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Quantum spin Hall insulators (QSHIs) based on HgTe and three-layer InAs/GaSb quantum
wells (QWs) have comparable bulk band-gaps of about 10–18 meV. The former however features a
band-gap vanishing with temperature, while the gap in InAs/GaSb QSHIs is rather temperature-
independent. Here, we report on the realization of large inverted band-gap in strained three-layer
InAs/GaInSb QWs. By temperature-dependent magnetotransport measurements of gated Hall bar
devices, we extract a gap as high as 45 meV. Combining local and non-local measurements, we at-
tribute the edge conductivity observed at temperatures up to 40 K to the topological edge channels
with equilibration lengths of a few micrometers. Our findings pave the way toward manipulating
edge transport at high temperatures in QW heterostructures.

Introduction.– Time-reversal invariant two dimensional
(2D) topological insulators, also known as quantum spin
Hall insulators (QSHIs), are characterized by insulating
bulk and spin-polarized topologically protected states at
the sample edges [1, 2]. The presence of these edge states
is of great interest for potential applications in spintron-
ics, metrology [3] and quantum information [4, 5]. So far,
the QSHI state was experimentally established in HgTe
quantum wells (QWs) [6], InAs/GaSb QW bilayers [7, 8]
and 1T ′-WTe2 monolayers [9]. The latter with its 45 meV
inverted band-gap [10, 11] demonstrated a stable QSHI
state up to 100 K. This motivates the search of other
2D systems with even wider inverted band-gaps, but the
observation of QSHI in monolayer systems is experimen-
tally challenging because of structural or chemical insta-
bilities [12–14] and non-mature technological processing.
This stimulates the search of alternative candidates for
high-temperature QSHI among QW heterostructures.

The first measurements of the quantized edge conduc-
tance (main characteristic of QSHI) in HgTe QWs were
performed at temperatures in the range of a few tens
of mK [6]. Indeed, a relatively small inverted band-
gap (typically lower than 15 meV) in HgTe QWs grown
on CdTe buffer makes it difficult to observe the quan-
tized edge conductance at elevated temperatures. Note
that strain engineering using virtual substrate increases
the band-gap up to 55 meV in compressively strained
QWs [15]. Such high values, however, occur at low tem-
peratures only, whereas increasing temperature yields the
band-gap vanishing and topological phase transition into
trivial state [16–20]. Hence, the observation of the QSHI
state in HgTe Qws is so far limited to 15 K [21].

QSHIs based on InAs/GaSb QW bilayers raise a con-
siderable interest over HgTe QWs due to their ease of
fabrication. However, their small inverted band-gap of
about 3–4 meV induces a large residual bulk conduc-
tance [22]. This limits the observation of quantized

edge conductance values to the millikelvin temperature
range [8, 23–25]. Although the residual bulk conduc-
tance can be indeed reduced by means of various tech-
niques (implantation of Si impurities at the InAs/GaSb
interface [26], Be doping [27], or the use of low-purity
Ga source for MBE growth [28]), the quantized values of
edge conductance out of the millikelvin range have not
yet been observed even in strained InAs/GaInSb QW bi-
layers with a higher band-gap [29–31].

Removing the structure inversion asymmetry inherent
to InAs/GaSb QW bilayers by adding a second InAs
layer significantly enhances the inverted band-gap en-
ergy [32], resulting in QSHI with the bulk gap com-
parable with the one of inverted HgTe QWs. De-
spite the general similarities and characteristics of topo-
logical states in HgTe QWs [17] and three-layer (3L)
InAs/GaSb (QWs) [32–35], the inverted band-gap of the
latter is rather temperature-independent [36, 37]. This
fact, as well as the theoretically predicted inverted band-
gap in strained 3L InAs/GaInSb QWs above 60 meