a function of the magnitude of the speed jump, for all
experiments. The drop volume and the sign of Δω are shown by the
labels. The dashed red line shows the prediction of eq 2.20 C: Scaled
length (l − l0)/(l∞ − l0), where the initial, l0, and asymptotic, l∞, drop
lengths are obtained as detailed in the text.

Figure 4. Temporal evolution of the H2O−Glycerol drop (cw = 0.05)
in pure glycerol at ωf = 15 000 rpm. t = 0 represents the beginning of
the rotation. All drops are shown at an aspect ratio of 1.
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of the drop at its maximum (measurable) extension is 2a0/l ≈
0.02, so that one has 2a0/l ≪ λ < 1. This is to be compared to
λ ≪ 2a0/l ≪ 1, as postulated in ref 29 for the bubble-like
regime.
Overall, our data for miscible drops are very well accounted

for by the model of ref 29 which was developed for immiscible
fluids in the limit Γ → 0. The agreement with the theory by
Lister and Stone strongly suggests that capillary forces do not
affect significantly the dynamics of our miscible drops. This is
consistent with what expected for a pair of miscible fluids with
a very low compositional gradient at their boundary (due to
molecular diffusion) and with the fact that interfacial stresses
further decay to zero as diffusion smears out the interface. It is
furthermore consistent with previously reported data for the
effective interfacial tension in water−glycerol mixtures,24 from
which we expect Γ ≪ 0.02 mN/m for our system. We expect
our results to be generic for fluids miscible in all proportions
and far from critical points, where mutual diffusion and
interfacial stresses may be affected by large fluctuations and the
vicinity to demixing regions present in the phase diagram of
the two-fluid system.
It is also worth noting that the interface between the two

fluids is supposed to be infinitely sharp in ref 29 while it is
smeared out by diffusion in our experiments. It is thus
important to analyze the effects of diffusion to rationalize why

the diffusion-free model by Lister and Stone describes our data
so well. Due to diffusion, the effective surface tension tends to
decrease with time, since the composition gradient at the
interface diminishes. However, this evolution is most likely
masked by the fact that for miscible systems Γ is already low
enough to meet the Γ → 0 condition postulated in ref 29 at all
times. Diffusion may also impact the drop evolution in a more
subtle way, by coupling to the centrifugal forcing: the forcing
may change the evolution of the concentration profile; in turn,
a smeared profile modifies the centrifuge forces. We first show
that in fact the centrifugal forcing does not affect Fickian
diffusion within the capillary. By balancing the entropic force
(diffusion) and the centrifugal one45 acting on all fluid
elements in the capillary, the length scale over which the mass
distribution of the two liquids is affected by rotation may be
estimated, and the approximate equilibrium profile of water
molecules in a water/glycerol mixture at ω > 0 can be
calculated. Following44 we obtain the following:45
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∼ −
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where xw is the mole fraction of water in the mixture and ωl f
is

the rotational length,

ω ρ
=

−ωl
RT

v M
1 2

f w av w
f

(8)

i.e., the analogous to the gravitational length calculated under
static conditions.44 Here R is the universal gas constant, T the
absolute temperature, Mw and vw the molecular weight and the
partial molar volume of water, and ρav the average density of
the mixture. For water and glycerol at ωf = 15 000 rpm we
obtain ≃ωl f

2.75 m much greater than the capillary radius,45

showing that in our system the centrifugal forcing is far from
affecting interdiffusion between the drop and the surrounding
liquid.
Having established that diffusion can be safely taken to be

Fickian, we discuss its effect on the centrifugal forcing.
Although the diffusion of water initially contained in the drop
is a slow process, its effect over the typical duration of our
experiments (several hundreds of seconds) is not negligible.
Indeed, it takes about 710 s for a water molecule to diffuse in
glycerol over a distance of 100 μm:46 diffusion does indeed
smear out significantly the interface between the drop and the
surrounding medium during the experiment. Because of
smearing, the pressure field in the capillary is different from
that for a sharp interface. In our experiments the dominant
contribution to the drop dynamics arises from the pressure
jump ΔP across the end-caps of the drop; we thus calculate ΔP
for the two cases of a sharp or diffused interface. For a sharp
interface, the net pressure exerted on the head of a quasi
cylindrical drop is as follows:29

ρωΔ ≃ ΔP r
1
2sharp f

2
0
2

(9)

where r0 is the radius of the drop with sharp boundaries.
Equation 9 is actually a particular case of a more general

expression that arises from the difference between the pressure
field integrated along two distinct radial trajectories: one lying
outside the spinning drop, the second one partially included in

Figure 5. A: Temporal evolution of the H2O−Glycerol drop length in
pure glycerol at different rotation speed ωf as indicated by the labels.
Solid lines are best fits to a power-law growth, l(t) = l0 + αtm. B:
Rescaled increase of the drop length (l − l0)/ωf

4/5, as a function of
time. The dashed line shows the best fit obtained using the scaling law

− ∼l l t0
2/5 predicted by Lister and Stone29 (eq 4). The inset shows

the time-dependent (local) exponent m(t) = d log(l−l0)/d log(t).

Table 2. Fitting Parameters for the Data Shown in Figure 5

ωf (rpm) α (mm/sm) ma

15 000 1.227 ± 0.003 0.3934 ± 0.0004
12 000 0.962 ± 0.003 0.3960 ± 0.0005
9000 0.864 ± 0.002 0.3870 ± 0.0005
6000 0.525 ± 0.001 0.44 ± 0.02

aThe reported errors are those on the fit parameters of the nonlinear
regression of the experimental data performed with the Origin
software (OriginLab corporation).
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the drop, as sketched in Figure 6. Under rotation, this gives rise
to an effective hydrostatic pressure on the drop that reads:

∫ω ρ ρΔ ≃ [ − ]P r r r r( ) ( ) d
R

d f
2

0 1 2

c

(10)

where ρ1 is the density profile along the line 1, equal to the
density of the surrounding liquid, ρ2 is the density profile along
the line 2, and Rc = 1.625 mm for our capillary. The density
profile along line 2 is computed by solving the diffusion
equation along the radial direction r.
Since diffusion is slow, one can simplify the problem by

considering the section sketched in Figure 6 as being
composed by two semiplanes separated by an initially planar
boundary at distance r0 from the origin, the latter
corresponding to the rotation axis of the capillary. Considering
that the density of water−glycerol mixtures varies linearly with
the water weight fraction for 0 ≤ cw ≤ 0.05,47 eq 10 can be
written as follows:

l
m
ooo
n
ooo

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑ

|
}
ooo
~
ooo∫ω ρ ρΔ ≃ Δ − Δ −

P
r r

D t
r r

2 2
erf

( )
4

d
R

d f
2

0

0

w

c

(11)

where r0 is the drop radius, Δρ = 10 kg/m3 is the initial density
difference between the drop and the background fluid, Dw =
1.4 · 10−11 m2/s is the diffusion coefficient of water in
glycerol,46 and t is the time elapsed since the drop has been
inserted in the capillary. From the experimental images we
estimate that the radius r0, defined as the position of the flex
point of the radial intensity profile, lays between 0.25 and 0.35
mm. By using eq 11 an upper bound for the relative variation
of the hydrostatic pressure can be calculated: (ΔPsharp−ΔPd)/
ΔPsharp ≤ 30% for t = 1000 s, while the same quantity is as
small as 3% for t = 100 s. We thus expect that the dynamics are
essentially not affected by diffusion-driven effects for the first
few hundred seconds, while some limited impact may be
present in the last time decade (102−103 s) explored in our
experiments. Consistently with this analysis, Figure 5 shows no
significant deviations from the Lister-Stone theory up to t =
2000 s. Note that, as pointed out first by Zeldovich48 and then
by Zoltowski et al.,26 mass conservation implies that as the
drop is stretched the transition zone at its boundary is thinned.
This effect likely keeps the concentration profile sharper than
expected from Fickian diffusion, thus contributing to maintain
the scaling predicted by eq 4.

■ CONCLUSIONS
We have experimentally investigated the relaxation of New-
tonian spinning drops after a jump of angular speed, detailing

two radically different cases: (i) immiscible fluids with
viscosities high enough for the slow extensional dynamics to
be fully uncoupled from the inertial response of the
tensiometer; (ii) miscible fluids with negligible capillary effects
and no deformations due to secondary flows in the rotating
capillary. A crucial experimental improvement was the use of a
custom imaging geometry, which allowed us to follow the
elongation of drops up to very large aspect ratios, a regime
never probed experimentally before. By imaging the full drop,
we were furthermore able to rule out the presence of shape
instabilities for all the samples discussed here, and
unambiguously ascertain whether or not a steady state was
eventually reached.
For immiscible fluids, we have found that the drop dynamics

is described remarkably well by predictions for a quasi-
spherical drop subject to small deformations, for which the
typical relaxation time does not depend on the forcing, i.e., the
product ω2Δρ, nor on the equilibrium length or shape of the
drops. For these immiscible drops, the relaxation dynamics
depend only on the interfacial tension Γ, the drop radius at
rest, and the viscosity of the drop and background fluids. An
excellent quantitative agreement is found with the theory
proposed in ref 20 with a larger than expected domain of
applicability.
Drops in miscible environments exhibit a totally different

relaxation dynamics, their length increasing indefinitely
according to a power law, in agreement with predictions for
“bubble-like” dynamics in absence of capillary effects:

α− ∼ ×l t l t( ) (0) 2/5, with α ∼ ωf
4/5.29 A global theory that

fully captures the experimental droplet relaxation under the
assumption of a pure unsteady extension superposed to a rigid
rotation is still missing, as also pointed out by Joseph et al.17

Our results suggest that existing models based on the
calculation of the contribution of the dominant viscous stresses
inside and outside the drop reproduce very well the
experimental data. This observation should be useful for
guiding future theoretical efforts.
Finally, it is worthwhile to briefly compare our results in

light of previous works, notably ref 24 which reported SDT
measurements of the effective interfacial tension between a
drop of water and water−glycerol mixtures as the background
fluid. In these experiments, which are similar to those reported
here for miscible fluids, the concentration cg of glycerol in the
background fluid was systematically varied. It was observed
that Γ vanishes as cg decreases, becoming unmeasurable for cg
< 40% wt. This is consistent with our result that the elongation
dynamics of drops with composition very close to that of the
background fluid is well described by Lister and Stone’s theory,
where interfacial tension is neglected.29 Indeed, in our system
the composition mismatch is smaller than the smallest one for
which Petitjean was still able to measure Γ (compare cw = 5 wt
% to cg = 40 wt %). That said, we believe that the conclusions
of previous works probing dynamics of drops in miscible
environments24−26 should be revisited and rechecked as the
existence of a true steady state in miscible fluids, assumed in
these works, is strictly hampered by diffusion and a slow
power-law dynamics could also be present in those systems.
The results presented here should help clarifying the debate

on the behavior of spinning drops in miscible and immiscible
background fluids. We hope that they will also stimulate
further theoretical work in this field.

Figure 6. Scheme for the general case of a drop with diffused
interface. The pressure field can be integrated on lines 1 and 2 to
obtain the forcing on the drop.
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ROTATIONAL LENGTH FOR SPINNING WATER-GLYCEROL MIXTURES

In order to discuss the effect of diffusion on our experiments, we need to start by under-

standing whether there is an influence of the centripetal forcing on diffusion itself, i.e. if we

can consider diffusion to be Fickian. We can indeed expect, in principle, the concentration

profile of fluids in the capillary to be set by the rotation, in analogy with the exponential

profile set by gravity [1]. This characteristic length scale of the problem determines then

the effect of the centripetal forcing on diffusion: if this ”rotational length” lω is much bigger

than the capillary diameter dc, we can consider the system to be freely diffusing without any

influence of the centrifugal forcing, and diffusion to be Fickian. With a procedure analogous

to that described in Ref. [1], at equilibrium we can write the variation of chemical potential

along the radial coordinate r as (
dµi

dr

)

T

= Miω
2r (1)

for each species i, whose molecular weight is Mi. Similarly, for the pressure variation

dp

dr
= ρ(r)ω2r (2)

where ρ(r) is the density at distance r from the axis of rotation. If we consider the system

as an ideal mixture we have then from thermodynamics

dµi = vidp+
∑

j

∂µi

∂xj
dxj (3)

and

µi = µ0
i +RT lnxi (4)

with T being the temperature, R the universal gas constant, vi and xi the partial molar

volume and mole fraction of species i. Combining eq. 1 to 4 we get

RT

xi

dxi
dr

= [Mi − ρ(r)vi]ω
2r (5)

If we approximate ρ(r) with a constant equal to the average density of the two fluids, i.e.

ρ(r) = ρav, Eq. 5 can be integrated analytically. This approximation works well for fluids

that have a similar density (in our case ρH2O
= 1000 kg/m3 and ρgly = 1260 kg/m3) and

allows us to get an estimate of the rotational length of our system [1]. Integration of eq. 5

yields

xi (r) ' xi (0) exp

{
−(ρavvi −Mi)ω

2

2RT
r2
}

(6)

2
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from which we can define the square rotational length l2ω,

l2ω =
2RT

(ρavvi −Mi)ω2
. (7)

For the case of water in glycerol at 15000 rpm, we obtain

lω =
1

ω

√
2RT

ρavvw −Mw

≈ 2.75 m� dc (8)

and we can thus assume diffusion not to be affected by the centripetal forcing, and thus to

be described by Fick’s law.

[1] O. Obidi, A. H. Muggeridge, and V. Vesovic, Physical Review E 95 (2017), ISSN 2470-0045,

2470-0053, URL https://link.aps.org/doi/10.1103/PhysRevE.95.022138.
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Chapter 3

Ultralow effective interfacial
tension between miscible molecular
fluids

Drops spinning in a denser background fluid do not always maintain a simple
ellipsoidal shape. On the contrary, when the interfacial tension between the
two fluids is sufficiently low, they can develop a so called “dumbbell” shape,
with two bigger heads connected by a thinner central body. We have recently
exploited such a radial deformation of drops to measure the ultralow effective
interfacial tension between miscible molecular fluids. In the present chapter,
we elucidate some aspects of our work and present the results recently published
in [30].

3.1 Dumbbell shapes

In Ref. [11] we have shown that, when interfacial tension is negligible, spinning drops
elongate indefinitely, following a power law dynamics:

l(t) '
(

∆ρω2V 3/2

ηe

)
t
2/5 . (3.1)

Here l and V are the drop length and volume, ∆ρ the density difference between the drop
and the background fluids, ω the angular velocity and ηe the background fluid viscosity.
In particular, we verified the validity of such power-law dynamics for one specific pair
of miscible fluids with a small concentration gradient, namely a 5% H2O - 95% glycerol
mixture drop spinning in a reservoir of pure glycerol. In this case, drops always evolved
maintaining an ellipsoidal shape. However, the dynamics are not the same for all values
of the mass concentration cw of water in the drop. Figure 3.1 reports the time evolution
of the drop length for various water concentration in the drop and various rotation speeds.
All drops spin in pure glycerol. The data in panel A are those presented in [11] for a water
mass fraction cw = 0.05. Remarkably, as the water concentration in the drop increases,
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Figure 3.1: Elongation dynamics of drops of water-glycerol mixtures spinning in pure glyc-
erol, for various rotation speeds. The drops have water mass fraction cw = 0.05 in Panel A,
0.25 in Panel B, 0.45 in Panel C and 1 in Panel D. The four insets show the local exponent
of the dynamics when they are described as a power law with an exponent dependent on
time, as detailed in the text.
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Figure 3.2: Images of drops of 75% H2O - 25% glycerol (Panel A), triethylene glycol (Panel
B) and 20% H2O - 80 %glycerol (Panel C), all spinning in pure glycerol. Note the different
magnification factors in the horizontal and vertical directions.

from panel A to panel D, the elongation dynamics of drops are no longer captured by
Eq. 3.1, and tend to slow down as drops elongate. Furthermore, the slowing down of the
dynamics is more evident for drops with a higher water content, and at higher angular
velocity. In order to highlight such slowing down of the elongation dynamics, the insets of
Fig. 3.1 show the local exponent m of l(t), when the length is described as a power law,
l(t) ∝ tm. Once again, m(t) decreases over time for large cw and ω, while m(t) = 0.4 for a
low concentration mismatch between the drop and the background fluid (panel A).

One could think of a couple different explanation for the different behaviour of the
elongation dynamics with respect to Eq. 3.1, at high cw. The first possible cause for this
phenomenon could be diffusion, which is stronger for less viscous, high-cw drops. With time,
diffusion smears out the concentration gradient at the drop surface, and consequently the
density difference between the drop and background fluids. However, as already discussed
in [11], the difference in centripetal forcing due to diffusion is negligible over the time
scale of our experiment. Furthermore, this would not explain why m(t) would decrease
faster for higher angular velocities, for which experiments are shorter. A second possible
explanation could be the presence of Korteweg stresses at the interface opposing drop
elongation, which could be stronger for higher cw due to the steeper concentration gradient
between the drop and the background fluids. However, the reduction of m(t) is observed
over hundreds of seconds, while Korteweg stresses are expected to become negligible after
a few seconds [30]. Indeed, as it will be detailed later in [30], diffusion is not sufficient to
induce a strong variation of centripetal forcing, but it is enough to make EIT vanish over
the time of the experiment.

As a consequence, neither diffusion nor Korteweg stresses alone can explain the data
in Fig. 3.1. Furthermore, there is an additional, important aspect worth discussing for
drops at high cw, related to their shape. Remarkably, in an SDT experiment drops do
not always maintain an ellipsoidal shape. On the contrary, for sufficiently low values of
the interfacial tension, they develop a “dumbbell”, or “dog-bone” shape, with two larger
heads connected by a thinner central body. Such a phenomenon was reported already in
1977 by Manning and Scriven for the case of water-hydrocarbon-surfactant systems [45],
for which Γ is as low as 10 µN/m, albeit no explanation could be provided. An example of
such dumbbell shapes is reported in Fig. 3.2 (Fig. 1 in [30]). The drops in panels A and
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C are composed of mixtures of water and glycerol, with water mass fractions cw = 0.75
and cw = 0.2, respectively. The drop in panel B, on the other hand, is made of triethylene
glycol (TEG). All drops are spinning in pure glycerol, with which they are fully miscible.
Note the different magnification factors in the horizontal x and vertical y directions, as
images are optically compressed along x and expanded along y to increase the resolution.
Remarkably, not only does Fig. 3.2 provide examples of dumbbell-shaped drops, but it also
shows that such dumbbell shapes do not depend only on the density and viscosity contrast
between the drop and background fluids. If this was the case, the TEG drop in panel B
would indeed have an intermediate shape between the drops in panels A and C, since it
has intermediate density and viscosity. This is clearly not the case, and Fig. 3.2 cannot be
explained only by means of hydrodynamics arguments. On the contrary, the development
of a dumbbell shape must depend on the molecular structure of the fluids, and hence on
interfacial stresses arising from different molecular interactions. Therefore, investigating
the origin and the temporal dynamics of these shapes naturally appears as a valid strategy
to investigate the effective interfacial tension between the drop and the background fluid.
This is indeed the strategy that we adopted. In the present chapter, we present the results
obtained following this approach.

3.2 Concentration profiles: some geometrical considerations

In order to precisely characterise the time evolution of the drop shape we exploit fluorescent
drops to extract the three-dimensional concentration profile ϕ̃ of the drop fluid in the cap-
illary. The procedure to obtain ϕ̃ from the intensity of the fluorescence signal is described
in [30]. Here we briefly recall the main features and make some comments.

The concentration of the fluorophore, which is proportional to the light intensity col-
lected, follows closely the one of the drop fluid, since over the duration of one run there is
not enough time to develop an appreciable difference in the distribution of the two compo-
nents due to diffusion. As a consequence, one can measure ϕ̃ from the fluorescence intensity
by means of some geometrical considerations. By dividing the drop in concentric cylindri-
cal shells with a local value ϕ̃i of drop fluid concentration, one can write the fluorescence
intensity at a given location with horizontal and vertical coordinates x and y as a sum over
the contributions of all shell:

I(x, y) =
N∑

i=1

ci(y)ϕ̃i(x) . (3.2)

Here ci(y) is a geometric factor that contains the length of the chord that traverses each
shell i at coordinate y. We solve for ϕ̃ by recasting Eq. 3.2 in matrix form after discretizing
both the x and y coordinates. In order to speed up the inversion of the matrix C ≡ ci(y),
we exploit the symmetry of the drop around the rotation axis. In practice, this means
averaging around the rotation axis the upper and lower halves of the images, which allows
also for improving the signal-to-noise ratio, a desirable feature due to the low intensity of the
fluorescence signal. Note that such a procedure is only possible if the images are actually
symmetric around the rotation axis, and the position of the latter is well established.
Experimentally this is achieved by taking an image of a drop and by analysing the profile
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of the fluorescence intensity, in order to determine the vertical coordinate of the maximum
of the intensity and that of the center of mass of the signal, which should coincide for a
perfectly symmetric image. if the two coordinates do not coincide, the viewing angle, i.e.
the angle between the tensiometer and the rail supporting the optics and the camera, is
adjusted and the position of the maximum of the intensity and of the intensity center of
mass is checked again. The whole procedure is iterated as needed. The code used to extract
the concentration profile is available at [46].

3.3 Determination of the deformation amplitude

Once obtained the three-dimensional concentration profile ϕ̃(x, r) of the drop fluid in the
spinning capillary, we define the drop surface as the set of points where ϕ̃(x, r) = 0.5, with
ϕ̃ normalized to unity in the inner region of the drop, close to its axis. As an example,
Fig. 3.3 shows the time evolution of the drop surface for a drop of water spinning in
pure glycerol. The development of a dumbbell shape is evident. In order to quantitatively
characterize the deformation, we define its amplitude h as the difference in radii between
the larger heads and the thinner central body.

We emphasize that this is not sufficient to unambiguously define the deformation am-
plitude, because the profile of the drop surface is not perfectly symmetric. One possibility
would be to take the difference between the absolute maximum radius and the minimum
radius of the profile, at one drop head and around its center, respectively. A second strat-
egy would be to exploit the drop symmetry, averaging the two maximum radii of the drop
heads, at x1 and x2, and measuring the amplitude of the deformation by taking the dif-
ference with respect to the radius at the horizontal coordinate in the middle of the drop,
at xM = x1+x2

2 . This second approach allows taking into account a possible asymmetry in
the drop shape due to an imperfect injection in the capillary: a non-spherical drop would
yield a skewed profile, with one of the two heads larger than the other. Averaging the two
sides of the drop automatically includes the skewness of the interface profile, allowing one
to directly characterize the amplitude of the radial deformation. By carefully looking at
Fig. 3.3 it is possible to observe that indeed the interface profile is slightly skewed at short
times, evolving towards a more symmetric shape. Such a behaviour is the signature of a

Figure 3.3: Time evolution of the interface profile for a drop of pure water spinning at
15500 rpm in a reservoir of pure glycerol, from t = 1 s (purple) to t = 18 s (red) by steps of
1 s. Time t = 1 s corresponds to the beginning of rotation.
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Figure 3.4: Interface profile (blue line) and polynomial fit of order 10 (red line) for a drop of
pure water spinning in pure glycerol, at 15500 rpm and 15 s after the beginning of rotation.

drop which is not perfectly spherical at the beginning of rotation. Nevertheless, it is still
possible to measure the deformation amplitude for a (slightly) skewed drop by averaging
the left and right heads. This is indeed the procedure that we decided to use.

Once determined the position of the maximum and minimum radii, one still needs to
decide how to measure the deformation amplitude h. In particular, we extracted h by
directly measuring the radii from the interface profile, and also by fitting the latter with a
polynomial function of order 10, in order to reduce possible noise. As an example, Fig. 3.4
shows a polynomial fit superposed to a selected interface profile.

The results obtained by measuring the deformation amplitude h on the polynomial fit
and directly on the drop profile were always compatible,to within experimental uncertainty.
In particular, the velocity of deformation, v = dh

dt , was always the same in the two cases.
Since the latter is the quantity that allows us to measure the effective interfacial tension
Γe, the two procedures are equally valid. For consistency, the data that we present in [30]
were always obtained by measuring h directly on the interface profile, taking the difference
between the average radius of the two heads of the drop (the average of the two maxima in
the interface profile, x1 and x2) and the radius at the horizontal coordinate xM = x1+x2

2 ,
as shown in Fig. 3.4.

3.4 Origin of the dumbbell shape: background fluid recircu-
lation

Dumbbell-shaped drops have been observed as early as in 1977, when Manning and Scriven
observed that drops of water-hydrocarbon-surfactant systems assumed non ellipsoidal shapes
when the interfacial tension was less then 10 µN/m [45]. Even though they did not report
an explanation for this finding, they also observed a motion of the background fluid in the
spinning capillary. Indeed, in an SDT experiment the background fluid is not at rest, but
rather flows towards the center of the capillary at the center of the drop. This recirculat-
ing flow was further investigated by Currie and Van Nieuwkoop [44], and has lately been
indicated as the possible cause of dumbbell shapes in SDT experiments [17], because the
normal stress applied on the drop surface is higher at the drop center than at its edges.
In order to verify this assumption and better understand the origin and time evolution of
the drop shape, we numerically solve the Navier-Stokes equations in the background fluid,
during rotation. The code used to this end is available at [46]. Our results are reported
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in [47], and the aim of this section is to anticipate and give some further detail on the
procedure we use.

As described by Currie and Van Nieuwkoop [44], the recirculating flow arises from
the inhomogeneous pressure field in the spinning capillary. Even for the case of a drop
immiscible with the background reservoir, the spinning capillary contains a region of lower
pressure: the centripetal pressure depends on the fluid density as

P (r, x) =

∫ r

0
ρ(r′, x)ω2r′dr′ . (3.3)

Since the drop has a lower density ρd than that of the background fluid ρe, a horizontal
pressure gradient arises in correspondence to the drop heads, as schematically represented
in Fig. SM1 of [47]. At the drop heads, the background fluid is subject to a pressure jump
∆Pω = 1

2∆ρω2r2 along the horizontal direction, with the consequent recirculating motion
induced by such an inhomogeneity of the pressure field. In order to numerically solve the
Navier-Stokes equations and gain insight on the fluid motion, we divided the pressure in a
steady and an unsteady component, p(x, r) = P (x, r) + p′(x, r). The former contains the
centripetal forcing, including both the quadratic dependence in the radial direction r and
the decrease along the horizontal direction x above the drop, while the latter is associated
to the fluid motion. As described in [47], splitting the pressure field in two components
is analogous to introducing a source term ~F = −1

ρ∇P in the momentum conservation
equation. The flow of the background fluid can thus be described by:

∂~v

∂t
+ (~v · ∇)~v = −1

ρ
∇p′ + ν∇2~v + ~F . (3.4)

In [47] we numerically solve Eq. 3.4 in two dimensions (along the horizontal, x, and radial
r, coordinates), together with the Poisson equation that is obtained by inserting in the
momentum equation the continuity equation (∇·~v = 0) for the incompressible background
fluid. In particular, taking the divergence of the momentum equation in two dimensions x
and r (so that ~v = ûı + v̂), and writing for the second term on the left hand side

∇ ·
[(
u
∂

∂x
+ v

∂

∂r

)
(ûı + v̂)

]
=
∂u

∂x

∂u

∂x
+
∂v

∂x

∂u

∂r
+
∂u

∂r

∂v

∂x
+
∂v

∂r

∂v

∂r
,

one obtains the desired Poisson equation for pressure (in two dimensions):

∂2p

∂x2
+
∂2p

∂r2
= −ρ

[(
∂u

∂x

)2

+ 2
∂u

∂r

∂v

∂x
+

(
∂v

∂r

)2
]
. (3.5)

Once inserted the pressure field in the system (3.4-3.5), we iterate until the solution is
stable.

For further use and completeness, we report here also the discretized version of Eqs.
(3.4-3.5) that we used. By explicitly writing the source terms ~F = −1

ρ∇P in order to
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differentiate P (x, r), and by performing a central discretization of each term [48], one can
calculate the velocity field at each time step n+ 1 as:

un+1
i,j = uni,j − uni,j

∆t

∆x
(uni,j − uni−1,j)− vni,j

∆t

∆r
(uni,j − uni,j−1)+

− ∆t

ρ2∆x
(pni+1,j − pni−1,j)−

∆t

ρ2∆x
(Pni+1,j − Pni−1,j)+

+ ν

[
∆t

∆x2

(
uni+1,j − uni,j + uni−1,j

)
+

∆t

∆r2

(
uni,j+1 − uni,j + uni,j−1

)]
(3.6)

vn+1
i,j = vni,j − uni,j

∆t

∆x
(vni,j − vni−1,j)− vni,j

∆t

∆r
(vni,j − vni,j−1)+

− ∆t

ρ2∆r
(pni,j+1 − pni,j−1)− ∆t

ρ2∆r
(Pni,j+1 − Pni,j−1)+

+ ν

[
∆t

∆x2

(
vni+1,j − vni,j + vni−1,j

)
+

∆t

∆r2

(
vni,j+1 − vni,j + vni,j−1

)]
(3.7)

pni,j =
(pni+1,j + pni−1,j)∆r

2 + (pni,j+1 + pni,j−1)∆x2

2(∆x2 + ∆r2)
+

+
ρ∆x2∆r2

2(∆x2 + ∆r2)

[
1

∆t

(
uni+1,j − uni−1,j

2∆x
+
vni,j+1 − vni,j−1

2∆r

)
+

−
(
uni+1,j − uni−1,j

2∆x

)2

− 2
uni,j+1 − uni,j−1

2∆r

vni+1,j − vni−1,j

2∆x
+

(
vni,j+1 − vni,j−1

2∆r

)2
]

(3.8)

Here u and v are the horizontal and radial component of the velocity, the superscript
indicates the time step of the iteration, and the subscripts i, j run over the discretized
variables x and r in the horizontal and radial direction, respectively. ∆x, ∆r and ∆t are
the space and time discretization intervals (∆x = ∆r = 0.1, with x and r ranging from 0
to 4 and from 0 to 2, respectively).

The results of such a numerical solution are reported in [47]: the recirculating motion
of the background fluid does indeed depend on the pressure jump ∆Pω at the drop heads.
In particular, the difference between the radial component of the velocity field at the drop
center and at the heads depends linearly on ∆Pω. Therefore, the extra normal stress exerted
on the drop surface that induces the dumbbell shape depends on ∆Pω as well. We exploit
this result in [30] to compute the total stress on the drop and to measure the effective
interfacial tension from the time evolution of dumbbell-shaped drops and the velocity of
radial deformation. Reference [47] reports the results of such an analysis on the motion
of the background fluid for a specific drop length and radius, at various angular velocities
and values of the density mismatch between the drop and background fluid, but the same
behaviour is maintained when the drop size is varied.
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We exploit the deformation of drops spinning in a denser background fluid to investigate
the effective interfacial tension (EIT) between miscible molecular fluids. We find that,
for sufficiently low interfacial tension, spinning drops develop dumbbell shapes, with two
large heads connected by a thinner central body. We show that this shape depends not only
on the density and viscosity contrast between the drop and background fluids, but also
on the fluid molecular structure, and hence on the stresses developing at their interface
due to a different molecular interaction. We systematically investigate the dynamics of
dumbbell-shaped drops of water-glycerol mixtures spinning in a pure glycerol reservoir. By
developing a model for the deformation based on the balance of the shear stress opposing
the deformation, the imposed normal stress on the drop, and an effective interfacial tension,
we exploit the time evolution of the drop shape to measure the EIT. Our results show
that the EIT in water-glycerol systems is orders of magnitude lower than that reported in
previous experimental measurements, and in excellent agreement with values calculated
via the phase field model proposed by Truzzolillo et al. [Phys. Rev. X 6, 041057 (2016)].

DOI: 10.1103/PhysRevFluids.5.074001

I. INTRODUCTION

Interfacial tension between immiscible fluids is a well-defined, well-known quantity of
paramount importance in a wide range of phenomena, from soft matter and material science to
biophysics, oil recovery and multiphase flow [1]. By contrast, the presence of capillary stresses at
the interface between miscible fluids is still debated and actively investigated. For miscible fluids,
equilibrium thermodynamics states that interfacial tension should not exist, the equilibrium state
being a homogeneous mixture of the fluids. However, transient capillary stresses between miscible
fluids were first postulated in 1901 by Korteweg, who asserted that stresses due to density (or
composition) gradients in a multifluid system could act as an effective interfacial tension (EIT)
[2]. Following his work, one can write the EIT, hereinafter denoted by �e, similarly to the tension at
equilibrium between immiscible fluids, i.e., by expanding the mixing free energy in even powers of
the concentration gradient ∇ϕ̃ [3]. By considering only the first term of this expansion, �e can be
written as

�e =
∫ +∞

−∞
κ (ϕ̃)(∇ϕ̃)2dz. (1)

Here ϕ̃ is the space-dependent volume fraction of one of the two fluids, z is the coordinate orthogonal
to the interface, and κ (ϕ̃) is the so-called Korteweg parameter, embedding the effect of the specific
interaction between the fluids [4,5]. Clearly, �e tends to zero with time t , as diffusion smears out the
interface, whose thickness increases, reducing ∇ϕ̃ with t [6]. Such a transient, out-of-equilibrium
interfacial tension has been invoked in literature to rationalize the behavior of miscible fluids at short
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times, before they are fully mixed, and several works tried to elucidate the role of stresses at miscible
boundaries, both theoretically [7–12] and experimentally. Among the strategies adopted to measure
the EIT between miscible fluids, the most recent ones leverage on the study of hydrodynamic
instabilities [5,13], on light scattering experiments probing capillary waves [6,14], and on the
observation of the shape of drops and threads under an external forcing [15–17]. Despite this effort,
the magnitude and even the very existence of EIT between simple molecular fluids is still debated
and mostly unclear.

One technique to measure very low interfacial tensions (10−3–10−2 mN/m [18,19]) is spinning
drop tensiometry (SDT), which is based on the observation of drop shapes. In an SDT experiment a
drop is injected in a denser background fluid contained in a cylindrical capillary. When the capillary
is spun, the drop elongates on the axis of rotation due to centrifugal forces. Following the drop
shape by means of video imaging, one can then measure the interfacial tension between the drop
and the background fluid. In the case of immiscible fluids, for which SDT was initially conceived by
Vonnegut [20], one typically measures the equilibrium shape of the drop, which is dictated by the
balance between surface tension and centripetal forces. The interfacial tension � is then obtained
through the Vonnegut equation [20]:

� = �ρω2r3

4
, (2)

where �ρ is the density difference between the background and drop fluids, ω the angular velocity,
and r the equilibrium radius of the drop. A second possibility is to characterize the time evolution
of the drop after a sudden rotational speed jump. Recently, we have employed this technique to
study the elongation dynamics of drops, both in miscible and immiscible background fluids [16],
showing that the drop dynamics towards an equilibrium state are characterized by a relaxation
time fully determined by (i) the viscosity of the fluids, (ii) the drop size, and (iii) the interfacial
tension. In the past few decades, SDT experiments aiming at characterizing equilibrium states
and diffusion processes have been performed by several groups to investigate the presence and
the relevance of an EIT between miscible fluids, either close to [15,21] or far from a spinodal
decomposition of the fluids [22,23]. Unfortunately, in the case of fully miscible molecular liquids,
such as water and glycerol, diffusion hampers the measurement of stationary states and literature
data are conflicting, sometimes even in experiments by the same authors [23,24]. Indeed, when �

is negligible a stationary state is never attained, as we showed for one specific pair of miscible
fluids with small compositional mismatch, namely a drop of a water-glycerol mixture (5 wt % H2O)
spinning in pure glycerol. As a result, the question of whether an EIT exists or not in such a case
has not been settled yet.

SDT experiments at low � are furthermore complicated by the fact that drops do not always
maintain a simple ellipsoidal shape. Even for immiscible fluids, for sufficiently low interfacial
tensions, they can develop a “dumbbell” or “dog-bone” shape consisting of two large heads
connected by a thinner central body, as reported in the case of water-hydrocarbon-surfactant systems
with � < 10 μN/m [25]. In this case a satisfactory explanation of the phenomenon is still lacking.
More recently [22], such shapes have been also observed in miscible fluids and have been attributed
to the effect of perturbation due to viscous secondary flows in finite reservoirs of rotating fluids.
Such an effect, till now unexplored, is the focus of the present work.

To set the scene, Fig. 1 shows examples of such dumbbell shapes for drops rotating in a pure
glycerol reservoir. Drops in panels A and C are composed of mixtures of water and glycerol,
respectively with water mass concentration cw = 0.75 and cw = 0.20, whereas the drop in panel
B is made of triethylene glycol (TEG). All drops are fully miscible with the glycerol background.
Strikingly, Fig. 1 shows that the development of a dumbbell shape depends not only on the density
and viscosity contrast with respect to the background fluid, but also on the molecular structure of
the fluids. Indeed, in absence of any interfacial stresses, the TEG drop should have an intermediate
shape between drops in panels A and C, since it has intermediate density and viscosity. This is
evidently not the case; consequently, Fig. 1 cannot be explained only by means of hydrodynamic
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(a) (b) (c)

FIG. 1. Dyed drops containing 75% H2O–25% glycerol (panel A), TEG (panel B), and 20% H2O–80%
glycerol (panel C). All drops spin in a reservoir of pure glycerol. Images are optically compressed in the
horizontal direction and expanded in the vertical direction to improve resolution, as detailed in the main text
(Sec. II).

arguments. Thus, characterizing the evolution of such drop shapes appears to be a promising strategy
to measure the effect of interfacial stresses between the drop and background fluids. In this work,
we tackle this challenging task and investigate experimentally the time evolution and the origin of
dumbbell-shaped drops by systematically varying the composition of the drop fluid in a series of
SDT experiments. Furthermore, we exploit fluorescent drops to track the time evolution of the full
concentration profile of the fluids in the capillary, instead of simply measuring the intensity profile
of the collected light. We model the temporal dynamics of the drop shape by balancing the normal
stress imposed on the drop surface, the shear stress opposing the deformation, and the effect of an
EIT, and we exploit the deformation dynamics to measure the effective interfacial tension between
miscible molecular fluids.

The rest of the work is organized as follows. In Sec. II we present the setup and materials
employed, and elucidate the procedure to extract the concentration profile of the fluids in the
capillary. In Sec. III we present the data on the deformation dynamics of drops, discussing our
results in the light of a model allowing one to measure �e. Finally, in Sec. IV we make some
concluding remarks and summarize the key results of our work.

II. MATERIALS AND METHODS

Glycerol (�99.5 wt %) was purchased from Sigma Aldrich and used as received. Water-glycerol
mixtures were prepared using Milli-Q ultrapure water, with densities ρ and viscosities η reported
in Table I as a function of water mass fraction cw, for T = 25.0 ± 0.5 ◦C. The water mass fraction
was determined via rheological measurements as detailed in Table I. Fluorescein (disodium salt)
was purchased from Merck KGaA and dissolved in the drop fluids at two concentrations, 2 × 10−3

wt/wt and 10−3 wt/wt, for two independent sets of measurements as detailed later. Experiments
were performed with a Krüss spinning drop tensiometer at 25.0 ± 0.5 ◦C, with rates of rotation
ranging from 6000 to 15 000 rpm, so that buoyancy could be neglected. All drops were injected with
a 1 μl syringe in a capillary with an internal diameter of 3.25 mm, prefilled with glycerol before
each experiment. The time between the injection and the beginning of the rotation was typically
10–15 seconds. After each measurement, the fluids were replaced and a fresh new drop was injected
in the capillary. To image the drops, the tensiometer is equipped with a blue LED with dominant
wavelength of 469 nm for illumination and a CMOS camera (Toshiba Teli BU406M) for imaging.
Since the drops become very elongated, we use as an objective two cylindrical lenses (Newport
CKX17-C) that expand the field of view in the horizontal direction x and compress it in the vertical
direction y. As described in [16], the resulting magnification in the x (horizontal) direction is Mx =
0.3, while the magnification in the y (vertical) direction is My = 3.36. The different horizontal and
vertical magnifications allow one to follow the dynamics of very elongated drops along almost all
the capillary length (5 cm), while gaining at the same time in accuracy along the vertical direction.
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TABLE I. Densities and viscosities of the water-glycerol mixtures used in the experiments.

Liquid ρ (g/cm3)a η (mPa s)b

Glycerolc (cw � 0.02) 1.26 ± 0.01 800.0 ± 0.1
cw = 0.25 1.19 ± 0.01 33.8 ± 0.1
cw = 0.45 1.12 ± 0.01 9.0 ± 0.1
cw = 0.70 1.07 ± 0.01 2.8 ± 0.1
cw = 0.75 1.06 ± 0.01 2.3 ± 0.1
cw = 0.90 1.02 ± 0.01 2.2 ± 0.2
Waterd 0.996 ± 0.001 0.89 ± 0.01

aDensities of water-glycerol mixtures were obtained from tabulated values [26] corresponding to mixtures
having the measured zero-shear viscosities.
bThe viscosities of water-glycerol mixtures and pure glycerol were measured by performing steady rate
rheology experiments using a stress-controlled AR 2000 rheometer (TA Instruments) with a steel cone-and-
plate geometry (cone diameter = 50 mm, cone angle = 0.0198 rad). No dependence of the viscosity on the
shear rate was observed as all samples showed pure Newtonian response.
cThe viscosity of the glycerol used as the background fluid is lower than that tabulated for anhydrous glycerol
[26] because of the unavoidable adsorption of water from the atmosphere.
dThe viscosity and the density of water were measured using a rolling-ball Anton Paar Lovis 2000ME
microviscosimeter and a DMA 4500M densimeter, respectively.

Following the magnification stage, a blue light filter in front of the CMOS eliminates the blue
background light.

A. Concentration profiles

An example of the optically compressed images of the drops obtained with the experimental
setup is shown in Fig. 2(a), displaying the typical time evolution of a drop of pure water spinning
in pure glycerol. A further step is required to follow more precisely the evolution of the interface.
To this end, we extract the concentration profile of the drop fluid from the fluorescence intensity,
in order to define precisely the drop boundary. Note that, strictly speaking, the fluorescence signal

FIG. 2. (a) Time evolution of the fluorescence intensity recorded for a typical drop of pure water in
a pure glycerol background. Note the different magnification in the horizontal and vertical directions.
(b) Concentration profiles reconstructed from the fluorescence intensity images of panel (a), as detailed in
the text. In panel (b), the scale is the same in the horizontal and vertical directions. The black line represents
the drop surface, defined as the set of points where ϕ̃(x, r) = 0.5.
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FIG. 3. Scheme of the drop for the inversion routine to retrieve the concentration profile from the
fluorescence intensity. We typically use N = 204 shells; for clarity, only the first four shells are shown here. The
fluorescence intensity distribution generally varies along the x direction, yielding an x-dependent concentration
profile for the drop fluid ϕ̃(x, r).

comes from the spatial distribution of fluorescein, not that of the drop fluid. However, over the
timescale of our experiments (∼10 s) we assume the concentration profile of fluorescein to closely
follow the one of the drop fluid, since there is not enough time to develop an appreciable difference
in distribution of the two components. To support this claim, we compare the diffusion coefficients
of water (the drop fluid) and of fluorescein in the background glycerol. The self diffusion coefficient
of water is Dw = 1.025 × 10−9 m2/s and the diffusion coefficient of water in glycerol is Dwg =
1.4 × 10−11 m2/s [27]. On the other hand, the diffusion coefficient of fluorescein in water is D f w =
6.4 × 10−10 m2/s [28]. We estimate the diffusion coefficient of fluorescein in glycerol as D f g �
D f w

Dwg

Dw
� 8.7 × 10−12 m2/s. Therefore, the difference between the distances over which water and

fluorescein may diffuse over the time scale of our experiments is lw − l f ≈ 3 μm, much smaller
than the resolution with which we measure the drop shape, which we determine to be a few tens of
μm. Consequently, we can safely assume the concentration profile of the fluorophore to represent
well that of the drop fluid. Furthermore, by changing the concentration of fluorophore over more
than one decade (from 1 × 10−4 wt/wt to 2.5 × 10−3 wt/wt), we tested that the concentration of
fluorescein is directly proportional to the light intensity collected.

These considerations, together with an additional symmetry argument, allow linking the intensity
of the collected light to the x dependent radial concentration profile of the drop fluid. Exploiting
the cylindrical symmetry of the drops, one can move from a bidimensional intensity image to a
three-dimensional concentration map.

In order to do so, we divide the drop into N concentric cylindrical shells of radius ri and constant
thickness dr, each of them having a local value of water volume fraction ϕ̃i (see Fig. 3). The
fluorescence intensity at a given horizontal coordinate x and vertical coordinate y is be given by
the sum over the contributions of each shell, weighted by a geometric factor ci proportional to
the length of the chord that traverses such shell at coordinate y, along the z direction, i.e., the
line of sight.

Accordingly, the intensity distribution reads

I (xk, y j ) =
N∑

i=1

ci(y j )ϕ̃i(xk ), (3)
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(a) (b)

FIG. 4. (a) Time evolution of the deformation amplitude h for a drop of pure water in a pure glycerol
background, at different ω as shown by the labels. (b) Deformation velocity as a function of the centripetal
forcing, for various water mass fractions in the drop. The inset shows the slope of the velocity versus �Pω,
obtained by fitting independently datasets at a given cw with a straight line.

where the indexes k and j have been introduced to account for the discretization of I on the pixel
grid of the CMOS camera. For a given xk , one can recast the problem in the matrix form

I = Cϕ̃, (4)

with I = {I j}, C = {c ji}, and ϕ̃ = {ϕ̃i}; and I j ≡ I (xk, y j ), c ji ≡ ci(y j ), and ϕ̃i ≡ ϕ̃i(xk ). For each
k, the solution is thus ϕ̃ = C−1I. This procedure is mathematically equivalent to calculating a
discrete version of the inverse Abel transform of the intensity distribution of the fluorescent light.
Furthermore, the inversion of the matrix C is sped up by exploiting the symmetry of the drop around
the longitudinal axis, which translates into the condition that C is lower-diagonal. By solving Eq. (4)
for all xk of interest, one obtains the concentration map of the the drop fluid in the capillary, as shown
in Fig. 2(b). We use the maps to define the drop surface as the set of points where ϕ̃(x, r) = 0.5, with
ϕ̃(x, r) normalized to unity in the region of the drop close to the axis of rotation. The amplitude h
of the drop deformation is defined as the difference between the maximum radius of the drop, close
to the tips, and the minimum radius, at the center of the drop (see Fig. 5 below).

III. RESULTS AND DISCUSSION

We characterize the evolution of the drops towards a dumbbell shape by observing the time
evolution of the deformation amplitude h, varying systematically the drop composition. Figure 4(a)
shows the time evolution of h for a drop of pure water in pure glycerol, for various rotational speeds.
Time t = 0 corresponds to the onset of the deformation, shortly after the start of rotation. At short
time the deformation amplitude increases linearly with time, with a velocity v = dh

dt that depends
on the rotation speed. This dependence on ω stems from the fact that spinning drops are subject
at the head of the drop to a rotation-induced pressure jump �Pω = 1

2�ρω2r2 [16,29], where �ρ

is the density difference between the denser background fluid and the drop and r the drop radius.
This pressure jump �Pω induces the drop elongation in first place, but it is also responsible for a
secondary flow of the background fluid that leads to the dumbbell shape, as we shall detail below.
Figure 4(b) reports the radial deformation velocity as a function of �Pω, for various concentrations
of water in the drops.

It is worth underlining two features. First, the velocity of the radial deformation is approximately
a linear function of �Pω, with a slope that is essentially independent of the concentration of water in
the drop, as shown in the inset of Fig. 4(b). Second, even before trying to rationalize the dependence
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FIG. 5. Scheme of the drop deformation. The dashed arrows show the secondary flow of the background
fluid induced by the capillary rotation.

of v on �Pω, it appears clearly that the data may be divided in two main families. All data for
drops with a mass concentration of water cw � 0.75 are compatible with a straight line through the
origin. By contrast, data from drops with cw = 0.9 and cw = 1 show a different behavior in that
a linear fit of v(�Pω ) displays a negative intercept with the v axis. This is counterintuitive if we
were to neglect interfacial tension: drops containing a larger fraction of water, being less viscous,
should be deformed more rapidly for a given centripetal forcing. Thus, the negative intercept of data
for cw � 0.9 strongly suggests a nonvanishing EIT for these systems. As a first step towards the
modeling of our experiments, we perform a linear fit of two families of data in Fig. 4(b), for water
concentrations up to cw = 0.75 and above cw = 0.9, respectively:

v = A�Pω + B, (5)

finding an R2 value of 0.98 and 0.97 respectively, keeping the slope A the same for the two data
families. The physical meaning of the terms A and B will be detailed later; however, we anticipate
that B depends on the concentration cw of water in the drop and hence on the EIT. It is thus crucial
to perform a statistical analysis of the data of Fig. 4(b) in order to assess whether the difference in
the offset B between data below and above cw = 0.9 (semifilled and solid symbols, respectively) is
statistically significant, or just due to experimental noise.

We perform a t test [30,31] on the difference between term B of the fit for the two data families,
for cw � 0.75 and cw � 0.9. As detailed in [32], for the data of Fig. 4(b) the Student t distribution
yields a value of the standardized variable t = 6.43. This is much larger than t0.995 = 2.95, the
edge of the 1% confidence interval for a two-tailed t distribution with N1 + N2 − 2 = 15 degrees of
freedom, where N1 = 9 and N2 = 8 are the numbers of data points in the two datasets. Hence we
conclude that the difference between the B parameter for the two datasets in Fig. 4(b) is statistically
significant, with a confidence level greater than 99%.

A. Model of the radial deformation and EIT

Having checked that the effect of the EIT on the data of Fig. 4(b) is statistically significant, we
propose a simple model to rationalize the data and extract from them �e. The model is based on the
balance of all sources of stress on the drop interface at the onset of the deformation. Similarly to the
approach by Lister and Stone in [29], we write an equilibrium equation for the stresses on the drop
surface, at the center of the drop:

nE = nS + nL, (6)
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where nE is the normal stress inducing the deformation and nS and nL are the normal stresses
opposing the deformation, with nS the shear stress arising from the motion of the drop and
background fluids and nL a Laplace-like term that takes into account the effect of the EIT. Since in
our experiments the viscosity ηe of the external background fluid is much higher than the viscosity
ηd of the drop fluid, the shear stress can be approximated as nS � 2ηev/l , where l is the distance over
which the radial deformation develops as shown in Fig. 5. The Laplace-like term nL is estimated
as the difference between the Laplace pressure jump at the heads of the drop and that at the central
body. At the onset of the deformation, the drop shape is well described by a cylinder with radius
r0 capped by two hemispheres. Consequently, the hemispherical heads and the cylindrical body
will be characterized by a pressure jump with respect to the background fluid of 2�e/r0 and �e/r0

respectively, leading to nL = �e/r0, where �e is the EIT.
The normal stress nE inducing the deformation and arising from the external forcing on the drop

deserves a further discussion. When investigating the limits of the SDT technique, as early as in
1982, Currie and Van Nieuwkoop observed that in any spinning capillary the background fluid is
not at rest, but rather flows towards the axis of the capillary at the center of the drop, thus inducing
an extra normal stress on the drop surface [25,33]. This secondary recirculating flow pushing on the
drop surface originates from the jump in centripetal pressure at the drop head, between regions I and
II in Fig. 5. The origin of this jump is easily understood by recalling that the hydrostatic pressure
induced by the rotational acceleration is proportional to the fluid density, which is smaller in the
drop as compared to the background fluid. By numerically solving the Navier-Stokes equations
[34], we verified that this secondary flow gives rise to a velocity field with a radial component
directly proportional to �Pω [32]. Since the external forcing on the drop originates from the
secondary recirculating flow and the latter is proportional to �Pω, we write nE = α�Pω with α a
positive constant.

Equation (6) can then be rewritten as

α�Pω − 2ηev

l
− �e

r0
= 0, (7)

which yields for the radial deformation velocity

v = αl

2ηe
�Pω − �el

2r0ηe
, (8)

i.e., the linear form introduced empirically in Eq. (5). Note that for miscible fluids �e decreases
over time, such that Eq. (8) holds only for short times after the onset of the radial deformation, well
before diffusion smears out the interface. For this reason, we measure the dynamics of the drop
deformation only for a few seconds, before diffusion becomes significant.

Albeit simple, Eq. (8) allows all the main features of the experimental data of Fig. 4(b) to be
rationalized: the velocity of the radial deformation at the onset of the instability varies linearly with
the centripetal forcing �Pω, with a prefactor that does not depend on the specific parameters of the
drop fluid, namely its viscosity and water concentration cw. Furthermore, Eq. (8) contains an offset
proportional to �e, which for miscible fluids is expected to depend on the concentration gradient
according to Eq. (1), and thus to be more significant at the highest cw. This explains why the data
for cw � 0.9 in Fig. 4(b) are not compatible with a line passing through the origin. Figure 6(a) shows
a master curve obtained by fitting each dataset at a given water concentration with Eq. (8) and then
rescaling the data using the parameters resulting from the best fit, by defining the scaled variables
v′ = (v r0

l + �e
2ηe

) 2ηe

α
and P′ = r0�Pω. In this representation, the data should fall on the straight line

v′ = P′. Figure 6 shows that within experimental error this is indeed the case, and that the results
do not depend on the fluorescein concentration.

The values of �e used to rescale the data in Fig. 6(a) are shown in Fig. 6(b) as a function of the
volume fraction φ and mass fraction cw of water in the drop, where solid and open symbols refer
to two concentrations of fluorescein. It is worth emphasizing the ultralow value of the EIT, which
attains at most 250 ± 50 nN/m for pure water drops in pure glycerol. This value is much lower
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(a) (b)

FIG. 6. (a) Mastercurve of the data of Fig. 4(b), obtained by using the scale variable introduced in the
text. (b) Experimental values of �e used to rescale the data in panel (a) as a function of the water volume
fraction φ (bottom axis) and the correspondent water mass fraction cw (top axis) in the drop. The black line
is the theoretical prediction for �e [Eq. (10)], discussed in the text. In both panels, solid (open) points refer to
measurements with fluorescein concentration 2 × 10−3 wt/wt (10−3 wt/wt).

than that previously reported in literature [23]. Our findings solve the longstanding controversy
stemming from conflicting literature values for the same system [23,24,35], as mentioned in Sec. I.
In particular, our result is in stark contrast with the value of EIT between water and glycerol reported
in [23], �e = 0.58 mN/m. Note that this latter value is also in contrast with the experimental
observation that drops of pure water spinning in glycerol keep on elongating without reaching a
stationary state, even in experiments lasting thousands of seconds. If the EIT was as high as reported
in [23], a drop of water in glycerol would deform towards a stationary state following an exponential
relaxation with time constant τ � 1.4 s, estimated following Ref. [16] and assuming a relaxation
dynamics similar to that of drops spinning in an immiscible background fluid. This is clearly not
the case. By contrast, the ultralow magnitude of the EIT measured here (a few hundreds of nN/m)
is consistent with several works [24,36,37] that report a negligible EIT for the same system.

A further support to our findings comes from a review of previous works investigating the
Saffman-Taylor instability occurring when water is injected in a Hele-Show cell containing glycerol.
Although a Saffman-Taylor instability does occur a few ms after the injection of the less viscous
fluid (water) into a Hele-Shaw cell and hence reduces the effects of diffusion, its visualization has
systematically suggested that viscous dissipation largely dominates over interfacial effects. In this
limit, the wavelength of the instability λST is only dictated by the gap of the injection cell b, and is
expected to satisfy

4b � λST � 5b. (9)

Previous works by Paterson [35] and more recently by Bischofberger and coworkers [36] and
Lajeunesse and coworkers [37] systematically find λST values in this regime, thus suggesting that the
EIT between water and glycerol is too low to be measurable through the Saffman-Taylor instability.
To corroborate this notion, we use Eq. (9) to extract a lower bound for the �e values measurable
with this technique [38,39], which we quantify as the EIT for which the wavelength observed at the
onset of the instability equals 4b. We show in [32] that this lower bound for water-glycerol systems
in a typical Hele-Show cell and for accessible injection rates is approximately 0.1 mN/m, while the
measurement of much lower values is hampered by diffusion.
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By contrast, the analysis of the radial deformation of drops towards dumbbell shapes proposed
here allows one to measure EIT values as low as hundreds of nN/m, well beyond the limits of any
other standard experimental technique. The strength of the method proposed in this work resides in
the fact that the forcing α�Pω is very weak, thus allowing relatively low values of the capillary (Ca)
and the Bond (Bo) numbers to be reached. The first is defined as the ratio between viscous forces
and surface tension forces acting across the interface between the fluids: Ca = ηv

�
. Considering

the viscosity of the background fluid (glycerol), the measured deformation speed v and �e, the
capillary numbers characterizing our experiments are in the range 2 � Ca � 20, which are relatively
low, taking into account that we probe miscible interfaces and hence �e is very small. The second
dimensionless number relevant for our experiments is the Bond number, the ratio of the external
forces to surface tension forces: Bo = α�Pωr0/�e. In our case, 0.4 � Bo � 4, corroborating a
scenario where capillary stresses are indeed relevant for the drop deformation. The estimates for
Ca and Bo also explain the large uncertainty on the value of �e at ϕ < 0.9 in Fig. 6(b): when the
EIT decreases to extremely low values, both the capillary and the Bond number increase well above
unity, making �e barely measurable.

In order to further validate our measurements, we calculate the expected EIT between water
and glycerol using a phase field model introduced in [5]. We briefly recall the main ingredients
of the model: by assuming local equilibrium between the two fluids [40–42], one computes both
the enthalpic and the entropic contributions to the Korteweg parameter κ (ϕ̃) using lattice theory
arguments and assuming for simplicity that the mixture is symmetric, i.e., that the two fluids have the
same molecular volume. The two terms are due, respectively, to the variation of the internal energy
density u and to the decrease of configurational entropy density s in the region where |∇ϕ̃| > 0. They
are obtained by expressing u and s as a function of the local concentration, assuming a concentration
gradient across three adjacent lattice layers orthogonal to the z direction, and finally by expanding
the local concentration around that of the central layer, up to second order in the spatial derivatives
of ϕ̃. Furthermore, in analogy to equilibrium systems, the local concentration profile is modeled by
ϕ̃ = φ

2 + φ

2 tanh( z
δ
), with φ the volume fraction of one kind of molecules, e.g., water, in the bulk

fluids. As detailed in Ref. [5], the model predicts

�e = RTa2

Vmδ

{
χwg

φ2

6
+ 2

3

[
1 + 1 − φ

φ
ln(1 − φ)

]}
, (10)

with R the ideal gas constant, a and Vm the diameter and the molar volume of the fluid molecules
respectively, and δ the interface thickness. The first term on the right-hand side of Eq. (10),
proportional to the χwg parameter characterizing the interaction between water and glycerol
molecules, quantifies the energy penalty (or gain) due to a local compositional inhomogeneity. The
second term is always positive and depends only on φ. It quantifies the entropy loss due to the
(transient) gradient of concentration. We note that the approximations used to derive Eq. (10) imply
that the concentration gradient at the interface is small, such that the effective interfacial tension is
dominated by the first term of the mixing free energy expansion, i.e., the square gradient one.

To estimate �e for our water-glycerol mixtures we use Eq. (10) and take the average of
the molecular diameter and molar volume of water and glycerol: 〈a〉 = 0.45 nm and 〈Vm〉 =
45.5 ml/mol. We further consider the effect of diffusion by calculating the thickness of the interface
as δ = √

2Dwgt where Dwg = 1.4 × 10−11 m2/s is the diffusion coefficient of water in glycerol [27]
and t ≈ 15 s is the typical time elapsing between the drop injection and the observation of the
instability. The result is displayed in Fig. 6(b) (line), showing that our data are very well captured
by the theoretical �e obtained via Eq. (10), with no adjustable parameter. The agreement between
the data and Eq. (10) suggests that the model of Ref. [5], albeit very simple, may be reliably used
to estimate the EIT. Since −1 < χ < 1 for most pairs of miscible substances [43], for φ � 1 the
effective interfacial tension between miscible molecular fluids is well approximated by

�e ≈ 2RTa2

3Vmδ
. (11)
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As an example, for liquids with characteristics similar to water (a ≈ 0.1 nm, Vm = 18 ml/mol,
D = 1.025 × 10−9 m2/s [27] at T = 298.15 K), Eq. (11) predicts a tension ranging from
�e ≈ 13 mN/m to �e ≈ 20 × 10−6 mN/m as the interface thickness increases from a value
comparable to the molecular size (δ ≈ a for t = 0) to 45 μm after t = 1 s of interdiffusion. This
supports the fact that for fully miscible low-viscosity fluids capillary effects decay very rapidly with
time and can be safely neglected in most cases. However, this may not be the case when diffusivity
is very low, a condition that can be attained in many simple liquids like silicon oils [44], colloidal
and polymer suspensions [5], or in geologically relevant fluids such as silicate fluids in the Earth
mantle [45,46]. Finally, we note that this argument offers also a possible explanation for the absence
of deformation for the triethylene glycol drop in Fig. 1, panel B. Indeed, TEG has a miscibility with
glycerol similar to that of water, the three liquids having similar Hansen solubility parameters [47],
but it is significantly more viscous than water (ηTEG = 49 mPa s). Therefore, one may expect, on the
timescale of our experiments, a stronger effect of the EIT as compared to the case of water drops,
thus preventing the development of the dumbbell shape.

IV. CONCLUSIONS

We have experimentally characterized the time evolution of the shape of miscible drops in SDT
experiments. We have shown that a dumbbell shape arises for sufficiently low values of EIT, which
depends not only on the density and viscosity contrast between the drop and the background fluids,
but also on the molecular structure of the fluids. We have focused on mixtures of water and glycerol,
for which literature data were conflicting [23,24,35], and employed the dynamics of the drop shape
as a tool to measure the EIT. By means of a simple model which takes into account the normal stress
on the drop surface, the shear stress opposing the deformation, and a Laplace-like term containing
an effective interfacial tension, we obtained an EIT of 250 ± 50 nN/m for water in contact with
pure glycerol, decreasing rapidly below the resolution limit of the method as the amount of glycerol
in the drops increases above 10%. This result is in excellent agreement with an estimate of the order
of magnitude for the EIT for the same system obtained from a phase field model [5], while it is
orders of magnitude lower than the experimental limit of all conventional techniques for measuring
interfacial tensions. Therefore, besides shedding light on the controversy stemming from conflicting
literature data on the EIT between water and glycerol, our work demonstrates a new method to
measure extremely low interfacial tensions and in particular the EIT, paving the way for a thorough
understanding of Korteweg stresses and capillary phenomena in miscible fluids.
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We provide here details on i) the statistical significance of the water concentration de-

pendence of the deformation velocity of drops in a miscible background, ii) the simulations

of the recirculating flow on top of spinning drops, and iii) the limitations of the direct

visualization of the radial Saffman-Taylor instability as a method to measure the effective

interfacial tension (EIT) in water-glycerol systems.

STATISTICAL SIGNIFICANCE OF THE cw DEPENDENCE OF THE DEFORMA-

TION VELOCITY

Figure 4b of the main text shows the deformation velocity v of drops evolving towards

a dumbbell shape, as a function of the centripetal forcing ∆Pω and for different values of

the water mass fraction cw of the drop. As seen in the figure, data may be divided in two

sets: data points for cw ≤ 0.75 seem to be compatible with a straight line through the

origin, while data for cw ≥ 0.9 apparently are not, since a linear fit exhibits a negative

intercept with the v axis. Since the intercept depends on cw, hence possibly on the EIT, it

is important to perform a statistical analysis of the data in Fig. 4b, in order to ascertain

whether the difference between the two sets of data is statistically significant or is just due

to experimental noise.

Due to measurement uncertainties, experimental data yex measured as a function of a

control parameter xex and supposedly described by some physical law y = f(x) will always

be scattered around the model prediction. Assuming that data scattering results from a large

number of mutually independent error sources, the underlying distribution of the residues

yex − f(xex) may be assumed to be Gaussian [1, 2]. When the number N of experimental

data points is small, typically N . 30, statistics will deviate from that of large population

samples. In particular, for small samples the Gaussian distribution of the residues will be

replaced by the Student’s t-distribution.

For our data, we consider the affine model v = A∆Pω +B (Eq. (5) of the main text) and

focus on the statistics of ξ = v − A∆Pω, where A is obtained by simultaneously fitting the

two sets of data (experiments with cw ≤ 0.75 and cw ≥ 0.9, respectively), imposing the same

slope for both data sets. We denote respectively by Bi, si, µi and Ni the mean, variance,

expected value and number of samples for ξi, where the index i = 1, 2 refers to the two data

sets. All values of the relevant experimental parameters are recapitulated in Table SMT1.

2
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Data set cw Ni Bi (m/s) si (m/s)

i = 1 ≤ 0.75 9 −5.4× 10−8 3.3× 10−7

i = 2 ≥ 0.9 8 −1.6× 10−6 6.1× 10−7

TABLE SMT1. Parameters for the analysis of the statistical significance of the data of Fig. 4 of

the main manuscript. See text for more details.

To test the statistical significance of the difference between B1 and B2, we quantify the

probability that the underlying expected values are actually identical, µ1 = µ2, while B1 and

B2 differ just by chance, having being obtained from a limited number of experimental data

points. For small populations, the standardized difference between the two mean values, t,

is distributed according to a Student’s t-distribution with N1 + N2 − 2 degrees of freedom,

with

t =
B1 −B2

σ
√

1/N1 + 1/N2

, (1)

and where σ is obtained from the experimental sample variances s1 and s2 as σ =√
N1s21+N2s22
N1+N2−2 . Using the values reported in Table SMT1, we find t = 6.43, larger than

t = 4.073, the edge of the 0.1% confidence interval for a two-tailed t-distribution with

N1 + N2 − 2 = 15 degrees of freedom. We conclude that µ1 6= µ2 with probability larger

than 99.9%, i.e. that the difference between B1 and B2 is indeed statistically significant.

RECIRCULATING SECONDARY FLOW AND DEPENDENCE ON ∆Pω

In any spinning drop tensiometry experiment, the background fluid is not at rest, but

rather flows towards the axis of the capillary inducing an extra normal stress on the drop

surface [3]. This phenomenon, present even for stationary, ellipsoidal drops, has been invoked

to rationalize the origin of dumbbell shapes when the interfacial tension between the drop

and the background fluid is extremely weak [4, 5]. Indeed, in a spinning capillary the

centripetal pressure P depends on the axial, x, and radial, r, coordinates as:

P (r, x) =

∫ r

0

ρ(r′, x)ω2r′dr′ , (2)

where ω is the rotational speed and ρ the fluid-dependent mass density. Since the mass

density of the drop is lower than that of the background fluid, for a given distance r from

3
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the capillary axis P is lower in the x region occupied by the drop, as shown in Fig. SM1,

which displays the axial profile of P for a cylindrical drop capped by two hemispheres. The

horizontal pressure gradient due to the pressure drop in the region xA < x < xD induces a

recirculation flow in the capillary.

Figure SM1: Axial dependence of the pressure in the background fluid in a spinning drop

experiment, for two distances r from the capillary axis, both larger than the drop radius. The

drop shape is shown as the blue region. The solid lines show the pressure profile for a cylindrical

drop capped by two hemispheres. The dashed lines show the simplified, piece-wise linear profile

used in the calculations. The decrease of P in the x range occupied by the drop is responsible for

the recirculation flow of the background fluid shown schematically in Fig. 5 of the main

manuscript.

To gain insight on this flow, we solve numerically the Navier-Stokes equations for the

background fluid in the region xA ≤ x ≤ xD and rd ≤ r ≤ rC , with rd and rC the radius

of the drop and of the capillary, respectively. We assume all fluids to be incompressible

and write the momentum conservation equation by splitting the pressure into its steady

and unsteady contributions: p(x, r) = P (x, r)+p′(x, r), where the r.h.s. terms represent the

inhomogeneous centripetal pressure and the pressure associated to fluid motion, respectively.

One obtains
∂~v

∂t
+ (~v · ∇)~v = −1

ρ
∇(P + p′) + ν∇2~v , (3)

where ~v, ρ and ν are the fluid velocity, density and kinematic viscosity, respectively. Sepa-

4
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rating the two contributions to the pressure field is equivalent to including in the momentum

equation a source term arising from the (steady) pressure gradient, −1
ρ
∇P = ~F :

∂~v

∂t
+ (~v · ∇)~v = −1

ρ
∇p′ + ν∇2~v + ~F (4)

The cylindrical symmetry of the capillary allows the problem to be solved in two dimen-

sions, yielding the following set of equations:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂r
= −1

ρ

∂p′

∂x
+ ν

(
∂2u

∂x2
+
∂2u

∂r2

)
+ Fx (5)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂r
= −1

ρ

∂p′

∂r
+ ν

(
∂2v

∂x2
+
∂2v

∂r2

)
+ Fr (6)

∂2p′

∂x2
+
∂2p′

∂r2
= −ρ

[(
∂u

∂x

)2

+ 2
∂u

∂r

∂v

∂x
+

(
∂v

∂r

)2
]

(7)

where u and v denote the x and r components of ~v, respectively. Equation 7 is the Pois-

son equation for the pressure obtained by inserting the incompressibility condition for the

background fluid (∇ · ~v = 0) in the momentum equation.

We numerically solve Eqs.(5-7) for the background fluid (r > rd), in the x range occupied

by the drop, with boundary conditions (u, v) = (0, 0) and ∂p
∂~n

= 0 at the drop-background

fluid interface and at the capillary wall, where ~n is the unit vector normal to each bound-

ary. The solution for u, v and p is obtained by performing a central discretization on the

variables [6] and by iterating until stability is reached. Note that we are interested in un-

derstanding the general behavior of the recirculating flow rather than its detailed behavior.

Accordingly, for the sake of simplicity we approximate the pressure profile P (x) by a piece-

wise linear function with a trapezoidal shape and a pressure drop ∆Pω = ω2

2
(ρf − ρd)r2d in

correspondence with the drop body (see dashed lines in Fig. SM1).

In order to investigate the external forcing on the drop surface due to the recirculating

flow, we evaluate the radial component of the velocity in the x range occupied by the drop

body, xB < x < xC . Since we are interested in the radial deformation of the drop towards

a dumbbell shape, we look for a difference between v at the center of the drop and close to

the heads. Figure SM2 a) shows the axial dependence of ∆v(x) = v(xB)− v(x), for various

∆Pω. The data are obtained for r = 19, but they are representative of all r within the

gap between the drop and the capillary wall. Clearly, the magnitude of the radial velocity

is larger at the center of the drop than near the heads, resulting in the drop surface being

5
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Figure SM2: (a) Radial velocity difference ∆v(x) = v(xB)− v(x) of the background fluid for

several magnitudes of the centripetal forcing ∆Pω, obtained from a numerical solution of

Eqs.(5-7), with xB = 1, xC = 8, rd = 15 and r = 19. ∆Pω varies from 0.01 to 0.58 by steps of

0.095, from the bottom curve to the top one. (b) Symbols: maximum value of ∆v, attained at

xM = 4.5, as a function of ∆Pω. The line is a linear fit through the origin.

pushed towards the capillary axis stronger at its center than at the heads, consistent with

the development of a dumbbell shape. Figure SM2 a) shows also that the velocity imbalance

increases with increasing ∆Pω, i.e. with increasing angular velocity or density mismatch. To

quantify the dependence on the centripetal forcing, we plot in Fig. SM2 b) the maximum

value of ∆v, attained in correspondence to the center xM of the drop body, as a function

of ∆Pω. The magnitude of the recirculating flow, ∆v(xM), is found to depend linearly on

∆Pω. This justifies writing the normal stress induced by the recirculating flow at the onset

of the instability as nE = α∆Pω, with α a positive constant, as it was done in Sec. III A of

the main text. Moreover, this explains why the experimental deformation velocity depends

linearly on ∆Pω, as seen in Fig. 4b of the main text.

6
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CAN THE DIRECT VISUALIZATION OF THE RADIAL SAFFMAN-TAYLOR IN-

STABILITY BE USED AS A METHOD TO MEASURE Γe IN WATER-GLYCEROL

SYSTEMS?

The Saffman-Taylor (S-T) instability occurs when a less viscous fluid displaces a more

viscous one confined in a porus medium. The boundary between the fluids is uneven and the

less viscous fluid develops fingers protruding into the more viscous one. Most experimental

research on viscous fingering has been performed using Hele-Shaw cells, which consist of

two closely spaced, parallel plates of glass. In the widely used radial configuration, the more

viscous fluid is confined between the two plates and the less viscous fluid is injected through a

small hole drilled in the center of one of the plates. We have recently shown that the analysis

of the characteristic wavelength λST at the onset of the radial S-T instability is a valuable

tool to investigate interfacial stresses in miscible colloidal and polymeric fluids [7, 8]. One

may thus wonder if the same strategy could be employed to measure Γe for water-glycerol

systems.

Various experiments, however, have suggested that radial S-T instabilities occurring when

water displaces glycerol [9] —or more generally when two different water-glycerol mixtures

are used to generate S-T patterns [10]— are not affected by capillary forces. In 1985, Pater-

son [9] showed that in the absence of interfacial tension a cut-off wavelength characterizes

the onset of the S-T instability. Namely, his theoretical analysis shows that for Γe = 0 the

growth of the instability is dominated by viscous dissipation, giving rise to a characteristic

wavelength dictated only by the cell gap b: λST ' 4b. By contrast, for Γe > 0, the wave-

length characterizing the onset of the instability depends not only on b, but also on the

injection rate of the less viscous fluid, the viscosity contrast between the fluids and the in-

terfacial tension [7]. In particular, all other parameters being fixed, λST grows with Γe, such

that λST ' 4b is the minimum wavelength of a S-T instability observable in a radial viscous

fingering experiment. The experimental data for water/glycerol systems of Refs. [9, 10] are

consistent with Γe ' 0, since it was found that λST ' 4b.

In order to evaluate the feasibility of measuring Γe in water-glycerol systems via the vi-

sualization of S-T patterns, we perform numerical simulations based on the linear analysis

introduced by Miranda and Widom [11]. Our goal is to quantify the minimum value of Γe

that could be measured by this method in a Hele-Shaw experiment with optimized yet real-

7
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istic parameters. In the simulations, the fluid-fluid interface is supposed to expand radially.

A perturbation around this circular interface develops with time, due to the instability. It is

convenient to decompose the perturbation in Fourier modes with complex amplitude ζn(t),

n = 1, 2, .... Assuming that the noise giving rise to the instability is a complex number ζ0n,

with a random phase and a n-independent modulus, the time evolution of the amplitude of

the n-th mode is given by [7, 11]:

ζn(t) = ζ0n

{(
K(t)

(nA− 1)

n2(n− 1)

nA−1
)

exp

[
(nA− 1)

(
1

K(t)

n(n2 − 1)

nA− 1
− 1

)]}
. (8)

In Eq. (8), A = (η2 − η1)/(η2 + η1) > 0 is the viscosity contrast between the two fluids

and K(t) = [r(t)Q]/(2πβ), where r(t) is the distance of the unperturbed fluid-fluid interface

from the center of the cell, Q is the area covered by the injected fluid per unit time, and

β = b2Γ/[12(η1 + η2)], with b the cell gap and Γ the interfacial tension between the two

fluids. Note that Eq. (8) only holds for nA > 1, a condition fulfilled for water displacing

glycerol for all n > 1. We emphasize that Eq. (8) is derived in the framework of a quasi

2D theory that neglects the curvature of the interface along the direction perpendicular to

the glass plates. As a result, this theory poses no lower bound on the wavelength of the

instability: values of λST < 4b issued from the simulations should therefore be regarded as

nonphysical and discarded.

Using Eq. (8) and summing the contributions of 500 modes, we simulate the S-T instabil-

ity in a Hele-Shaw cell with b = 250 µm, as in previous works on miscible fluids [8, 10]. The

top row of Fig. SM3 shows three representative sets of interface positions at various times,

obtained from simulations with different values of Γe, as indicated by the labels. We measure

the wavelength of the instability at its onset by counting the number of nodes (inflection

points) along the first contour line for which inflection points clearly emerge from the back-

ground noise. The wavelength thus obtained is plotted in the bottom panel of Fig. SM3, for

three injection rates V̇ within the typical range of experimentally accessible values [7, 8, 10].

Keeping in mind that data points with 〈λST 〉 < 4b are nonphysical, one concludes that for

the parameters used here Γe values smaller than about 0.1 mN/m are unaccessible. This sets

an upper bound for the interfacial tension between water and glycerol measured in previous

Hele-Shaw experiments. Note that, in principle, thinner Hele-Shaw cells would allow smaller

values of λST and hence of Γe to be measured. However, for b < 250 µm it is hard to pre-fill

homogeneously the cell with the more viscous fluid (glycerol in our case), because of the

8
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Figure SM3. Top row: representative patterns obtained at V̇ = 0.01 ml/min and for three

values of the interfacial tension, as indicated by the labels. The curves display the interface

between the two fluids at times that increase respectively from 10 s by steps of 10 s (A), from 102

s by steps of 102 s (B) and from 103 s by steps of 103 s (C). Bottom panel: Average wavelength of

the radial S-T instability 〈λST 〉 at its onset as a function of the interfacial tension Γ for three

different injection rates. 〈λST 〉 is obtained by averaging results from 10 simulation runs, with

b = 250 µm and a random noise amplitude |ζ0n| = 10−9 m. The arrows indicate the data points

corresponding to the three panels of the top row. Open symbols refer to nonphysical values

〈λST 〉 < 4b and should be discarded, as discussed in the text.

heterogeneous local wetting of the fluid on the cell walls, which are unavoidably irregular on

the micron scale. This typically gives rise to an anisotropic distribution of the fluid in the

cell, leading to erratic experimental results.

Another strategy to access very small Γe values by investigating the S-T instability might

consist in using extremely low injection rates. Indeed, the bottom graph of Fig. SM3 shows

that reducing the injection rate shifts the lower bound on the measurable EIT to lower values.

To test whether this approach would be practically feasible, we run simulations imposing

Γe = 250×10−6 mN/m, the value inferred from our spinning drop experiments. We tune the

injection rate so as to keep the wavelength of the perturbation at the onset of the instability

just above the limiting value λST = 4b. The resulting pattern is shown in Fig. SM4. We
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Figure SM4. Typical S-T pattern obtained by imposing Γe = 250× 10−6 mN/m, as in our

spinning drop experiments. The injection rate (10−5 ml/min) has been chosen to match the

limiting condition 〈λST 〉 ≈ 4b. The time needed to the interface to reach the radius at which the

instability becomes measurable is tonset ' 314 s.

find that an extremely small injection rate would be required: V̇ = 10−5 ml/min. Even

more importantly, the onset of the instability would occur 314 s after starting the injection,

a time span one order of magnitude larger than that in our spinning drop experiments. Over

such a long time, diffusion would significantly smear out the interface, reducing the EIT well

below the resolution of any method currently available. Therefore, the measurement of Γe

through the detection of S-T patterns in water-glycerol systems appears to be unfeasible,

because diffusion smears the interface at very low injection rates, while viscous dissipation

alone dictates the interface shape at higher rates.
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Chapter 4

Spinning elastic beads: a route for
simultaneous measurements of the
shear modulus and the interfacial
energy of soft materials

Even though the main interest of this thesis is the investigation of capillary
phenomena at miscible interfaces, the techniques that we employ are also appli-
cable to other systems. In particular, spinning drop tensiometry can be used to
investigate the interplay between capillarity and elasticity when a soft solid bead
is inserted in the spinning capillary, allowing for an independent measure of
the bead elastic modulus and of the interfacial tension between the bead and the
background fluid. Since more conventional techniques rely on the measurement
of the elasto-capillary length (the ratio of the interfacial energy per unit area to
the elastic modulus) and cannot decouple the capillary and elastic contribution,
this use of SDT appears as a promising way to access both the shear modulus
and the surface energy of soft solids. Here we present an investigation of this
method, recently published in [31].
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Large deformations of soft elastic beads spinning at high angular velocity in a denser background fluid

are investigated theoretically, numerically, and experimentally using millimeter-size polyacrylamide

hydrogel particles introduced in a spinning drop tensiometer. We determine the equilibrium shapes of

the beads from the competition between the centrifugal force and the restoring elastic and surface

forces. Considering the beads as neo-Hookean up to large deformations, we show that their elastic

modulus and interfacial energy constant can be simultaneously deduced from their equilibrium shape.

Also, our results provide further support to the scenario in which interfacial energy and interfacial

tension coincide for amorphous polymer gels.

1 Introduction

When subjected to external loads, elastic bodies change their
shape due to the interplay between the applied load and the
restoring forces of the material the body is made of.1,2 Below
the elastic limit, these are the bulk elastic forces following the
material-specific stress–strain relation, and the surface forces
dictated by the interfacial free energy that characterizes the
interaction with the surrounding medium. Since the subtle
balance between these forces stays relevant even beyond the
elastic limit and determines, together with the onset of plastic
events, the occurrence of material failure and permanent
deformation,3 bulk and surface stresses turn out to drive the
behavior of soft materials under many circumstances.1–3 For
this reason understanding the importance of these two contri-
bution to material response is of paramount importance.

The impact of interfacial stresses on the equilibrium shape
of elastic materials can be readily quantified by the elasto-
capillary length c, defined as the ratio of the interfacial energy
per unit area G to the shear modulus G0 of the body under
consideration. When c is comparable with or larger than other
characteristic lengths of the system4–6 interfacial stresses must

be taken into account to compute stationary material shapes
and to predict possibly the onset of instabilities.7–9 This is the
case for soft elastic samples with small geometric features. For
example, for a hydrogel with shear modulus G0 B 30 Pa and
interfacial tension G B 30 mN m�1, the elasto-capillary length
is c = 1 mm. Therefore, the equilibrium shapes of millimetric
and submillimetric elastic particles must be necessarily
affected by the interfacial contribution to their total energy.

Despite of this general and well-grounded consideration,
many important questions concerning the interplay between
bulk and interfacial stresses10,11 and the very nature of the
latter in amorphous solids12,13 remain unanswered. For a
generic material immersed in a background medium interfacial
energy is the energy required to create a unit area of new
surface by a division process, whereas interfacial tension is
the surface stress associated with its deformation. For Newtonian
liquids, interfacial tension and interfacial energy are two strictly
equal quantities since, when a liquid interface is deformed, the
distances between the molecules at the interface are not affected
by the imposed deformation as molecules can move freely from
the bulk to the liquid boundaries. It is generally not so for a solid,
for which interfacial energy may depend on the surface area, as
first pointed out by Shuttleworth14 in his pioneering work. Since a
solid surface consists of a constant number of atoms, the work
done to alter the separation distance between atoms at their
surface is expected to depend on this distance itself.14–16 As a
result, the work required to deform a material is not necessarily
the same as the thermodynamic work required to create a new
surface. For crystals the problem has been solved16,17 since their
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surface free energy is a function of the surface area itself and
hence it is expected to be different from the surface tension.
However, for amorphous materials, like cross-linked elastomers,
the issue remains unresolved because the molecules have local
mobility allowing them, at least in principle, to show liquid-like
behavior: the surface reforms in response to external stimuli.18,19

While this liquid-like scenario has been recently confirmed for
Polydimethylsiloxane (PDMS) elastomers,12 other experimental
works pointed out that for specific soft gels13,20,21 the interfacial
energy does depend on the surface area, or equivalently on the
imposed compressive strain parallel to the surface, and, as a
consequence, interfacial free energy and interfacial stress are
expected to differ.14,20,21

Moreover, for most solid materials the accurate measure-
ment of the interfacial energy is experimentally challenging,
since the intimate coupling between the contributions of
interfacial and bulk energies hampers the detection of effects
solely due to interfacial stresses. For instance instability
thresholds5,22 and the shapes taken by softened wedges23–25

or ripple deformations26 involve the coupling between surface
stress and bulk elasticity through the elasto-capillary length,
making impossible to determine separately the two parameters
(G0 and G). Even if one of the two parameters, e.g. the shear
modulus, were determined elsewhere, a measurement relying
on a single experiment is of limited accuracy. To solve this
problem, indentation tests, standard rheometry or stretching
tests, based on a gradual variation of an external load could in
principle be used. However, these methods involve the
presence of solid–solid contact forces27,28 that typically affect
the measurement and give rise to issues like slip and edge
fracture. Furthermore, in the case of ultrasoft gels the measure-
ment of the elastic modulus through these techniques is even
more troublesome since one would be confronted with issues
related to insufficient instrumental accuracy.

For these reasons, unveiling effects of surface energy in soft
solids remains arduous and it has not been possible to con-
verge to any conclusive result. This motivates investigations of
phenomena that originate from a non-negligible contribution
of interfacial free energy in the absence of solid–solid contacts
over a wide range of strains, while, at the same time, engineering
strategies to fully decouple interfacial and bulk stresses would be
highly desirable.

In this paper, we tackle this challenging task and report on a
theoretical and numerical study of the deformation of soft neo-
Hookean beads when they are immersed and spun in a denser
background fluid. Strikingly we found that, if the interfacial
energy of the beads does not depend on their deformation, the
elastic and the interfacial contributions determining the bead shape
can be decoupled when the strong deformation limit is reached,
namely when the ratio between the two principal axis of the
deformed particles is dmax/dmin \ 2. To check further the reliability
of our results we have investigated the deformation of soft poly-
acrylamide beads immersed in a denser immiscible fluid and spun
in the capillary of a commercial spinning drop tensiometer (SDT).

Though an SDT is usually employed to measure low liquid–
liquid interfacial free energies,29–31 recently it has been used

also for purposes ranging from the study of the relaxation
dynamics of liquid drops32 and the presence of an effective
interfacial tension in miscible fluids,32–35 to the characteriza-
tion of the mechanical properties of thin elastic capsules36 and
viscoelastic properties of polymer melts.37,38

Unlike the aforementioned works, here we use an SDT to
investigate the equilibrium shapes of full elastic beads with a
radius of the order of one millimeter and shear modulus of the
order of 10 Pa,10 for which we expect important elasto-capillary
effects. The analysis proposed in this work has been developed
specifically for homogeneous beads and is far different from
previous attempts to adapt spinning drop tensiometry measure-
ments to elastic and viscoelastic bodies.36–38

When the SDT capillary is spun around its axis at a prescribed
angular velocity, and once a steady state is reached, the beads spin
solidly with the background fluid and the capillary itself. Since the
surrounding fluid is denser than the bead, the centrifugal forces
center and stretch the bead on the axis of rotation (Fig. 1). In this
geometry, the sample bead is entirely surrounded by a liquid
without any contact with other solid bodies. This is an important
benefit of this geometry as the only interfacial free energy to be
considered is the solid–liquid one. In addition, the external load
(i.e. the centrifugal forces) can be finely tuned up to values
generating large deformations (\500%) of the bead.

The remainder of this paper is organized as follows. Assuming
an interfacial energy independent from the deformation, the base
equations governing the equilibrium of a spinning elastic bead
surrounded by a liquid spinning at the same angular velocity
are derived in Section IIA. These equations are first solved by
assuming a homogeneous (biaxial) deformation of the bead
(Section IIB). It is shown that, within this approximation, the
effects on the deformation due to the contributions of the
interfacial free energy and bulk elasticity can be decoupled at
high centrifugal forcing. A full resolution of the base equations is
made in Section IIC using the Finite Element method, showing
the limitation of the biaxial approximation for a quantitative
analysis. Interestingly, the behaviour emerging from the approxi-
mation still holds, providing a way to access to both the elastic

Fig. 1 Sketch of a spherical elastic bead immersed in a liquid of higher
mass density and deformed by centrifugal forcing. (a) Initial configuration
of the bead at rest (o = 0). (b) The elastic bead is spun solidly (o4 0) with a
denser fluid, both being contained in a cylindrical capillary. Centrifugal
forces give rise to the reversible deformation of the bead and stabilize its
position on the capillary axis.
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modulus and the interfacial free energy constant of the beads.
In Section III we report on experiments carried out with a
commercial spinning drop tensiometer and soft polyacrylamide
beads. A discussion of the main results and a comparison with the
expected values for G0 and G follows. Our experimental results
point out that, for acrylamide gels, the interfacial energy is strain-
independent and hence that the Shuttleworth effect is absent.14

Such a conclusion has been further tested by comparing the
interfacial energy of the beads and the interfacial tension mea-
sured between the background fluid and a non-crosslinked liquid
polyacrylamide solution. The agreement between these two values
further corroborates a scenario in which bulk elasticity does not
contribute significantly to interfacial stresses. Finally, in Section
IV we make some concluding remarks and summarize the key
results of this work.

II Theory
A. Equilibrium equations at finite strains

The non-linear equations governing the equilibrium (steady)
configuration of a rotating elastic sphere are derived considering a
positive constant interfacial energy and an isotropic and incom-
pressible neo-Hookean constitutive law. The latter is known to
describe well the mechanical properties of soft polyacrylamide gels
for strains up to several hundred percent.39–41

Let us consider an elastic bead of radius R0, shear modulus
G0 and density ri immersed in an infinite Newtonian back-
ground fluid of density ro 4 ri. As the sphere is spun at angular
velocity o around one diameter (aligned along axis z), the bead
deforms, stretching along the rotation axis to minimize its
rotational energy. In the co-rotating frame the elastic force,
the surface force and the centrifugal force are conservative. The
equilibrium can therefore be derived from the condition that
the total potential energy is minimum. The position R of a
material point in the deformed configuration is given as a map
R(r) in terms of the position r in the undeformed configuration.
For an isotropic and incompressible neo-Hookean solid, the
strain energy density is:

Wel ¼
G0

2
tr FT � F� 1
� �

; (1)

where F = qR/qr is the deformation gradient and 1 the unit
matrix. The equilibrium is governed by the minimization of the
free energy

E ¼ GAþ
ð
O0

WeldV0 þ
ð
O0

1

2
Dro2R2dV0; (2)

where R is the radial distance from the z-axis in the deformed
configuration (R = R�R � R�ez), dV0 is a volume element in the
reference configuration, O0 is the volume occupied by the bead,
A is the area of the deformed boundary and Dr = ro � ri is the
mass density contrast. It’s worth stressing that we assume G
independent of the deformation and the first term on the right
hand side of eqn (2), EG ¼ GA, represents the total interfacial
energy of the system. This assumption, consistent with previous
findings on elastic capsules42,43 and equivalent to the absence of a

Shuttleworth effect,14 will be discussed in the light of the results
reported in Section III. The second and the third terms are
respectively the elastic and the centrifugal energies,44 called later
Ee and Eo. The equilibrium is governed by the minimization of
the free energy, taking into account incompressibility of the
elastic material which amounts to impose that the Jacobian of
the transformation is equal to one:

detF = 1. (3)

B. Biaxial approximation

1. General equations within the biaxial approximation.
To a first approximation, the problem is simplified by assum-
ing a homogeneous and biaxial deformation of the bead. In the
Cartesian coordinate system (x,y,z), the applied centrifugal
forcing gives rise to a prolate ellipsoid with axes X = lbx,
Y = lby and Z = laz. The stretch ratios la and lb are two strictly
positive constants with lb o 1 and la 4 1. This is sketched in
Fig. 1. Eqn (3) further imposes lalb

2 = 1. For a neo-Hookean

material, the strain energy density is Wel ¼
1

2
G0 la2 þ 2lb2 � 3
� �

and the elastic energy defined in eqn (2) reads:

Ee ¼
4

3
pR0

31

2
G0 la2 þ 2lb2 � 3
� �

: (4)

The total interfacial energy defined in eqn (2), is:

EG ¼ GA ¼ G 2plb2R0
2 þ 2plalbR0

2

e
arcsinðeÞ

� �
; (5)

where e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
la2 � lb2

p
la

is the eccentricity of the ellipsoid of

revolution. Finally the centrifugal energy, also defined in
eqn (2) is given by:

Eo ¼
1

2

ð
Dr x2 þ y2
� �

o2dV0 ¼
4p
15

Dro2lb2R0
5: (6)

Using volume conservation, eqn (4)–(6) allow us writing the
total reduced energy density, defined as e ¼ E= G0V0ð Þ with V0

the volume of the bead, as:

e ¼ a
5
la�1 þ

1

2
la2 þ 2la�1 � 3
� �

þ 3b
2

la�1 þ
la2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
la3 � 1

p arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
la3 � 1

la3

s0
@

1
A;

(7)

with

a ¼ DrR0
2o2

G0
(8)

and

b ¼ G
G0R0

(9)

being two characteristic dimensionless numbers. In particular,
a is the Cauchy number and results from the balance between
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inertia and elastic energy, while b is the ratio of the elasto-
capillary length to the bead radius.

For a given set (a, b), the equilibrium shape is given by the
minimization of e with respect to la, i.e. by the solution of the

nonlinear algebraic equation
de
dla
¼ 0, which can be obtained

numerically. The deformation parameter defined as the ratio of
the length (dmax) to the width (dmin) of the deformed shape, or
equivalently la

3/2, obtained numerically by minimizing eqn (7),
is plotted in Fig. 2. Hereafter we derive the analytical expression
for the deformation parameter la

3/2 in the two limiting cases of
small and large deformations and we show that when the latter
are attained a simultaneous measurement of the elastic
modulus and the interfacial free energy is feasible.

2. Small deformation limit. Let us first elucidate the behavior
of the stretch ratio la in the weak deformation limit, corresponding
to Cauchy numbers a{ 1. In this case we can safely write la = 1 + x,
with 0 o x { 1 and approximate the reduced energy density as
follows:

e ’ 1

5
aþ 3b� 1

5
xaþ x2

1

5
aþ 3

2
þ 6

5
b

� �
: (10)

Minimizing with respect to x brings to the following equilibrium
deformation with respect to the bead at rest:

la3=2 � 1 ’ a
10þ 8b

� �
: (11)

Eqn (11) cannot be used to determine separately G0 and G from a
single measurement of la

3/2 as a function of o, since the deforma-
tion cannot be expressed as the sum of two (or more) terms each
containing only a or b separately.

3. Large deformation limit. For a c 1 and la c 1, eqn (7)
can be approximated by the algebraic sum of three terms:

e ’ 1

2
la2 þ

3p
4
bla1=2 þ

a
5
la�1: (12)

The minimization with respect to la brings to:

dmax=dmin ¼ la3=2 ¼
1

2
�3
8
pbþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

64
p2b2 þ 4

5
a

r" #
: (13)

Further expanding eqn (13) for a c 1, we obtain:

dmax=dmin ¼
ffiffiffi
a
5

r
� 3

16
pb: (14)

These asymptotes are plotted together with the complete
expressions of dmax/dmin in Fig. 2 for different values of b. Note
that due to the limited range of a, chosen accordingly with
experiments introduced in Section III, the differences between
the complete expression and the asymptotes remain significant
and increases for increasing values of b. Quite interestingly
eqn (14) decouples a and b, i.e. the effects of elasticity and
interfacial energy on the bead deformation. In other words, for
large centrifugal forcing, the deformation parameter la

3/2 of a
bead is proportional to the rotation speed with a proportion-

ality constant equal to R0

ffiffiffiffiffiffi
Dr
G0

r
. R0 and Dr being easily known a

priori, G0 can then be determined by considering the slope of
la

3/2 versus o; next, the evaluation of a (virtual) intercept equal

to � 3pG
16G0R0

brings to the measurement of G.

G0 and G can then be recovered by considering the large
deformation limit with the biaxial approximation. In the
following, we show that the approximation is not accurate
enough to get precise values of these two quantities. Notwith-
standing this, the main result stays valid: it is possible to
determine both G0 and G by considering the large deformation
limit of a spinning bead.

C. Resolution using the finite element method

This section is devoted to the minimization of eqn (2) with the
incompressibility condition (eqn (3)), using the Finite Element
(FE) method.

We seek the displacement u = R � r by minimizing the
augmented energy (eqn (2)) with the constraint detF = 1.
This last condition is ensured by adding to eqn (2) the
supplementary term ð

O0

p detF� 1ð ÞdV0; (15)

where p is a Lagrange multiplier to be computed together
with u. Because the solution is expected to be axially symmetric,
the displacement vector is expressed in a cylindrical coordinate
system as u = ur(r,z)er + uz(r,z)ez. For this two-dimensional
problem in terms of r and z, the domain D we consider in the
simulation is a disk of radius R0 defined as r2 + z2 o R0

2.
The FE formulation, implemented numerically using the

FEniCS finite element library,45 is here based on the research of
the stationary points of the total energy functional given by
eqn (2) with eqn (15). The displacement vector u and the
Lagrange multiplier p are discretized using Lagrange FEs on a

Fig. 2 Length-to-width ratio dmax/dmin of a deformed bead as a function
of

ffiffiffi
a
p

for different values of b (color coded). Solid lines are predictions
from the biaxial approximation (minimization of eqn (7)). Asymptotes in the
large a limit (eqn (14)) are plotted with dashed lines. Filled circles are the
results of FE calculations discussed in Section II.C.
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triangular mesh. The nonlinear problem in the (u, p) variables
is solved using a Newton algorithm based on a direct parallel
solver (MUMPS,46) by setting G0 = 1, R0 = 1, G = b and Dro2 = a.

Quasi-static simulations are computed by progressively
increasing the interfacial free energy b up to the desired
dimensionless value, then by progressively incrementing the
load parameter a, recording the displacement field and the
Lagrange multiplier, and reaching convergence at each step.
The equilibrium shape of the deformed body are obtained for a
large range of parameters a, b (see Fig. 2 and 3).

Fig. 3 shows that the strain energy density is inhomoge-
neous in the sample, whereas it was assumed to be homoge-
neous within the biaxial in Section II.B. In Fig. 2, the values of
dmax/dmin calculated from the FE method and the biaxial
approximation are compared. The biaxial approximation repro-
duces only qualitatively the deformation behaviour for small to
moderate b (see Fig. 2 for b = 0, 2), converging quantitatively
to the FE results only for larger values of b (e.g. b = 4, 6). Indeed,
the biaxial approximation considers only the average deforma-
tion in the material instead of considering the local deforma-
tion, hence the observed discrepancies. This said, even if a
quantitative analysis requires the use of the more precise FE
calculation, the biaxial approximation provides a rigorous basis
to understand bead deformation and the role played by inter-
facial stresses when elastic objects get deformed.

Inspired by the results obtained in the framework of the
biaxial approximation (Section II.B), we focus on the large
deformation limit. Our simulations still suggest that dmax/dmin

behaves as

dmax=dmin � a
ffiffiffi
a
p
þ b (16)

in the large deformation limit for any tested value of b (Fig. 4),
where a and b are two fitting parameters. Interestingly, the
variations of b as a function of b are far more pronounced than

the variations of a, a result reminiscent with what was obtained
in Section II.B (see eqn (14)).

Let us consider now experiments in which dmax/dmin has
been measured as a function of o. In the regime of large
deformations, we expect from eqn (16) the deformed shape of
the spinning bead to follow dmax/dmin B Ao + B. This is indeed
observed for our polyacrylamide millimetric particles (see Fig. 7
and Section III for more details). Hence A and B can be, in
principle, experimentally determined. In the other hand, we
know from the results of the FE simulations that:

dmax=dmin � aðbÞ
ffiffiffi
a
p
þ bðbÞ ¼ aðbÞ

ffiffiffiffiffiffi
Dr
G0

s
R0oþ bðbÞ: (17)

By identifying A and B within eqn (17), we obtain:

A ¼ aðbÞR0

ffiffiffiffiffiffi
Dr
G0

r
B ¼ bðbÞ:

8<
: (18)

Once the dependence of b on b is obtained from the FE
solution, b can be determined. Then, from the first equation
in (18), one can determine G0 by performing a linear fit of the
experimental data (dmax/dmin versus o) in the large deformation
limit, and finally, the interfacial free energy can be calculated as
G = bR0G0. Once more, this shows that both the interfacial free
energy G and the shear modulus G0 of the bead can be extracted
by fitting the bead deformation as a function of o. To elucidate
better the validity of eqn (16), dmax/dmin is plotted as a function
of aðbÞ

ffiffiffi
a
p
þ bðbÞ for different values of b (Fig. 5). a(b) and b(b)

have been determined by considering deformations dmax/dmin

in the range [2.5,6], accordingly with the domain explored in
experiments discussed in Section III. Even if the asymptotic
regime is never strictly reached in this range for any b, the
linear approximation of dmax/dmin as function of

ffiffiffi
a
p

remains

Fig. 3 Maps of the reduced strain energy density Wel/G0 computed for
b = 1 and different loads: a = 0 (a), a = 5 (b), a = 10 (c), a = 20 (d), a = 30 (e)
and a = 50 (f). The corresponding values of dmax/dmin are respectively equal
to 1 (a), 1.3 (b), 1.6 (c), 2.0 (d), 2.4 (e), 3.0 (f). Unit-length is chosen so that
initial configuration (a) is a disk of radius R0 = 1. By symmetry, a quarter of
the system is enough to completely characterize the deformed con-
figurations of the bead.

Fig. 4 a(b) and b(b) resulting from the fits of the large deformation limit of
function a

ffiffiffi
a
p
þ b on dmax/dmin. The range for the fits is dmax/dmin A [2.5,6],

in accordance with the domain explored in experiments detailed in
Section III. Solid lines result from fourth order polynomial fits for a(b)
and b(b) (see Table 1). Inset: dmax/dmin calculated by the FE simulations as a

function of
ffiffiffi
a
p

for b = 1. dmax/dmin is well approximated by the linear

equation dmax=dmin ¼ a
ffiffiffi
a
p
þ b in the large deformations limit.
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very good. To make our results readily exploitable for future
measurements, we have fitted separately a(b) and b(b) with a
cubic function, namely K1 + K2b + K3b

2 + K4b
3. We report all

values for the coefficients Ki in Table 1 and the result of the fit is
shown in Fig. 4. The collapse of all curves in Fig. 5 confirms
that the approximation dmax=dmin ’ aðbÞ

ffiffiffi
a
p
þ bðbÞ is relevant

for dmax/dmin in the experimental range.2,6

Finally it’s worth noting that in the case a { 1 (small
deformation limit), the expression obtained from the biaxial
approximation seems to hold well in the framework of the FE
calculation (see inset of Fig. 5): all the deformations calculated
for different b-values via FE method collapse on the bisector of
the first quadrant when plotted versus the deformation
obtained under biaxial approximation (eqn (11)). Indeed,
matching the effective local deformation with the overall defor-
mation of the bead is here relevant, because the material
behaviour can be linearized within the limit of the small
deformations.

III Experiments
A. Materials and methods

Polyacrylamide beads are prepared by copolymerization of
acrylamide and N,N-methylenebisacrylamide in the presence
of tetramethylenediamine (TEMED) and sodium persulfate as
initiators, in water. Prior to mixing the constituents, all the
solutions are saturated with nitrogen gas, to ensure the near
insufficiency of oxygen. A given volume of the liquid mixture,
corresponding to the radius of the bead, is transferred to an

Eppendorf tube filled with the fluorinated oil in which all beads
are solidly spun in our experiments. The aqueous droplets are
small enough so that interfacial free energy (C33 � 3 mN m�1

measured by SDT in absence of crosslinker) made them sphe-
rical in oil. The polymerization and interchain crosslinking
stopped after approximately 2 hours. The crosslinker and the
acrylamide monomer concentrations were fixed respectively to
0.00119 � 0.0006 mol l�1 and 0.45 � 0.01 mol l�1 for all
preparations. The same preparation protocol has been pre-
viously employed in our group to synthesize beads in silicon
oil with shear modulus ranging from 13 Pa to 29 Pa.10 Hence
hereafter we will not consider any crosslinker and/or monomer
density variation in the beads, whose effects will be possibly
investigated in a future publication.

However, although the beads have been produced with the
same protocol, we expect to find differences in their properties
due to small uncontrolled variations affecting the preparation
protocol and concerning the crosslinker/monomer molar ratio,
the crosslinker and monomer concentrations, the presence of
oxygen during the synthesis and the purity of the components.
Since we consider beads characterized by low mass fractions of
acrylamide, their mass density can be considered equal to the
density of water at T = 25 1C, ri = 0.997 g cm�3.

All experiments were performed with a Krüss spinning drop
tensiometer (SDT). Rates of rotation were accurate to 1%. The
outer liquid, Fomblin Y oil [linear formula CF3O[–CF(CF3)-
CF2O–]x(–CF2O–)yCF3] of mass density ro = 1.9 g cm�3 was
purchased from Sigma-Aldrich and used without further pur-
ification at 25.0 1C. The temperature of the setup was always set
to 25.0 � 0.5 1C and kept constant using a flow of temperature-
controlled air.

All beads were illuminated by a blue Light Emitting
Diode (LED) with a dominant emission wavelength of 469 nm.
Measurements were performed using a cylindrical capillary with
internal diameter 2Rc = 3.25 mm. Video recording has been
performed by using a CCD camera attached to the SDT with a
field of view 6 mm � 4.5 mm and resolution 2.3 mm. Different
tests were performed with rotation rates ranging from 6000 rpm
to 15 000 rpm. For our beads/oil system the displacement of the
drop off the rotation axis due to buoyancy was smaller than
7 mm for o 4 800 rad s�1, as calculated following ref. 47.
Such unavoidable deviation due to buoyancy is therefore
much smaller than the bead size and of the same order of
magnitude of the resolution of the camera used for the visual
inspection the equilibrium shapes of the beads. The effect of
buoyancy can thus be neglected and the measured deformation
for o 4 800 rad s�1 can be considered as only originated from
the balance between the external forcing and the response of
the material.

Being the refractive index of the background fluid (nb = 1.299)
close to that of water, fluorescent labelling was needed to ensure
sufficient optical contrast and track the bead deformation. Under
the illumination of the blue LED light, fluorescein-rich beads
appear as bright green-yellow regions, since the fluorescein
adsorption and emission spectra (in polar solvents) are peaked
at l E 485 nm and l E 511 nm,32,48,49 respectively.

Fig. 5 dmax/dmin computed from the FE simulations as a function of

a
ffiffiffi
a
p
þ b where a and b are determined as a function of b (see Fig. 4).

Inset: dmax/dmin � 1 as a function of a/(10 + 8b).

Table 1 Coefficients Ki giving the best cubic polynomial fit of a(b) and b(b)
shown in Fig. 4 and discussed in the main text

K1 K2 K3 K4

a(b) 0.4422 �0.02848 1.69 � 10�3 �6.65 � 10�5

b(b) 0.3327 �0.3467 3.12 � 10�2 �1.23 � 10�3
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B. Analysis

Four beads (coded as B1, B2, B3, B4) have been tested in the
SDT in the large deformation limit (dmax/dmin 4 2). Fig. 6 shows
one fluoresceinated bead (B1) under different forcing (from
6000 rpm to 15 000 rpm). For all beads we have extracted the
parameter A and B from the relation dmax/dmin = Ao + B in the
large deformation regime (see Fig. 7), and then, G0 and G have
been deduced following the procedure detailed in Section II.C
(see Table 2).

To check further the validity of our approach for largely
deformed beads, we have rescaled our experimental data with
the same procedure already adopted for the theoretical values
of dmax/dmin (Fig. 8). Fig. 8 shows all values of dmax/dmin

obtained for different synthesis of polyacrylamide beads in
function of the rescaled forcing Ao + B. All data collapse on a
master curve, showing that the large deformation limit is
indeed reached in all cases. The accuracy of our model in
describing the data shows that the interfacial energy does not
depend on the surface area of the bead, excluding the presence
of a Shuttleworth effect.14

The values of the interfacial free energy are found to be
similar among the beads, with a weighted average of G = 28.1 �
3.0 mN m�1 (see Table 2). Error bars could be reduced by
exploring larger values of o, which was not possible with our
SDT. Since our gels are in water, we compare the interfacial

energies of the elastic beads and that of a droplet containing a
non-crosslinked polyacrylamide solution at the same acryl-
amide molar concentration of the beads. Interestingly, we found
Gliq = 33 � 3 mN m�1 for the liquid droplet. Our measurements
are therefore compatible with a negligible contribution of the
polymer network to the interfacial energy.

As a final remark, we stress that the polymerization reaction
used to synthesize the beads occurred into the background
fluorinated oil used subsequently in SDT experiments. On the
one hand, this ensures that the beads are not subject to a
possible contamination that may arise from the synthesis in other
immiscible media and that may affect subsequently the measure-
ment performed in the SDT, notably the measured interfacial
energy. On the other hand this oil inevitably alters the polymeri-
zation process, hence modifying the value of the gel modulus with
respect to other similar synthesis already performed in our
group.10 This deviation, which can be significant for gels with
low elastic modulus, is more pronounced as the contact surface
between the aqueous solution and oil is larger. For this reason, we
could not perform different types of synthesis like those carried
out to produce macroscopic polyacrylamide gels,10,50 whose
modulus can be determined via other methods.10,41 This hampered
a direct cross-check of the values obtained for the shear modulus of
our beads. Further research activity is being carried on in our group
to develop a synthesis protocol enabling to crosscheck the measure-
ment of elastic moduli obtained via a SDT. Despite of that, the
values obtained with the SDT method seem relevant as they are in
excellent agreement with those found via impact experiments10 for
similar polyacrylamide beads, suggesting that the bead deformation
method under centrifugal forcing may serve as an ideal strategy to
measure accurately both the elastic moduli and the surface energies
of soft elastic materials.

4 Conclusions

Due to the interplay between bulk and surface forces acting
simultaneously, isolating the effects of the solid–liquid

Fig. 6 Snapshots of sample B1 (details are given in Table 2) spinning
with angular velocities 6000 rpm (a), 9000 rpm (b), 12 000 rpm (c) and
15 000 rpm (d). The observed deformation is correctly captured by the one
obtained minimizing the total energy using the FE method (Section II.C),
whose result is represented by the white dash-dotted lines. The corres-
ponding values of the load are a = 27 (a), 60 (b), 107 (c) and 167 (d). The
global deformations dmax/dmin are 1.6 (a), 2.2 (b), 3.0 (c) and 3.9 (d).

Fig. 7 dmax/dmin as a function of o for four polyacrylamide beads with
different radius R0 and/or different shear modulus G0. Solid lines are the
results of linear fit dmax/dmin = Ao + B carried out for o 4 800 rad s�1

(see Table 2).
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interfacial free energy constant of a soft solid is challenging.
While for materials with large shear moduli the contribution
of interfacial stresses to deformation can generally be safely
neglected, the equilibrium shapes and the stability of soft
solids under external drives are altered significantly by their
ability to store and/or release interfacial energy. For such
systems, measuring the shear modulus is also a difficult task
since standard rheometric techniques are often confronted
with experimental issues, like wall slip, edge fracture and
instrumental resolution, hampering the accurate measurement
of the material moduli. For this reason, a robust method able to
measure unambiguously both the shear modulus and the
interfacial free energy is highly desirable. In this paper we have
shown that simultaneous measurements of the shear modulus
and the interfacial free energy of elastic materials can be
achieved without contact with a solid surface by analysing the
shape of spinning soft beads. These measurements are based
on a gradual variation of the load, i.e. of the angular velocity of
the bead. This method requires the prior knowledge of the
constitutive equation of the material. Here, in particular, we
have investigated the case the isochoric neo-Hookean model,
valid for polyacrylamide gels. We have shown that the deforma-
tion dmax/dmin of polyacrylamide beads is well approximated by
a linear function of the angular speed for large deformations,
supporting the validity of our model and the absence of
any Shuttleworth effect.14 We have measured the solid–liquid
interfacial free energy for solid particles undergoing large
deformations, and we have shown that, for these systems, the
interfacial free energy is similar to the liquid–liquid interfacial
tension measured in absence of elastic bulk forces. Our results

corroborate a scenario where the deformation of soft amor-
phous polymer materials under an external load can be
described considering one single interfacial free energy para-
meter independent on the deformation. Though it has been
applied to one experimental system, our analysis suggests a
much more general behavior of the interfaces between soft gels
and newtonian fluids or gases, in line with previous results.9,51,52

For materials following another known constitutive law (like the
Gent model53 or Mooney–Rivlin model54), the method described
here also applies provided that this elastic law is accounted for in
the simulations so that the functions a(b) and b(b) are properly
determined. We hope that our work motivates further research
both to improve and adapt SDT apparatus to the measurement of
the elastic modulus of soft materials and to generalize our results
to different elastic and viscoelastic systems.
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Chapter 5

Instability of viscosity-stratified
flows

“... nor could I then perceive any possible way in which instability could result
from viscosity.”

O. Reynolds

5.1 Theoretical background

As we have discussed in Chapter 1, the absence of consensus in the literature on the nature
of Korteweg stresses [27–29] is due to the variety of experimental results obtained with
different techniques, and it is thus crucial to tackle this problem from different angles in
order to obtain a complete understanding. Therefore, exploiting different techniques is
of fundamental importance for understanding the intimate nature of Korteweg stresses.
We introduce here the study of the hydrodynamic instability of viscosity-stratified flow
as a possible technique to investigate the EIT at the interface between two fluids. The
importance of interfacial tension on stability makes this an interesting way to characterize
capillary phenomena, such as for the case of tha Saffman-Taylor instability [7, 26,27].

The stability of fluid flows constitutes a problem of paramount importance for phenom-
ena ranging from pipe flow and oil recovery to the convection of magma currents in the
Earth’s mantle, and its study constitutes a classical area of research in fluid dynamics. In
1923, before concentrating on the development of quantum mechanics, Werner Heisenberg
dedicated his doctoral dissertation to the “Stability and turbulence of fluid flows” [49].
When studying such a stability problem, the effect of viscosity was initially overlooked un-
der the assumption that, even if a viscous effect was present, it would constitute a source
of stabilization since it would contribute to energy dissipation. However, even if it is true
that viscous dissipation tends to stabilize the flow, the presence of viscous stratification can
have a non trivial effect, resulting in a net destabilization [50], and should not be neglected
in general. Nevertheless, the original inviscid stability theory can provide insight on some
general aspects and stability criteria, as well as on the importance of viscosity stratification
itself. In the following, we will briefly discuss the linear stability of viscous parallel fluid

83



5.1. Theoretical background 84

Figure 5.1: Scheme of the general flow under consideration. In particular, we are interested
in a quasi-parallel flow, in which the velocity component along y is small, such as in the
case of a flow between two parallel plates. The experimental case under study will be that
of a coflow in a rectangular duct, limited along z as well.

flows, recalling the principal equations and results. The fundamental equation of inviscid
instability theory (Rayleigh’s equation) will be obtained as a limiting case of the more
general viscous description, in order to elucidate the effect of viscosity stratification [51].

5.1.1 Viscous stability theory of parallel flows

In order to describe the instability of a fluid flow is in general sufficient to consider a two-
dimensional flow, as a consequence of Squire’s theorem (which will be discussed below).
Nevertheless, we will start by considering a general three-dimensional single flow with the
aim of elucidating the main properties of viscous instability. As will be detailed in Sec.
5.1.3, the stability analysis of single fluid flow constitutes the building block for parallel
two-fluid flow stability as well, and is thus interesting for describing our experimental case
of two fluids flowing parallel one to the other. In the following, we will build on the analysis
in Ref. [51], to which the reader is referred for details.

Let us consider a fluid moving in a cartesian reference frame with ~v = ûı + v̂ +wk̂. x,
y and z are the streamwise, wall-normal and spanwise directions respectively, as sketched
in Fig. 5.1. In order to non-dimensionalize the system of equations, we rescale all spatial
coordinates with a characteristic length L, and all velocity components (u, v, w) with a
characteristic velocity Ū (e.g. the velocity of the unperturbed base flow, see below). The
non-dimensional momentum equation can be written as [51]:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −∂p

∂x
+

1

Re
∇2u , (5.1)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −∂p

∂y
+

1

Re
∇2v , (5.2)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −∂p

∂z
+

1

Re
∇2w . (5.3)

Furthermore, for an incompressible fluid we get the continuity equation

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 . (5.4)
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In order to characterize the flow instability, we split all quantities in a steady part and a
small perturbation, such as

u(x, y, z, t) = U(x, y, z) + εû(x, y, z, t) . (5.5)

Here U is the steady component describing the base flow, û is the perturbation and ε a
parameter that ensures the perturbation term to be small. Analogous equations can be
written for v, w and p, so that the base velocity profile has components U , V and W .
Furthermore, since we are interested in quasi-parallel flow, we take for the base velocity
components U = U(y), V ≈ 0, W = W (y). The component V could in principle be non
null, as in the case of a boundary layer, but it grows weakly with y. Substituting Eq. 5.5 in
the system (5.1-5.4), subtracting the equation for the unperturbed base flow and neglecting
terms of second order in the perturbation quantities, we obtain the linearized disturbance
equations. One gets at order O(ε):

∂û

∂t
+ U

∂û

∂x
+W

∂û

∂z
+ v̂

∂U

∂y
= −∂p̂

∂x
+

1

Re
∇2û , (5.6)

∂v̂

∂t
+ U

∂v̂

∂x
+W

∂v̂

∂z
= −∂p̂

∂y
+

1

Re
∇2v̂ , (5.7)

∂ŵ

∂t
+ U

∂ŵ

∂x
+W

∂ŵ

∂z
+ v̂

∂W

∂y
= −∂p̂

∂z
+

1

Re
∇2ŵ , (5.8)

∂û

∂x
+
∂v̂

∂y
+
∂ŵ

∂z
= 0 . (5.9)

Equations (5.6-5.9) are then generally solved by means of normal mode analysis. The
perturbation can be decomposed in Fourier modes, for which each quantity can be written
as

{û, v̂, ŵ, p̂}T =

∫∫
{f(y), φ(y), h(y),Π(y)}T ei(αx+βz−ωt)dαdβ . (5.10)

Here T denotes the transpose vector, and f(y), φ(y), h(y) and Π(y) express the y-dependence
of the respective perturbation quantity. Depending on the kind of analysis that one wants
to perform, the wave vectors α, β and the frequency ω can be taken to be either real or
complex quantities. In temporal stability analysis, for instance, the wave vectors are real
while the frequency is complex, so that its imaginary part ωi is the growth rate of the
individual mode considered, which will be unstable if ωi > 0. On the other hand, in spatial
stability analysis α and β are complex while ω is real, and in spatio-temporal analysis all
these quantities are complex. Insertion of Eq. 5.10 in (5.6-5.9) yields 4 coupled equations
for the amplitudes f , φ, h, Π:

i{αU + βW − ω}f + U ′φ = −iαΠ +
1

Re
{f ′′ − (α2 + β2)f} , (5.11)

i{αU + βW − ω}φ = −Π′ +
1

Re
{φ′′ − (α2 + β2)φ} , (5.12)
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i{αU + βW − ω}h+W ′φ = −iβΠ +
1

Re
{h′′ − (α2 + β2)h} , (5.13)

i{αf + βh}+ φ′ = 0 , (5.14)

where for brevity the prime denotes differentiation along y. By multiplying Eq. 5.11 and
5.13 by α and β, respectively, combining the results with Eq. 5.14 and differentiating with
respect to y, and finally introducing Eq. 5.12, one finds:

φiv−2{α2 +β2}φ′′+{α2 +β2}2φ = iRe{(αU+βW −ω)[φ′′−(α2 +β2)φ]−(αU ′′+βW ′′)φ} .
(5.15)

Equation 5.15 is the celebrated Orr-Sommerfeld equation [51], and is the building block
of stability analysis. Together with the boundary conditions, it constitutes an eigenvalue
problem for the disturbance: the solution of this problem yields the dispersion relation for
the normal modes of the disturbance, relating α, β, ω, and Re. Given the complexity of
Eq. 5.15, this is generally done numerically [52,53].

In order to maintain generality, in formulating Eq. 5.15 we considered up to here a three-
dimensional fluid flow with a three-dimensional disturbance. In practice, when looking for
the critical Re for instability it is sufficient to consider two-dimensional disturbances by
virtue of Squire’s theorem [51]:

Squire’s theorem for an inviscid fluid: To each unstable three-dimensional dis-
turbance there corresponds a more unstable two-dimensional one.

Even though it was originally stated for inviscid flow, this theorem holds in general also
in the viscous case [53]. Considering a two-dimensional flow and a two-dimensional distur-
bance means setting W = 0, β = 0 in Eq. 5.15, which yields:

φiv − 2α2φ′′ + α4φ = iRe{(αU − ω)[φ′′ − α2φ]− αU ′′φ} . (5.16)

This simpler two-dimensional formulation of the Orr-Sommerfeld equation is equivalent to
the three-dimensional one Eq. 5.15, in the case of parallel flow in one direction, for which
W = 0. The equivalence can be seen using Squire’s transformation [54]:

α̃2 = α2 + β2 , ωα̃ = ω̃α , R̃eα̃ = Reα . (5.17)

As a consequence, a three-dimensional disturbance can be described as an equivalent
bidimensional one, with a direction ψ in the xz plane (the direction of α̃, see Fig. 5.2)
determined by the respective magnitude of the wave vectors α and β; ω̃ and R̃e are then
just adjusted accordingly. Furthermore, it is easy to verify that |α̃| > |α|, which means
R̃e = Reαα̃ < Re. This constitutes a proof of Squire’s theorem, since the two-dimensional
disturbance will become unstable at lower Reynolds number than its three-dimensional
counterpart. Consequently, the common procedure when analysing the instability of a
flow is to consider only two-dimensional disturbances. To this end, Eq. 5.16 is solved
numerically [52,53].
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Figure 5.2: Direction of the equivalent bidimensional perturbation given by Squire’s trans-
formation. The angle ψ in the xz plane is determined by the magnitude of α and β.

5.1.2 Inviscid stability theory and role of viscosity stratification

In the previous section we derived the main equation describing flow instability in the
viscous case, namely the Orr-Sommerfeld equation. Nevertheless, a brief discussion of the
inviscid stability theory can give some insight on the role of viscosity, and in particular of
viscosity stratification. Indeed, inviscid theory allows defining general criteria for instability
which qualitatively apply also to the viscous case [50].

In the inviscid case, Eq. 5.16 becomes Rayleigh’s equation:

(U − c)(φ′′ − α2φ)− U ′′φ = 0 , (5.18)

where c = ω
α is the phase velocity of the perturbation wave. Inspection of Eq. 5.18 provides

some interesting considerations. First, it is worth noting that while U is a real quantity,
the phase velocity is in general complex, its imaginary part ci being related to the growth
rate of the disturbance, at least in temporal stability analysis. Nevertheless, in the case of
neutral stability, ci = 0, Eq. 5.18 becomes degenerate at the position in the flow field for
which the velocity of the base flow equals the phase velocity of the perturbation, that is
where U = c. Note that beyond this position the coefficients of Rayleigh’s equation change
sign. This position is named the critical layer. As will be discussed for a parallel coflow
(see Sec. 5.1.3 below), it is the position at which the main part of the production of kinetic
energy of the disturbance takes place.

Furthermore, from Rayleigh’s equation one can obtain some general criteria for stability
[51]. By multiplying Eq. 5.18 by φ∗ and integrating along y, one obtains:

∫ +∞

−∞
φ∗
[
φ′′ − α2φ+

U ′′

U − cφ
]
dy = 0 . (5.19)

Here we assume ci > 0 so that Eq. 5.19 is non-singular. Integrating the first term by parts,
and taking the disturbance to decay to zero at infinity so that its energy is finite, one finds

−
∫ +∞

−∞

[∣∣φ′
∣∣2 + α2|φ|2

]
dy −

∫ +∞

−∞

U ′′(U − c)∗
|U − c|2

|φ|2dy = 0 . (5.20)
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Of the two integrals in Eq. 5.20, only the second has a complex part, yielding:

ci

∫ +∞

−∞

U ′

|U − c|2
|φ|2dy = 0 , (5.21)

which is possible only if U ′′ changes sign in the domain of integration, that is if U has an
inflection point. This is indeed a proof of a famous theorem by Rayleigh:

Rayleigh’s inflection point theorem: A necessary condition for instability is that
the base velocity profile should have an inflection point.

Consideration of the real part of Eq. 5.20 provides a second theorem which is even more
stringent (and whose derivation will not be reported here for brevity):

Fjørtoft’s theorem: A necessary condition for instability is that U ′′ [U − U(zs)] < 0
somewhere in the field of flow, where zs is a point at which U ′′ = 0.

Both theorems provide only necessary conditions for instability, and not sufficient ones,
although Tollmien argued that these conditions are sufficient for the cases of symmetric
profiles in a channel and non-monotone ones of boundary layer type [51]. However, they
provide a valuable tool to understand the role of viscous stratification. Indeed, if viscosity
changes in the field of flow, it may introduce in the base velocity profile an important
inflection point that is necessary for instability (see for instance Fig. 5.4 below). For such
a reason in real systems viscosity stratification is an efficient way to enhance disturbance
growth, while its absence typically results in stable flows at low Reynolds numbers.

5.1.3 Coflow instability and interfacial tension

Equation 5.15 was derived for a single fluid flow. Nevertheless, it constitutes the foundation
of stability analysis also in the case of parallel coflow, namely the stratified flow of two fluids
in a single channel. The study of this instability mode, completely originated by viscosity
stratification, was initiated as early as 1967, when Yih showed that, when surface tension
effects are neglected, plane Poiseille and plane Couette flows can be unstable to long-
wavelength disturbances for however small Reynolds number [55]. In Yih’s formulation,
the two fluids were considered immiscible, and the interface was well-defined (Fig. 5.3).
In such a configuration it is sufficient to consider the Orr-Sommerfeld equation in both
layers together with the boundary conditions at the channel walls and at the interface,
where continuity of velocity and stresses are required. Yih’s results were later expanded by
Yiantsios and Higgins [52], who showed that in presence of capillary effects at the interface
the flow is not always unstable, and a stability region exists depending on the surface
tension between the two fluids, the viscosity ratio between the two fluids, the position of
the interface and the wave vector. The study of the edge of this stability region seems thus
a promising strategy to measure indirectly the presence of an interfacial tension between
the two fluids in the channel.

If the two fluids are miscible and there is no well-defined interface, it is not possible
to write the Orr-Sommerfeld equation in the two layers separately. On the contrary, it
becomes necessary to describe the system as a single fluid with variable viscosity η = η(y).
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Figure 5.3: Scheme of the coflow instability. Y is the position of the unperturbed interface.

With the same procedure as in Sec. 5.1.1, dividing the viscosity in a base flow component
and a perturbation one (η̄ and η̂, respectively), the Orr-Sommerfeld equation becomes [50]:

iαRe{[φ′′ − (α2 + β2)φ](U − c)− U ′′φ} =

η̄[φiv − 2(α2 + β2)φ′′ + (α2 + β2)2φ] + 2η̄′[φ′′′ − (α2 + β2)φ′]+

+ η̄′′[φ′′ + (α2 + β2)φ]− iαU ′[η̂′′ + η̂(α2 + β2)]− 2iαU ′′η̂′ − iαU ′′′η̂ . (5.22)

Since the viscosity is not homogeneous, a second equation needs to be considered in order
to completely describe the fluid motion. A common choice is Squire’s equation for the
vorticity θ [50]:

θ(U − c) +
β

α
U ′φ =

1

iαRe
{η̄[θ′′ − (α2 + β2)θ] + η̄′θ′ + iβU ′η̂′ + iβU ′′η̂} . (5.23)

As for the case of the Orr-Sommerfeld equation in single fluid flow, equations (5.22-5.23)
are generally solved numerically [53].

It is worth discussing one further consideration on the role of interfacial tension effects
on the instability of parallel flow. Following Govindarajan and Sahu [50], one can write for
the disturbance kinetic energy E :

∂E
∂t

= P −D + T + S . (5.24)

Here P = −〈ûv̂〉U ′ and D = 1
Re〈|∇û|

2 + |∇v̂|2 + |∇ŵ|2〉 are the production and vis-

cous dissipation of disturbance kinetic energy, while T = ∇ ·
[
− 〈ûp̂〉ρ + 2 η̂

Re∇E
]

and S =

Γ
ρLŪ2

〈[
v̂
(
Ŷxx + Ŷzz

)]
y=Y

〉
are the stress transport and surface tension effects, respec-

tively. L and Ū are again characteristic length scale and velocity, Y is the position of the
interface (and Ŷ its perturbation). Equation 5.24 suggests a second possible way to take
into account interfacial tension effects: Γ enters in the energy balance for the disturbance,
altering the growth rate of the modes. By characterising the latter, one could in principle
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measure the effect of the interfacial tension. Furthermore, while the energy production
occurs mainly at the interface, the major part of viscous dissipation takes place close to
the walls of the channel, where the non-slip boundary conditions impose zero velocity [53].
As a consequence, the energy balance of the disturbance depends on the position of the
interface in the channel, a consideration that will be important in Sec. 5.3.

In the light of all previous considerations, it is worth underlining one further detail
on the interest of parallel flow for studying experimentally the coflow instability. As we
have already stated, the production of disturbance kinetic energy takes place mainly at
the interface. This can be qualitatively understood for the case of two fluids having very
different viscosities, for which the base velocity profile changes almost abruptly at the
interface, and the most viscous fluid can be approximated as passive [52]. As a consequence,
the critical layer is confined close to the interface itself, where the velocity of the base
flow spans a wide range of values in a small region of space. This leads to a non trivial
consideration when performing experiments: the stability of the flow is characterised by
looking at the interface itself, which is easily observed due to the contrast in refractive
index between the two fluids. Therefore, the interface is at the same time the place where
the disturbance is generated and the quantity to be measured. On the experimental side,
exploiting viscosity-stratified parallel flow is thus a natural and unique way to study this
shear flow instability. The shape of the base velocity profile close to the interface has then a
paramount importance for the production of disturbance kinetic energy, and its calculation
will be detailed in the next section.

5.1.4 Base velocity profile (parallel Poiseille flow)

In deriving the Orr-Sommerfeld equation we considered the base velocity profile ~V = U ı̂ +
V ̂ + W k̂ to be known. However, its shape, and in particular the presence of inflection
points, is of paramount importance in determining the stability of the flow. Nevertheless,
to our knowledge, no previous work shows the explicit expression of the three-dimensional
velocity profile in the case of a parallel two-fluid flow. Therefore, in the following we will
derive an expression for the shape of the base velocity profile in the case of parallel channel
flow, relevant for our experiments. This will allow us to calculate ~V from our experimental
parameters, such as the flow rate and the viscosities of the two fluids. Following the
procedure of Ref. [56], we consider a reference frame with the origin in the lower left-
hand corner of the channel cross section. The fluids flow in the positive direction of the
streamwise coordinate x, and the channel covers the z direction in a range 0 < z < a and
the vertical direction y in a range 0 < y < b, with a 6= b in general. As sketched in Fig.
5.4, y = Y represents the vertical position of the interface between the two fluids. With
this choice of the reference frame, the base profile flow will be of type ~V = U(y, z)̂ı.

For the sake of simplicity, we consider the interface to be infinitely sharp by considering
the fluids to be immiscible, following Yih’s approximation [55]. Therefore, we write U(y, z)
as a piecewise solution to Navier-Stokes’ equations in the two fluid layers:

U(y, z) =

{
U1(y, z) for 0 < y < Y, 0 < z < a

U2(y, z) for Y < y < b, 0 < z < a .
(5.25)
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Figure 5.4: Scheme of the base velocity profile in parallel Poiseille flow: the two fluids flow
in the regions 0 < y < Y and Y < y < b respectively. In this representation, η2 > η1.

Assuming the fluids to be incompressible, in each layer Ui(y, z) will satisfy the streamwise
component of the Navier-Stokes equations:

ηi∇2Ui(y, z) =
∂p

∂x
, (5.26)

where ηi is the dynamic viscosity. Imposing no-slip boundary conditions at the left and
right boundaries of the channel (Ui(y, 0) = Ui(y, a) = 0), the solution to Eq. 5.26 is known
to take the Fourier form [56]:

Ui(y, z) =
∂p

∂x

{
z(z − a)

2ηi
+
∞∑

m=1

sin
(mπz

a

) [
Ai,mcosh

(mπy
a

)
+Bi,msinh

(mπy
a

)]}
.

(5.27)
The coefficients Ai,m, Bi,m are found by imposing the boundary conditions for the flow,
namely no-slip conditions at the channel walls:

Ui(0, z) = Ui(b, z) = 0 (5.28)

and the continuity of velocity and shear stress across the interface, i.e.:

U1(Y, z) = U2(Y, z) , (5.29)

η1
∂U1(y, z)

∂y
= η2

∂U2(y, z)

∂y
. (5.30)

It is worth noting that since the shear stress is continuous across the interface, the derivative
of the base velocity profile is not. Inserting Eqs. (5.28-5.30) in 5.27, one finds for the
coefficients Ai,m, Bi,m:

A1,m =
Km

η1
, (5.31)

B1,m =
Km

η1Cm

{
2η1 − Scosh

(
bmπ

a

)
+D

[
cosh

(
(b− 2Y )mπ

a

)
− 2cosh

(
(b− Y )mπ

a

)]}
,

(5.32)



5.1. Theoretical background 92

A2,m =
Km

η2Cm

{
2

[
η2 +Dcosh

(
Y mπ

a

)]
sinh

(
bmπ

a

)
−Dsinh

(
2Y mπ

a

)}
, (5.33)

B2,m =
Km

η2Cm

{
S − 2cosh

(
bmπ

a

)[
η2 +Dcosh

(
Y mπ

a

)]
+Dcosh

(
2Y mπ

a

)}
, (5.34)

with S = η1 + η2 and D = η1 − η2 the sum and the difference of the two viscosities,
respectively. The coefficients Km and Cm are given by

Km =
2a2 [1− (−1)m]

m3π3
, (5.35)

Cm = Ssinh

(
bmπ

a

)
+Dsinh

(
(b− 2Y )mπ

a

)
. (5.36)

The interface position Y can be measured experimentally, so that the velocity profile can be
computed numerically. In order to do so, it is necessary to compute the pressure gradient
∂p
∂x as well, which is not known a priori: the experimental parameter are actually the flow
rates of the fluids in the channel, Q1 and Q2. However, the latter can be related to the
pressure gradient, once the interface position is known. The total flow rate Q = Q1 + Q2

in the channel is simply the integral of the velocity profile:

Q =

∫ b

0

∫ a

0
U(y, z)dydz =

∂p

∂x

∫ b

0

∫ a

0
Ũ(y, z)dydz , (5.37)

where we define Ũ(y, z) = U(y, z)/∂p

∂x
. Therefore, instead of computing U(y, z) one can

compute Ũ(y, z) first and integrate the latter in order to obtain the value of the pressure
gradient from the flow rate Q. Moreover, the same procedure can be performed separately
for the two fluids, since we deal with stationary flows and hence the same pressure gradient
appears in the two Ui(y, z) and the total flow rate is simply the sum of the two individual
flow rates of the fluids. One then finds:

Q1 =

∫ Y

0

∫ a

0
U1(y, z)dydz =

∂p

∂x

∫ Y

0

∫ a

0
Ũ1(y, z)dydz , (5.38)

Q2 =

∫ b

Y

∫ a

0
U2(y, z)dydz =

∂p

∂x

∫ b

Y

∫ a

0
Ũ2(y, z)dydz . (5.39)

Equation 5.37 and Eqs. (5.38-5.39) allow one to compute the pressure gradient in two
independent ways and thus to verify the accuracy of the analysis of the experimental data.
As an example, Fig. 5.5 shows the base velocity profile for a parallel flow of water and
triethylene glycol in a squared channel, calculated with Eq. 5.27. The interface between
the two fluids corresponds to the rapid change in slope of the velocity profile. Such cal-
culated velocity profiles allow us computing the value of all flow-related quantities in our
experimental conditions, such as U ′(y = Y ) and Re, whose importance will be discussed in
Sec. 5.3.
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Figure 5.5: Example of a base velocity profile, calculated from Eq 5.27, for the case of
parallel flow of water and triethylene glycol (TEG), in a squared channel with sides h =
w = 100 µm. The rapid change of velocity at the interface, where the profile has also an
inflection point, is clearly visible.

5.2 Materials and methods: microfluidics setup

Experiments on the instability of viscosity-stratified flows were performed in polydimethyl-
siloxane (PDMS) microchannels. Since PDMS offers an easy fabrication and is optically
transparent, it is widely used for micofluidics applications. The channels are formed in a
mold obtained on a silicon wafer by means of photolithography. A liquid mixture of PDMS
and crosslinker is poured on the mold and cured overnight at 70◦C. Then, the solid PDMS
is peeled from the mold and covalently attached to a microscope slide by means of plasma
oxidation [57]. In order to inject and discharge the fluids, teflon microtubes (Scientific
commodities Inc.) were plugged in the inlets and outlets by punching small holes in the
PDMS, which constitutes the side and upper boundaries of the microchannels. The whole
system is visualized by means of optical microscopy.

We use Y-junction channels, as shown in Fig. 5.6. The channels are constituted by
a rectangular main duct of height a and width b, and two inlets having the same height
and half of the width of the main duct, and forming an angle of 43.6◦ between them. The
two fluids flow parallel to each other and the interface is vertical, so that it can be easily
visualized under a microscope thanks to the difference in refractive index. Furthermore,
this configuration allows ruling out the effect of gravity, at least in the first portion of the
channel, before the two fluids reorient themselves due to their different densities. The two
fluids are pushed in the channel by means of two individual Harvard Apparatus syringe
pumps working at constant flow rates Q1 and Q2, respectively. The use of two separate
pumps allows one to separately impose the flow rate of the two fluids, and thus to char-
acterise the coflow instability at different values of Q1, Q2 and Reynolds number. After
starting the injection or changing the flow rate, we wait several minutes for the system to
reach a stationary state before acquiring data, in order to avoiding transient effects due to
the compliance of the injection apparatus and of the teflon tubing.
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Figure 5.6: Scheme of the Y-junction channels. The two fluids are injected from two inlets
at the left and ejected through one single outlet.

To visualize the instability, we use an inverted optical microscope (Leica DM IRB)
equipped with a high-speed CCD camera (Phantom Miro M310). To record the videos
we typically use a frame rate of 300 frames per second. Figure 5.7 shows a picture of the
complete setup.

5.2.1 Numerical calculation of the base velocity profile

The velocity profile of the base flow defined in Sec. 5.1.4 is calculated numerically using a
Python script, available at [46]. Inspection of Eq. 5.27 and of the coefficients Ai,m, Bi,m
highlights the presence of hyperbolic functions that rapidly diverge at high aspect ratios
of the channel, b

a . As a consequence, care must be taken when computing the shape of the
base velocity profile. First, we exploit arbitrary-precision floating point arithmetic in order
to prevent overflow, using the Python library mpmath. Second, we cross-check the accuracy
of the calculation by means of the following argument. As already noted by Yiantsios and
Higgins [52], when one of the two fluids is much more viscous than the other, the former can
be taken as being almost passive, and the flow may be approximated as a single fluid flow of
the less viscous fluid. This is equivalent to considering the less viscous fluid as flowing in an
equivalent channel of reduced cross-section, of height a and width Y , the distance between
the interface and the channel wall. This is an excellent approximation, for instance, in
the case of glycerol flowing parallel to water. Interestingly, the equivalent single fluid flow
problem has fewer problems of convergence, since it takes place in a “channel” of smaller
aspect ratio. Therefore, we verified the accuracy of the numerical calculation of the base
velocity profile in the channel by calculating the velocity profile of the equivalent single
fluid flow.

5.2.2 Determination of disturbance wavelength and phase velocity

In order to experimentally characterise the instability, we impose the flow rates Q1 and
Q2 of the fluids and film the interface by means of a high speed camera. Even if we aim
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Figure 5.7: Picture of the setup used for the measurements of the coflow instability. The
two fluids are pushed in the channel by two independent syringe pumps, and the channel
is imaged on an inverted microscope equipped with a fast acquisition camera.

Figure 5.8: Image of the coflow instability at the interface between water, flowing at
250 µL/min, and a mixture of water and glycerol with glycerol concentration 93% wt/wt,
flowing at 15 µL/min. Both fluids flow from left to right of the image.
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Figure 5.9: Profile of the instability for the case of water flowing at 60 µL/min parallel
to glycerol, flowing at 3 µL/min. The positions of the peaks and valleys detected by the
image analysis code are showed in red and cyan, respectively.

at studying the stationary state, filming the instability for several seconds allows us to
characterize any time-changing behaviour of the waves. As an example, Fig. 5.8 shows
one frame of the videos that we obtain in this way, for the case of parallel flow of water
(QH2O

= 250 µL/min) and a mixture of water and glycerol with a glycerol mass fraction
of 93% (Qmixt = 15 µL/min). From the videos we extract the wavelength and phase
velocity of the waves, as well as the distance between the interface and the channel wall,
by means of a Python script, available at [46]. As seen in Fig. 5.8, the interface can be
clearly identified thanks to the difference in refractive index between the two fluids. This
allows one reconstructing the shape of the wave front in each frame by tracking the vertical
position y of the minimum intensity point at each horizontal coordinate x, thus obtaining
a curve in the xy plane which closely represents the contour of the deformed interface.
Figure 5.9 shows an example of such a curve. For the case of a wave which is short enough
for several wavelengths to fit in the field of view, the wavelength and amplitude of the
instability can be extracted by measuring the distance between adjacent local maxima and
minima of the signal in the horizontal and vertical direction, respectively. As an example
and to show the accuracy of this image analysis routine, the positions of peaks and valleys
of the disturbance are represented in Fig. 5.9 as red and cyan line, respectively. The phase
velocity of the wave is obtained by tracking the position of either the maxima or the minima
from one frame to the following one, and measuring the distance that they travelled, the
frame rate being known. Uncertainties on wavelength, amplitude and phase velocity are
obtained from the respective time variations over the duration of the videos.

In some cases, as will be further discussed in Sec. 5.3, the interface develops a distur-
bance of long wavelength, and a single oscillation appears in the field of view. In such a
case we cannot measure the disturbance wavelength from the distance between successive
extrema and we have to use a different procedure. The phase velocity can still be obtained
in the usual way. Then, the wavelength can be calculated by comparing the position of
one extremum (e.g. a minimum) at time t1 with the one of the following one, taken at a
later time t2. At t2 the first minimum will not be visible any more, which makes impossible
to directly measure the distance between it and the second one. Nevertheless, the posi-
tion of the first minimum can be estimated from its position at time t1, the elapsed time
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∆t = t2 − t1 and the phase velocity of the wave.

5.3 Results and discussion

To set the scene of the general phenomenology of coflow instabilities, Fig. 5.10 shows three
images for the case of water flowing parallel to glycerol. Both fluids flow from right to
left, with glycerol occupying the upper part of the channel. In all Panels glycerol flows
at 12 µL/min, while the flow rate of water increases from Panel A to Panel C: 65 µL/min
(A), 200 µL/min (B), 350 µL/min (C). Remarkably, the wavelength of the instability does
not depend monotonically on the flow rate of water. On the contrary, it is evident from
Fig. 5.10 that the wavelength increases at first, with larger wavelengths developing as the
flow rate is increased from small to intermediate ones, while at higher flow rates the waves
become shorter. The dependence of the wavelength of the instability on the flow rate of
water QH2O

for the images of Fig. 5.10 with Qgly = 12 µL/min is reported in Fig. 5.11.
The presence of a maximum at a non-zero value of QH2O

is evident.

Remarkably, the same phenomenology is observed when the flow rate of glycerol is
varied, as reported in Fig. 5.12. Here individual curves represent different values of glycerol
flow rate: for each line, Qgly is kept fixed while QH2O

is varied. As Qgly increases, the
maximum in wavelength becomes more evident, shifting to higher water flow rates as well.
It is worth noting the order of magnitude of the wavelength of the instability: at high
glycerol flow rates the waves reach almost 2 mm in wavelength, in a channel of 1 mm
in width, and 100 µm in height. Being the phenomenology so general, it is interesting to
investigate the origin of the two opposite trends seen at small and large flow rates, which
give rise to the maximum in wavelength λ.

In order to investigate the two regimes of λ versus QH2O
, we start by characterizing the

dispersion relation of the instability from the measured wavelength and phase velocity of
the waves. Figure 5.13a shows the values of ω versus wave vector k for all data in Fig. 5.12.
Interestingly, two different branches can be observed in the dispersion relation. Figure 5.13b
shows for clarity only one series of data, the one corresponding to the experiments reported
in Fig. 5.11 with Qgly = 12 µL/min. The two branches in ω(k) are clearly distinguishable.
In particular, the lower, horizontal branch corresponds to the experiments at small water
flow rate, below the maximum in λ. The upper branch corresponds to larger flow rates,
above the maximum wavelength. The markedly different shape of ω(k) at small and large
QH2O

strongly supports the conclusion that two different phenomena are at play, giving
rise to the non-monotonic behaviour of λ(QH2O

).

As a first attempt to interpret the experimental data, one could therefore think that
the two wavelength regimes correspond to two distinct instabilities and are induced by
two different excitation modes, such as the viscosity-stratification instability mode studied
by Yih, and Tollmien-Schlichting modes. However, the latter develop at high Reynolds
numbers, generally above 10000 [52,53]. We can obtain the value of Re in our experiments
by solving numerically the velocity profile in the channel as described in Sec. 5.1.4. The
position of the interface in the channel is measured experimentally, and knowing the two
flow rates allows one to compute the velocity of the fluids. In order to asses whether or not
one of the two regimes in λ could be induced by Tollmien-Schlichting waves, we compute
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Figure 5.10: Experimental images of the coflow instability between water and glycerol.
Both fluids flow from right to left, with glycerol flowing at Qgly = 12 µL/min in the upper
part of the channel. The flow rate of water is 65 µL/min in panel A, 200 µL/min in panel
B, and 350 µL/min in panel C, respectively.
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Figure 5.11: Wavelength of the instability as a function of the flow rate of water, for
water flowing parallel to glycerol in a 1 mm width channel. The flow rate of glycerol is
Qgly = 12 µL/min.
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Figure 5.13: (a) Dispersion relation of the coflow instability between water and glycerol at
varying Qgly. Straight lines are a guide for the eye to highlight the two branches of ω(k).
(b) Data for ω(k) for Qgly = 12 µL/min.

the value of Re with the maximum velocity in the channel. Since water flows always much
faster than glycerol, we calculate Re using the water viscosity and density and taking as a
characteristic length scale the distance between the interface and the channel wall, which
is the width of the equivalent channel in which water flows. Figure 5.14 shows the values
of the Reynolds number thus obtained for all the experiments of Fig. 5.12, as a function of
QH2O

. As expected, the Reynolds number is proportional to the imposed water flow rate,
and the black line is a linear fit of the experimental data. Notably, Fig. 5.14 rules out the
possibility that what is observed are Tollmien-Schlichting waves: the maximum value of Re
reached in all the experiments is lower than 300. The origin of the two different regimes
must thus be different.

In order to understand the behaviour of the wavelength of the coflow instability it is
instructive to plot λ as a function of the position of the interface, expressed by the distance h
between the interface and the closest channel wall, on the water side. The results are shown
in Fig. 5.15 for various Qgly. One key difference is evident with respect to Fig. 5.12. When
the distance h between the interface and the channel wall is chosen as the independent
variable, the largest wavelength is observed always at the same value of h, regardless of
Qgly. In other words, the change between the two regimes occurs at one specific distance
from the wall. This allows interpreting the behaviour of λ(h) in the following way. When
Qgly is maintained fixed and QH2O

is reduced, starting from a large value, the wavelength
of the instability increases at first, as lower energy modes are excited, up to a value of h
where the interplay between the interface and the channel wall becomes significant. Then,
at all glycerol flow rates, λ starts decreasing. The regime at low to moderate flow rates can
thus be interpreted as due to a confinement effect, where the finite size of the microfluidic
channel is important. Indeed, when the interface is close to the wall, the viscous dissipation
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Figure 5.14: Maximum Reynolds number as a function of QH2O
for all experiments of Fig.

5.12, computed from the velocity profiles of the fluids in the channel. The black line is a
linear fit of the experimental data.
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Figure 5.15: Instability wavelength as a function of the distance h between the interface
and the closest channel wall (on the water side), at varying glycerol flow rates.
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Figure 5.16: Amplitude of the instability as a function of the water flow rate, at varying
flow rate of glycerol.

term in the balance for the energy of the disturbance becomes important (Eq. 5.24), with
most of the dissipation happening close to the walls [50]. Therefore, it becomes harder to
excite high-amplitude waves, and the instability is damped. To further illustrate this point
it is instructive to observe the amplitude A of the instability as well, which is reported in
Fig. 5.16 as a function of the water flow rate and at varying Qgly. Indeed, at large water flow
rates QH2O

the amplitude is either constant or slowly increases. By contrast, when the flow
rate is reduced and the interface gets close to the channel wall the instability amplitude
drastically decreases, as viscous dissipation makes it harder to induce large bulges. In
particular, the flow rate at which A starts decreasing is the same at which the maximum
of the wavelength is found in Fig. 5.12. It is worth discussing one additional consideration
on the instability amplitude A. As it can be seen already from Fig. 5.10, immediately after
the onset of the instability the waves reach a constant amplitude, which is maintained as
they flow downstream, or even decreased due to dissipation. This is a strong hint for the
non-linearity of this instability. Indeed, in the linear instability theory the waves should
grow exponentially with time as they move, with the growth rate setting the time constant
of their increase. On the other hand, large waves can undergo non linear phenomena, and
additional terms are required to capture their behaviour. The amplitude of the disturbance
is then described by the Landau equation [40]:

d|A|2
dt

= 2σ|A|2 − l|A|4 , (5.40)

where σ is the growth rate of the perturbation and l is the Landau constant. The first term
on the right-hand side is the usual linear perturbation theory, with the amplitude A growing
exponentially over time, while the second one introduces the first order of non-linearity.
The Landau constant can in general be either positive or negative. The observation that in
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our experiments the amplitude does not grow exponentially brings to the conclusion that
a formal non-linear description will be needed to properly describe the coflow instability.
However, one could still rely on the linear theory to describe the onset of the instability.

We have discussed above from Fig. 5.15 that the decrease of λ at small flow rates
can be described as due to a confinement effect, considering the viscous dissipation of the
disturbance kinetic energy due to the interaction with the channel wall. One question that
we have not yet addressed is: why does the wavelength increase, at a given h, when Qgly
is increased? One could expect that higher flow rates, which imply a more energetic base
flow, would excite more energetic instability modes with shorter wavelength. However, the
situation is more complex, since with increasing Qgly the instability amplitude and phase
velocity increase as well. For this reason, it is worth discussing the growth in λ in order to
obtain some insight on the instability mechanism. In particular, it is instructive to compare
the experimental data with the quantities characterising the base velocity profile calculated
according to Sec. 5.1.4, in order to investigate the interplay between the base unperturbed
flow and and the disturbance. Before doing so it is necessary to discuss the precision of the
numerical computation.

Once the viscosities of the fluids are fixed, the characteristic quantities of the flow
profile are the two flow rates, the position of the interface and the pressure gradient in the
streamwise direction in the channel. Out of the four, only two are needed to fully compute
the flow, as the other two are calculated accordingly (see Sec. 5.1.4). Since experimentally
one imposes the flow rates of the fluids, these are the ones that we choose to fix for the
computation. The position of the interface is known from the experiments as well, and can
be used to cross check the precision of the computation. In detail, the interface position
Y can be obtained numerically as the one for which the pressure gradient is homogeneous
throughout the whole channel, given the flow rates. Comparing the obtained value of
Y with the one which is measured experimentally allows evaluating the precision of the
agreement between the experiments and the numerical solution for the base profile: it is
worth noting that since the velocity profile is expressed as a Fourier series, higher order
terms will always be discarded for computational efficiency, as we typically retain between
5 to 7 harmonics. Furthermore, the experiments are affected by noise and measurement
uncertainties stemming from several sources. The viscosity of the fluids has been measured
performing steady rate rheology experiments using a stress-controlled AR 2000 rheometer,
and temperature was controlled during experiments with a temperature-controlled air flow.
On the other hand, the imposed flow rates are affected by the stability of the syringe pumps.
Finally, the PDMS with which the microfluidic channels are made is likely to slightly deform
under the action of the pressure induced by the flow. Comparing the value of Y obtained
from the experiments to the one from the numerical calculation of the base flow allows
evaluating the compound noise from all such sources. As an example, Fig. 5.17a reports
this comparison for the case of water flowing parallel to glycerol with Qgly = 15 µL/min,
as a function of QH2O

. We evaluate the overall error from all sources of noise in the
experiments and numerical solutions to be less than 10%. Similarly, one can evaluate the
uncertainty on the computed quantities describing the base velocity profile by using Y as
a parameter for the numerical solution (together with one of the two flow rates, such as
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Figure 5.17: (a) Comparison between the experimental value of the interface position Y
(blue filled symbols) and the ones obtained from the numerical solution of the base profile
(red open symbols) as a function of QH2O

, for water flowing parallel to glycerol with Qgly =
15 µL/min. (b) Comparison between the obtained values for the maximum velocity in the
channel obtained with the experimental and numerical values of Panel (a), reported in blue
filled symbols and red open symbols respectively, as a function of QH2O

, Qgly = 15 µL/min.

QH2O
) and by comparing the results obtained using either the experimental value of Y or

the one retrieved from the numerical solution, namely the blue filled symbols and the red
empty ones in Fig. 5.17a. Using these two values for Y will give slightly different results
for the other quantities describing the flow, which thus allow evaluating the uncertainty.
Figure 5.17b presents the results of such a comparison for the maximum velocity in the
channel as a function of QH2O

, with Qgly = 15 µL/min. Here again the red empty symbols
correspond to the value of Y obtained from the numerical solution, while the blue filled
symbols to the experimental value. The uncertainty on the quantities describing the base
flow can again be estimated to be less than 10%.

Having assessed the precision of the numerical calculation, the characteristics of the
base velocity profile can be used to get insight on the behaviour of the instability. We
have already discussed that the viscous dissipation of the disturbance kinetic energy plays
a major role in determining the instability wavelength at low QH2O

, where the interplay
between the interface and the channel wall leads to a confinement effect. However, the
budget of the disturbance kinetic energy of Eq. 5.24 is strongly affected not only by
the dissipation part, but also by the energy production term, P = −〈ûv̂〉U ′. This term
represents the energy transfer from the base flow to the disturbance, and U ′ is the derivative
of the base velocity profile in the direction perpendicular to the interface. The shape
of the latter is thus of paramount importance in determining the kinetic energy of the
instability. Furthermore, while the viscous dissipation takes place mainly close to the walls,
the production of kinetic energy happens mainly at the interface between the two fluids.
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Figure 5.18: Instability wavelength rescaled by the jump ∆U ′ in velocity derivative across
the interface, as a function of the distance h between the interface and the channel wall.

Indeed, we recall that this is the region where the critical layer of the flow is confined.
This can be understood also by considering that at the interface the base velocity profile
is steep, with a shear rate jump determined by the viscosity ratio of the two fluids, leading
to a large U ′.

The derivative of the base velocity profile in the direction perpendicular to the inter-
face seems thus an important parameter affecting the balance of energy production and
dissipation for the disturbance. Furthermore, this derivative greatly changes when the flow
rates are varied, and its relation with the experimental observations for the disturbance
wavelength is consequently interesting. It is worth highlighting that when the interface is
considered as infinitely sharp, as in our numerical solutions, U is everywhere continuous,
but U ′ is discontinuous at the interface. Therefore, we consider the difference in the ve-
locity derivative across the interface, ∆U ′. This is basically given by the derivative U ′ on
the water side (or, in general, the one of the fastest fluid) reduced by a factor given by the
viscosity ratio:

∆U ′ = U ′H2O

(
1− ηH2O

ηgly

)
. (5.41)

In particular, ∆U ′ increases with the imposed flow rates, and so does the production of
kinetic energy of the disturbance. As depicted in Fig. 5.18, all data collapse remarkably well
on a single mastercurve, when for each experiment reported in Fig. 5.15 the wavelength is
rescaled by the corresponding value of ∆U ′. Consequently, when trying to understand the
instability of viscosity stratified coflow, one needs not only to consider the viscous energy
dissipation, which can induce confinement effects related to the finite channel size, but also
the rate of kinetic energy production, strongly related to the shape of the velocity profile
of the base flow.
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Figure 5.19: Wavelength (a) and amplitude (b) of the instability as a function of the
distance between the interface and the channel wall for different mixtures of water and
glycerol flowing parallel to glycerol at Qgly = 18 µL/min.

Both energy production and dissipation depend strongly on the viscosity ratio between
the two fluids. As a perspective on further analysis, Fig. 5.19a and 5.19b report the
wavelength and amplitude of the instability when one of the two fluids is replaced, so that
in all experiments glycerol is in coflow with a mixture of water and glycerol. Black symbols
correspond to pure water, while red and blue symbols correspond to mixtures with water
mass fraction of 83% and 55%, respectively. Consequently, the viscosity of the mixture
increases from 1 mPa s (pure water), to 2.0 mPa s (ϕH2O

= 0.83), to 6.2 mPa s (ϕH2O
=

0.55). The flow rate of glycerol is Qgly = 18 µL/min for all experiments. Figures 5.19a
and 5.19b show that both the wavelength and the amplitude of the instability are strongly
reduced when the viscosity ratio ηmix/ηgly increases, with the maximum in λ becoming
barely visible at ηmix = 2.0 mPa s and absent at ηmix = 6.2 mPa s. Finally, it is worth
noting that the distance h between the interface and the channel wall at which the onset
of the instability occurs increases with the viscosity ratio. This is in agreement with the
work by Yiantsios and Higgins [52], which found such viscosity stratified flows to be stable
up to when the ratio of the distances between the interface and the channel walls on the
two sides equals the viscosity ratio of the two fluids.

Figures 5.18, 5.19a and 5.19b give a flavour of the importance of both viscous dissipation
and production rate of the disturbance kinetic energy for the stability of viscosity stratified
flow. We plan to do further analysis and experiments in the future, to better understand
and clarify this topic, which still requires both theoretical and experimental efforts.



Chapter 6

General conclusions and
perspectives

6.1 Conclusions

In this thesis we tackled the challenging task of investigating the effective interfacial tension
between molecular miscible fluids. In such systems, diffusion constitutes a major impedi-
ment when performing experiments. Furthermore, one expects the magnitude of capillary
phenomena between miscible fluids to be extremely low, making conventional techniques
such as the Langmuir trough or the pendant drop method not suitable [7,33,34]. To over-
come such difficulties, in this thesis we have first proposed a novel experimental method
based on spinning drop tensiometry. This allowed us measuring the EIT at short times,
soon after the two fluids are brought into contact. Furthermore, we have explored a second
route to probe interfacial stresses in miscible fluids based on the study of the stability of
viscosity-stratified coflows.

Conventional SDT experiments rely on the observation of the equilibrium shapes that
the drops assume when spinning in a denser background fluid. However, such experiments
are not suitable for investigating miscible drops, for which the equilibrium state would be
a homogeneous mixture in the SDT capillary. A second possibility which was theoretically
discussed in literature [39,41,43] consists in rapidly changing the capillary angular velocity
and measuring the elongation (or retraction) dynamics of the drop while they attain the
new equilibrium state dictated by the final rotational speed. Though presented in liter-
ature, little experimental work has been dedicated to this different approach, which was
not characterised in depth even in the case of immiscible fluids. Nevertheless, such kind of
dynamical SDT measurements can be used for miscible fluids as well. Therefore, we inves-
tigated the dynamics of spinning drops when they are subject to a sudden rotation speed
jump [11]. Aiming at characterizing miscible fluids, we started from the prototypical case
of drops spinning in an immiscible environment, for which the interfacial tension is a well
defined thermodynamic quantity. Immiscible drops showed an exponential decay towards
their equilibrium shape, with a characteristic time entirely determined by the viscosities of
the two fluids, the drop size and the interfacial tension. This exponential relaxation is in
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excellent agreement with the one predicted by Stone and Bush [43].

Remarkably, a completely different elongation dynamics is found for miscible drops with
a small difference in concentration with respect to the background fluid, such as for a drop
of a water-glycerol mixture with 5% water mass fraction spinning in a reservoir of pure
glycerol. Indeed, such drops never attain a stationary state, and their elongation dynamics
are well captured by a power law, l(t) ∼ t0.4. Although no theoretical work discussed the
elongation dynamics of miscible spinning drops, this evolution is in very good agreement
with the one predicted by Lister and Stone [58] for immiscible drops when the interfacial
tension is neglected. This result shows that, for small concentration differences between
the drop and the background fluids, Korteweg stresses, if they exist, are too small to be
measured [11].

Remarkably, spinning drops do not always maintain a simple ellipsoidal shape. For suf-
ficiently low interfacial tension they deform radially developing a “dumbbell” (or dog-bone)
shape, consisting in a thin central body connecting two larger heads [45]. We investigated
the origin of such shapes, showing that the recirculating motion of the background fluid
during rotation induces an unbalanced normal stress on the drop. This stress, being larger
at the drop center than at the heads, causes the dog-bone shape. We investigated the
time evolution of such shape, demonstrating that it can be used to measure the interfacial
tension at the boundary between the drop and the background fluids. By developing a
simple model in which we balance the normal stress imposed on the drop surface, the shear
stress opposing the deformation and a Laplace-like term containing the surface tension, we
exploited the deformation dynamics of miscible drops to measure the EIT between water
and glycerol [30]. In particular, we found an EIT of 250±50 nN/m for pure water in contact
with pure glycerol, a value orders of magnitude lower than the experimental limits of more
conventional tensiometry techniques and in excellent agreement with the phase field model
proposed in [7]. Therefore, our work proposes a method for measuring extremely low values
of interfacial tensions, particularly suited to measure the EIT between miscible fluids [30].

Despite the fact that spinning drop tensiometry was initially conceived for liquid drops,
it has been used to measure the properties of viscoelastic solid systems, such as the elas-
ticity of thin capsules [59] and the viscoelastic properties of polymer melts [39, 41]. To
complete our work on spinning drop tensiometry, we employed SDT to measure the elastic
modulus and interfacial tension of soft elastic beads. Conventional techniques rely on the
measurement of the elasto-capillary length, namely the ratio of the interfacial energy per
unit area to the elastic modulus. Therefore, these techniques do not allow to decouple the
bulk and surface contributions. On the other hand, SDT provides a way to access inde-
pendently both the shear modulus and the surface energy of soft solids, allowing for the
simultaneous measurement of the two quantities as shown in [31].

Finally, we have investigated the stability of viscosity-stratified coflows as a second
route to study the EIT and, more generally, miscible interfaces. As we have discussed in
Chapter 1, the controversy of literature data on the EIT [27–29] stems from the plethora
of experimental techniques that have been used and the different results that they yielded.
Consequently, it is not clear under which conditions Korteweg stresses behave alike an
equilibrium interfacial tension. These remarks show that it is not sufficient to investigate
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this topic by means of SDT only. Even though further experiments and analysis are required
to unravel the influence of the interfacial tension on such unstable flows, we presented in Sec.
5.3 the preliminary study of the coflow instability. Two different regimes are observed, as
the instability wavelength varies non monotonically with respect to the flow rates. At small
to moderate flow rates, the interplay between the interface and the channel walls leads to
a confinement effect preventing the excitation of waves of large amplitude and wavelength.
At higher values of the flow rate, the amplitude of the disturbance reaches a steady value.
We showed that in order to understand the stability of viscosity-stratified flows one needs
to take into account both kinetic energy dissipation and energy production, considering the
shape of the base flow velocity profile. More work will be carried out to better understand
this instability and the possibility of exploiting it as a technique to measure the EIT.

6.2 Perspectives

In this work, we showed that a positive EIT exists at short times when two miscible
molecular fluids are brought into contact, before they mix. Nevertheless, one important
aspect on the intimate nature of Korteweg stresses still needs to be discussed. In all our
experiments, we measured the effect of interfacial stresses by perturbing the interface,
either stretching it by means of the forced elongation of a droplet or by means of a growing
disturbance of the interface. Following Zeldovich’s work [60], one can indeed expect that
perturbing the interface in such a way should lead to a net force opposing the deformation,
arising from the steepening of the concentration gradient at the interface induced by the
deformation itself, while the interface is stretched. This is precisely what we measure as an
effective interfacial tension. Several questions that remain unanswered: what happens if one
does not perturb the interface? Are the tensions characterising deformed and undeformed
miscible interfaces the same? If a surface that is already deformed in a non-equilibrium state
is left free to evolve, do Korteweg stresses behave as an equilibrium interfacial tension would
do, and bring the system back to its original state? These questions are non-trivial, since for
miscible fluids even the original undeformed state of the interface is a non-equilibrium state,
the equilibrium state being represented by a homogeneous mixture of the fluids. Specifically,
Zeldovich demonstrated that when stretching the interface between two miscible fluids one
does modify the surface free energy, since the mass conservation of the mixed layer forces
the concentration gradient to become steeper as the surface area increases. Therefore,
any deformation is opposed by a net force arising from Korteweg stresses, and it is this
hypothesis that we verified with our experiments. But in the case of no deformation taking
place, is there any net force of this kind?

Put in concrete terms, imagine to have stretched a drop miscible with its environment,
as in the case of our spinning drop experiments, and to suddenly stop the rotation. The
question that we are asking is: does the drop retract, and if so, will the EIT be the same
that we measured in [30] under drop elongation? Similar drop retraction experiments
were performed for the case of near-critical mixtures [10], for which residual attraction
between the molecules of the two phases may still play an important role in determining
the retraction, but to the best of our knowledge no experiments showed retraction in the
case of molecular miscible liquids, the ones performed by Pojman and coworkers being
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hampered by experimental issues [61].
To try to answer this questions it is worth starting from a theoretical discussion. For-

mally speaking, as we have introduced in Chapter 1, there is a subtle difference between
surface tension Γ and surface free energy Fs, which was originally investigated by Shuttle-
worth in 1950 for the case of solids [4]. Following his work, surface energy corresponds to
the work necessary to form a unit surface by a process of division, such as the cleavage of
a solid. On the other hand, surface tension has a mechanical definition, in the sense that it
is the tangential stress applied on the surface, or the force per unit length, when one wants
to deform the surface by stretching it. The relation between the two is given by [4]:

Γ = Fs +A

(
∂Fs
∂A

)
. (6.1)

As we anticipated in Chapter 1, the difference between surface energy Fs and tension Γ
can be understood considering the case of crystals. On the one hand, when a surface is
stretched, the distance between the atoms changes (at least at low temperatures, when atom
motility can be neglected). On the other hand, this does not happen when a new interface
is created in a state of mechanical equilibrium. Therefore, the surface energy depends
on the deformation state of the crystal, and thus it differs from the surface tension. The
same holds for a viscoelastic system subject to deformations occurring much faster than
the time needed by internal stresses to relax: surface energy and tension become equal
only after a complete rearrangement of the molecules at the interface has occurred. By
contrast, at the interface between two simple immiscible viscous liquids the two quantities
coincide [62], and this is the reason for the confusion on the subject. The formal difference
between surface tension and energy becomes important for all non-equilibrium surfaces,
such as the case of the interface between miscible fluids. In this work, we have proven that
when such a miscible interface is deformed Korteweg stresses act as an effective interfacial
tension, opposing the deformation. Nevertheless, in order to better understand the nature
of Korteweg stresses, it is worth considering the EIT in the light of the dependence of the
interfacial free energy Fs on the deformation, following Zeldovich’s approach [60].

Let us consider a flat interface in the xy plane between two fully miscible liquids, such
as water and glycerol. After a time t0 diffusion will have brought the mixed layer to a
thickness δ in the z direction, so that the mass of mixture is M = ρAδ, where A is the
surface area and ρ the average density of the mixture. We denote by ϕ the concentration
of one of the two fluids, which varies across the interface (ϕ1 and ϕ2 are the concentrations
in the bulk of the two fluids, see Fig. 6.1). In order to compute the surface free energy Fs,
one has to integrate across the mixed layer the free energy density difference fs. The latter
is defined as the difference between the actual free energy per unit volume of the system
and that which the system would have if the properties of the two phases were continuous
throughout the interface [6]:

fs = ∆f(ϕ) +
k(ϕ)

2
(∇ϕ)2 , (6.2)

where k(ϕ) is the Korteweg parameter, and ∆f(ϕ) is the free energy density difference
between a mixture of two fluids with local concentration ϕ and a system in which the two
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Figure 6.1: Spatial dependence of the concentration profile across the interface. The con-
centration profile is approximated as linear across the interfacial layer, which spans from
z0 to z0 + δ.

fluids are separate and no interface is present. In order to obtain the free energy per unit
area associated with the interface, Eq. 6.2 has to be integrated across the mixed layer.
Approximating for simplicity the concentration profile as linear across the interface, as
depicted in Fig. 6.1, one has:

Fs =

∫ z0+δ

z0

[
∆f(ϕ) +

k(ϕ)(∆ϕ)2

2δ2

]
dz , (6.3)

where ∆ϕ = ϕ1 − ϕ2. Equation 6.3 corresponds to the first term in Eq. 6.1, and for
immiscible fluids it would be simply equal to the interfacial tension.

It is worth noting that for the case of fully miscible liquids the first integrand in Eq.
6.3 is negative: the fluids mix, and the equilibrium state is a homogeneous mixture of the
liquids, which means that a configuration with a mixed layer is less energetic than the one
with two unmixed fluids and, as a consequence, ∆f(ϕ) < 0. In particular, assuming the
mixture to be symmetric, one can write ∆f(ϕ) = Cϕ(1 − ϕ), with C a negative constant
(see Fig. 6.2). Equation 6.3 can still in principle take both negative and positive sign
depending on the steepness of the concentration gradient and on the relative magnitude of
the Korteweg parameter k(ϕ) and of ∆f(ϕ). However, considering that very steep gradients
are smeared out by diffusion over very short timescales, one can expect Eq. 6.3 to have a
negative sign in almost all practical situation for miscible fluids, and the square gradient
term to be a second order correction to ∆f(ϕ) (this may not be true for different cases, such
as critical mixtures or colloidal suspensions, where sharp interfaces can be maintained for
longer times due to a slower diffusion). Therefore, for simple miscible liquids considering
the interfacial free energy alone would not lead to a measurable interfacial tension in most
practical cases, and would lead the fluids to simply diffuse over time in absence of any
capillary effect.
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Figure 6.2: Concentration dependence of the first term in the interfacial free energy, ∆f(ϕ).
Assuming the mixture to be symmetric, ∆f(ϕ) has a minimum at ϕ = 0.5, and can be
written as ∆f(ϕ) = Cϕ(1− ϕ), with C negative constant.

Nevertheless, a careful inspection of the terms in Eq. 6.3 unveils a dependence of the
surface free energy on the surface area, which can become important when the interface
is stretched and explain the presence of capillary phenomena in miscible interfaces. In
order to understand this it is necessary to consider what happens in a system in such
circumstances. If the interface stretching takes place so fast that over the course of the
deformation one can neglect diffusion, the system can be considered as “frozen” with respect
to the latter, and the mass M and the volume of the mixed layer will be conserved while
the interface is stretched. This means that any deformation of the interface fast enough to
neglect diffusion will imply also a change in the interface thickness δ and consequently in the
square gradient term in the surface free energy. In particular, enlarging the interface will
induce the concentration gradient to become steeper, as depicted in Fig. 6.3. Therefore, it
is worth considering the surface dependence of Eq. 6.3 with care.

We compute the surface dependence of Eq. 6.3 assuming the mixture to be symmetric
(so that ∆f(ϕ) has the shape represented in Fig. 6.2), and approximating the concentration
profile as linear across the interface, as depicted in Fig. 6.1. Since over the interface
thickness δ we have dϕ = −∆ϕ

δ dz, we change integration variable and integrate over dϕ.
The integrand ∆f(ϕ) in Eq. 6.3 yields a contribution:

F∆f =

∫ z0+δ

z0

∆f(ϕ)dz =

∫ ϕ1

ϕ2

δ

∆ϕ
Cϕ(1− ϕ)dϕ =

δC

∆ϕ

[
ϕ2

2
− ϕ3

3

]ϕ1

ϕ2

= C∗δ . (6.4)

Here C∗ is a constant which depends on C and on the values of ϕ1 and ϕ2, which are
determined by the concentrations in the bulk of the fluids and do not change over the
course of the deformation. C∗ has the same sign as C, and for completely miscible fluids
(for which C is negative) Eq. 6.4 yields the expected results that the thicker is the interface
layer, the lower is the free energy of the system.
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Figure 6.3: Ideal representation of a stretching of the interfacial mixed layer between two
fully miscible liquids, such as water and glycerol, when diffusion can be neglected. A change
in surface area induces a variation in thickness due to the mass conservation of the mixed
layer.

Then, for the second integrand in Eq. 6.3, neglecting the dependence of k on ϕ [10,63],
one finds that the presence of Korteweg stresses yields a contribution FK :

FK =
k(∆ϕ)2

2δ
. (6.5)

Equations 6.4 and 6.5 together constitute the surface free energy term in Eq. 6.1. Consid-
ering their surface dependence is then necessary in order to compute the interfacial tension
from Eq. 6.1.

The mass conservation in the mixed layer imposes M = ρδA = const. Considering the
average density ρ in the mixed layer not to change with the deformation, Eq. 6.4 and 6.5
can be rewritten as:

F∆f = C∗
M

ρA
, (6.6)

FK =
k(∆ϕ)2

2M
ρA , (6.7)

respectively. At time t0, let the interface be stretched so that its surface becomes A+ dA.
Both Eq. 6.6 and 6.7 depend on the surface area and need to be accounted for when
computing the interfacial tension Γ. In particular, introducing all the contributions to the
interfacial free energy in Eq. 6.1, one finds for the effective interfacial tension between
miscible fluids:

Γe = C∗δ +
k(∆ϕ)2

2δ
− C∗M

ρA
+
k(∆ϕ)2

2M
ρA =

k(∆ϕ)2

δ
. (6.8)

Interestingly, this is the same result that one would find assuming the surface free energy
not to depend on the area and differentiating the total free energy of the system over the
interface area assuming local equilibrium [6, 10]. Nevertheless, in order to obtain Eq. 6.8
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we did not make any assumption of quasi-equilibrium and took into account the surface
dependence of the free energy, which makes the derivation described here more general.

Equation 6.8 is particularly interesting in the light of Eq. 6.1: in order to compute
the effective interfacial tension Γe arising from Korteweg stresses is in fact necessary to
consider a term ∂Fs

∂A . This means that an EIT is fundamentally different from an equilibrium
interfacial tension Γ, and contrasting results can be obtained when the tension is measured
in presence or in absence of a deformation dA. Even if the surface free energy for simple
miscible fluids will be almost always negative, a positive contribution can arise from the
term ∂Fs

∂A causing a net force opposing the deformation. The fact that one would find
different results when measuring an EIT in different ways is an expression of the out-
of-equilibrium character of Korteweg stresses. When considering the intimate nature of
the EIT, it is not sufficient to consider the energy associated to the interfacial layer: the
dependence of the latter on the surface area is necessary in order to understand its effect
as a capillary phenomenon.

According to the above arguments, a drop retraction experiment as the one described
above would yield the same EIT measured in [30] while the drop was stretched since, during
the retraction, the surface area and the interfacial layer thickness δ would change. It is
worth noting that this result was obtained neglecting diffusion, whose interplay with the
drop retraction may still be important in a real experiment. Nevertheless, this constitutes
a possible theoretical answer to the question at the beginning of the present section: would
a drop miscible with its environment retract, in absence of an external forcing? To verify
experimentally this hypothesis is a challenging task. In the configuration that we proposed
above of stretching a miscible drop in an SDT experiment and then suddenly stopping the
rotation, a fundamental issue would hamper the realization of the experiment. Indeed, if
we were to perform this experiment on Earth, buoyancy would quickly push the drop out
of the axis of the capillary of the spinning drop tensiometer once the rotation is stopped,
preventing the observation of any retraction.

For this reason, we recently proposed to perform this experiment in microgravity con-
ditions on board of a parabolic flight. Among the different ways to perform microgravity
experiments (other possibilities are free fall experiments on sounding rockets, and experi-
ments performed onboard the International Space Station), parabolic flights are the most
accessible and simple, allowing the experimenters to directly manipulate the setup during
flight, and thus they offer a unique possibility for an experimental environment that would
be impossible to replicate on Earth. During a parabolic flight, the pilot performs a series
of parabolic maneuvers, resulting in a succession of hypergravity and microgravity phases.
Figure 6.4 represents the various phases of a parabolic flight, as well as a scheme of the ex-
perimental protocol that we propose. The capillary will be initially spun, forcing the drop
to elongate. In this phase, the centripetal acceleration is much larger than the gravitational
one. Once the zero-g phase of the parabola is reached, the rotation will be switched off
(ω = 0): if the EIT behaves alike an equilibrium interfacial tension, the drop will retract.
The microgravity phase lasts about 22 s, which allows for a quantitative measure of the
EIT from the rate of retraction, following the results in [11]. Then, the capillary will be
either replaced with a new one or set in rotation again, in order to exploit a new parabola
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Figure 6.4: Scheme of the parabolic flight maneuver. The capillary will be spun during
the hypergravity phase, and the rotation will be arrested during the microgravity phase to
measure an eventual drop retraction.

at a different elongation state (and time elapsed since the injection of the drop, hence a
different interfacial concentration gradient due to diffusion). Over the many parabolas of
a flight campaign, we will test several samples, notably the water-glycerol mixtures and
triethylene glycol investigated in [11,30], tuning the value of the expected EIT by changing
the water content of the mixtures. Another important experimental parameter is the time
elapsed between the injection of the drop and the stop of the rotation, which determines
the thickness of the interfacial mixed layer due to diffusion.

These experiments were funded and accepted for a CNES (Centre National d’études
spatiales) parabolic flight campaign. They will be performed on board of an Airbus A310
adapted for microgravity experiments in the Bordeaux-Mérignac airport between Septem-
ber 28th and October 9th 2020. Their results will allow to shed light on the intimate nature
of Korteweg stresses, highlighting whether or not they behave as an equilibrium interfacial
tension.
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Résumé de la thèse

La tension interfaciale entre liquides immiscibles est une quantité thermodynamique bien
définie, importante pour une grande varieté de phénomènes, des boules de savon jusqu’à la
récupération du pétrole et la vie biologique.

En revanche, l’existence même d’une tension d’interface entre liquides miscibles n’est
pas encore établie. En 1901, le physicien et mathématicien néerlandais Diederik Korteweg
proposa que les gradients en concentration ou en densité hors équilibre qui peuvent exister à
l’interface entre deux liquides miscibles avant qu’ils soient complètement melangés, peuvent
agir comme une tension interfaciale effective (EIT, effective interfacial tension). L’existence
même de cette tension effective est actuellement débattue, et plusieurs travaux théoriques et
expérimentaux ont étés dédies à ce sujet [7–15]. Dans cette thèse nous proposons un travail
expérimental visant à comprendre et mesurer l’EIT entre liquides moléculaires miscibles.

Dans les années, plusieurs techniques ont été développées pour mesurer une tension
d’interface, comme la plaque de Wilhelmy [32], la cuve de Langmuir [33] ou l’analyse de
la forme des gouttes pendants [34]. Toutes ces techniques diffèrent par leur sensibilité, par
la présence ou l’absence d’un champ externe imposé, et leur pertinence pour des systèmes
spécifiques, tels que les interfaces liquide-vapeur, liquide-solide ou liquide-liquide. En par-
ticulier pour l’étude de ces dernieres, une technique spécifique qui permet de mesurer des
valeurs très basses de Γ (10−3 - 10−2 mN/m [19, 20]) grâce à un contrôle fin du forçage
imposé est la tensiométrie à goutte tournante (SDT, spinning drop tensiometry).

Les expériences conventionnelles de SDT reposent sur l’observation des formes d’équilibre
prises par des gouttes tournantes dans un fluide porteur plus dense. Cependant, ces
expériences ne sont pas adaptées pour étudier des gouttes miscibles, pour lesquelles l’état
d’équilibre serait un mélange homogène dans le capillaire du SDT. Une deuxième possi-
bilité qui a été discutée théoriquement dans la littérature [39, 41, 43] consiste à changer
rapidement la vitesse angulaire du capillaire et à mesurer l’allongement (ou la rétraction)
dynamique des gouttes pendant qu’elles atteignent le nouvel état d’équilibre dicté par la
vitesse de rotation finale. Peu de travaux expérimentaux ont été consacrés à cette ap-
proche différente, qui n’a pas été caractérisée en profondeur, même dans le cas des fluides
non miscibles. Néanmoins, ce type de mesures dynamiques de SDT peut également être
utilisé pour les fluides miscibles. Nous avons donc étudié la dynamique d’allongement des
gouttes lorsqu’elles sont soumises à un saut brusque de vitesse de rotation [11]. Afin de
caractériser les fluides miscibles, nous sommes partis du cas prototypique de la rotation
des gouttes dans un environnement non miscible, pour lequel la tension interfaciale est une
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(a) (b)

Figure 6.5: (a) Relaxation exponentielle de gouttes tournantes dans un liquid non miscible
après un saut de vitesse de rotation. (b) Dynamique d’allongement en loi de puissance de
gouttes miscibles ayant une faible différence en concentration par rapport au fluide porteur,
notamment une goutte d’un mélange eau-glycérol avec une fraction de masse d’eau de 5%
tournant dans un réservoir de glycérol pur.

quantité thermodynamique bien définie. Les gouttes immiscibles ont montré une relax-
ation exponentielle vers leur forme d’équilibre, avec un temps caractéristique entièrement
déterminé par les viscosités des deux fluides, la taille de la goutte et la tension interfaciale.
Cette relaxation exponentielle, reporté dans la Fig. 6.5a, est en excellent accord avec celle
prédite par Stone et Bush [43].

D’autre part, on constate une dynamique d’allongement complétement différente pour
les gouttes miscibles ayant une faible différence en concentration par rapport au fluide
porteur, comme pour une goutte d’un mélange eau-glycérol avec une fraction de masse
d’eau de 5% tournant dans un réservoir de glycérol pur. Des telles gouttes n’atteignent
jamais un état stationnaire, et leur dynamique d’allongement est bien reproduite par une
loi de puissance, l(t) ∼ t0.4 (Fig. 6.5b). Même si aucun travail théorique n’a discuté la
dynamique d’allongement des gouttes tournantes miscibles, cette évolution est en très bon
accord avec celle prédite par Lister et Stone [58] pour des gouttes immiscibles lorsque la
tension interfaciale est négligée. Ce résultat montre que, pour de faibles différences de
concentration entre la goutte et le fluide porteur, aucun stress de Korteweg ne peut être
mesuré [11].

De façon remarquable, les gouttes tournantes ne conservent pas toujours une forme
ellipsöıdale simple. Pour une tension interfaciale suffisamment faible, elles se déforment
radialement en développant une forme “dumbbell” (ou à os de chien), consistant en un corps
central mince reliant deux têtes plus grandes [45]. La Figure 6.6a fournit des exemples de
gouttes en forme “dumbbell”. Les gouttes dans les panneaux A et C sont composées d’un
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(a)

0 , 0 0 , 2 0 , 4 0 , 6 0 , 8 1 , 0
0 , 0

5 , 0 x 1 0 - 8

1 , 0 x 1 0 - 7

1 , 5 x 1 0 - 7

2 , 0 x 1 0 - 7

2 , 5 x 1 0 - 7

3 , 0 x 1 0 - 7

3 , 5 x 1 0 - 7

4 , 0 x 1 0 - 7

c w
1 . 0 00 . 7 50 . 5 0

� e (
Ν

/m
)

�

0 . 2 5

(b)

Figure 6.6: (a) Gouttes de 75% H2O - 25% glycérol (Panneau A), triéthylène glycol (Pan-
neau B) et 20% H2O - 80 %glycérol (Panneau C), tournantes dans un reservoir de glycérol
pur. Noter les différents facteurs d’agrandissement dans les directions horizontale et ver-
ticale. (b) Tension interfaciale effective entre mélanges d’eau et glycérol et glycérol pur
par contre la concentration d’eau dans le mélange. La ligne noire est calculée suivant le le
modèle de champ de phase proposé dans [7].

mélange d’eau et de glycérol, avec des fractions massiques d’eau cw = 0, 75 et cw = 0, 2,
respectivement. La goutte dans le panneau B, en revanche, est composée de triéthylène
glycol (TEG). Toutes les gouttes tournent dans du glycérol pur, avec lequel elles sont
entièrement miscibles. La Figure 6.6a montre également que cette forme “dumbbell” ne
dépend pas seulement de la densité et du contraste de viscosité entre la goutte et le fluide
porteur. Si tel était le cas, la goutte du TEG dans le panneau B aurait en effet une forme
intermédiaire entre les gouttes dans les panneaux A et C constituées de mélanges d’eau et
de glycérol, puisqu’elle a une densité et une viscosité intermdiaires. Ce n’est clairement
pas le cas. Donc, la Fig. 6.6a ne peut pas être expliquée entièrement par des phénomènes
hydrodynamiques. Le développement d’une forme de os de chien doit donc dépendre de la
structure moléculaire des fluides, et par conséquence des contraintes interfaciales résultant
de différentes interactions moléculaires. L’étude de l’origine et de la dynamique temporelle
de ces formes apparâıt naturellement comme une stratégie valable pour étudier la tension
interfaciale effective entre la goutte et le fluide porteur. Celle-ci est la stratégie que nous
avons adoptée dans la deuxième partie de nos travaux, dans le Chapitre 3.

Nous avons étudié l’origine de telles formes, en montrant que le mouvement de recircu-
lation du fluide porteur pendant la rotation induit une contrainte normale déséquilibrée sur
la goutte. Cette contrainte, plus grand au centre de la goutte qu’à la tête, est à l’origine
de la forme de l’os du chien. Nous avons étudié l’évolution temporelle de cette forme, en
démontrant qu’elle peut être utilisée pour mesurer la tension interfaciale à l’interface entre
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Figure 6.7: Longueur d’onde de l’instabilité d’écoulement parallèle en fonction du débit de
l’eau, pour l’eau s’écoulant parallèlement au glycérol dans un canal de 1 mm de largeur.
Le débit du glycérol est Qgly = 12 µL/min.

la goutte et le fluide porteur. En développant un modèle simple dans lequel nous équilibrons
la contrainte normale imposée sur la surface de la goutte, la contrainte de cisaillement qui
s’oppose à la déformation et un terme de type Laplace contenant la tension de surface,
nous avons exploité la dynamique de déformation des gouttes miscibles pour mesurer l’EIT
entre l’eau et le glycérol comme modèle pour les liquides miscibles simples [30]. En parti-
culier, nous avons trouvé une valeur de EIT de 250± 50 nN/m pour l’eau pure en contact
avec le glycérol pur (Fig. 6.6b), bien inférieur aux limites expérimentales des techniques
de tensiométrie plus conventionnelles, et en excellent accord avec le modèle de champ de
phase proposé par Truzzolillo et collaborateurs [7]. Par conséquent, nos travaux proposent
une méthode de mesure des valeurs extrêmement faibles des tensions interfacelles, partic-
uliérement adaptée pour mesurer l’EIT entre les fluides miscibles [30].

Bien que la tensiométrie à goutte tournante ait été initialement conçue pour les gouttes
liquides, cette technique a été utilisée pour mesurer aussi les propriétés d’autres systèmes,
tels que l’élasticité des capsules minces [59] et les propriétés viscoélastiques des polymères
[39, 41]. Nous avons donc pu employer l’SDT pour mesurer le module élastique et la
tension interfaciale des sphères élastiques souples. Les techniques classiques reposent sur
la mesure de la longueur élasto-capillaire, c’est à dire le rapport entre l’énergie interfaciale
par unité de surface et le module élastique. Par conséquent, ces techniques ne permettent
pas de découpler les apports en volume et en surface à la deformation. D’autre part, l’SDT
fournit un moyen d’accéder de manière indépendante à la fois au module de cisaillement
et à l’énergie de surface des solides mous, en permettant donc une mesure simultanée des
deux paramètres [31].

Enfin, comme nous avons discuté dans le Chapitre 1, la controverse des données de
littérature sur l’EIT [27–29] découle de la plèthore de diverses techniques expérimentales
appliquées et des résultats différents qu’elles donnent, et il n’est pas clair dans quelles
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conditions les stress de Korteweg se comportent comme une tension interfaciale d’équilibre.
Par conséquent, il ne suffit pas d’étudier ce sujet seulement au moyen de la SDT. Ainsi, nous
avons introduit l’étude de l’instabilité des écoulements stratifiés en viscosité comme seconde
façon de caractériser l’EIT. Même si d’autres expériences et analyses sont nécessaires pour
démêler l’influence de la tension interfaciale sur ces flux instables, nous avons présenté
dans la Sec. 5.3 l’étude préliminaire de l’instabilité d’écoulement parallèle. Deux régimes
différents sont observés, car la longueur d’onde d’instabilité varie d’une façon non monotone
par rapport aux débits. À des débits faibles ou modérés, l’interaction entre l’interface et les
parois du canal entrâıne un effet de confinement empêchant l’excitation des ondes de grande
amplitude et longueur donde. Aux débits plus élevés, l’amplitude de la perturbation atteint
une valeur constante et des effets non linéaires doivent être pris en compte. Nous avons
montré que pour comprendre la stabilité des flux stratifiés en viscosité, il faut tenir compte
à la fois de la dissipation d’énergie cinétique et de sa production, notamment en tenant
compte de la forme du profil de vitesse d’écoulement de base. Des autres etudes seront
effectués pour mieux comprendre cette instabilité et la possibilité de l’exploiter comme
technique de mesure de l’EIT.

En conclusion, nous avons proposé une nouvelle méthode pour mesurer les tensions in-
terfaciales extrêmement faibles et en particulier l’EIT, en ouvrent la voie à une compréhension
approfondie des contraintes Korteweg et des phénomènes capillaires dans les fluides misci-
bles.



In this work we tackle the challenging task of investigating the effective interfacial tension (EIT) between 
molecular miscible fluids. We first investigate the dynamics of spinning drops when they are subject to a sudden 
rotation speed jump. Immiscible drops show an exponential decay towards their equilibrium shape, with a 
characteristic time entirely determined by the viscosities of the two fluids, the drop size and the interfacial 
tension. Contrarily, a completely different elongation dynamics is found for miscible drops with a small 
difference in concentration with respect to the background fluid: in this case the dynamics are well captured by 
a power law. Moreover, for sufficiently low interfacial tension drops deform radially developing a “dumbbell" 
shape, consisting in a thin central body connecting two larger heads. We investigate the origin of such shapes, 
and demonstrate that they can be used to measure the interfacial tension at the boundary between the drop 
and the background fluids. By developing a simple model in which we balance the normal stress imposed on 
the drop surface, the shear stress opposing the deformation and a Laplace-like term containing the surface 
tension, we exploit the deformation dynamics of miscible drops to measure the EIT between water and glycerol 
as a model for simple miscible liquids. In particular, we find an EIT of 250±50 nN/m for pure water in contact 
with pure glycerol, a value orders of magnitude lower than the experimental limits of more conventional 
tensiometry techniques. In this thesis we also explore for the first time the systematic use of spinning drop 
tensiometry to measure the elastic modulus and interfacial tension of soft elastic beads, showing that this 
technique allows for the simultaneous measurement of the two quantities. Finally, we investigate the stability 
of viscosity-stratified coflows as a second route to study the EIT. Two different regimes are observed, as the 
instability wavelength varies non monotonically with respect to the flow rates. At small to moderate flow rates, 
the interplay between the interface and the channel walls leads to a confinement effect preventing the 
excitation of big waves. At higher values of flow rate, the amplitude of the disturbance reaches a steady value. 
We show that, to understand the stability of viscosity-stratified flows one needs to take into account both 
kinetic energy dissipation and production, notably considering the shape of the base flow velocity profile. 
 

 
Dans cette thèse nous proposons un travail expérimental visant à comprendre et mesurer la tension interfaciale 

effective (EIT) entre liquides moléculaires miscibles. Nous étudions d’abord la dynamique des gouttes en 

rotation lorsqu’elles sont soumises à un saut brusque de vitesse de rotation. Les gouttes immiscibles présentent 

une décroissance exponentielle vers leur forme d’équilibre, avec un temps caractéristique entièrement 

déterminé par les viscosités des deux fluides, la taille de la goutte et la tension interfaciale. Au contraire, une 

dynamique d’allongement complètement différente caractérise les gouttes miscibles avec une petite différence 

de concentration par rapport au fluide porteur: dans ce cas, la dynamique est bien saisie par une loi de 

puissance. De plus, pour une tension interfaciale suffisamment faible, les gouttes se déforment radialement en 

développant une forme "dumbbell", consistant en un corps central mince reliant deux têtes plus grandes. Nous 

étudions l’origine de ces formes et démontrons qu’elles peuvent être utilisées pour mesurer la tension 

interfaciale à la frontière entre la goutte et le fluide porteur. En développant un modèle simple dans lequel 

nous équilibrons la contrainte normale imposée sur la surface de la goutte, la contrainte de cisaillement 

opposée à la déformation et un terme de type Laplace contenant la tension de surface, nous exploitons la 

dynamique de déformation des gouttes miscibles pour mesurer l’EIT entre l’eau et le glycérol comme modèle 

pour les liquides miscibles simples. En particulier, nous trouvons une EIT de 250±50 nN/m pour l’eau pure en 

contact avec le glycérol pur, un ordre de grandeur inférieur aux limites expérimentales des techniques de 

tensiométrie plus conventionnelles. Dans cette thèse, nous explorons également pour la première fois 

l’utilisation systématique de la tensiométrie à goutte tournante pour mesurer le module élastique et la tension 

interfaciale des billes élastiques souples, montrant que cette technique permet la mesure simultanée des deux 

quantités. Enfin, nous étudions la stabilité des "coflows" stratifiés en viscosité comme deuxième voie d’étude 

de l’EIT. Deux régimes différents sont observés, car la longueur d’onde d’instabilité varie d’une façon non 

monotone par rapport aux débits. À des débits faibles où modérés, l’interaction entre l’interface et les parois 

du canal entraîne un effet de confinement empêchant l’excitation des ondes de grande amplitude. À des valeurs 

de débit plus élevées, l’amplitude de la perturbation atteint une valeur constante. Nous montrons que, pour 

comprendre la stabilité des flux stratifiés en viscosité, il faut tenir compte à la fois de la dissipation et de la 

production d’énergie cinétique, notamment en considérant la forme du profil de vitesse d’écoulement de base. 


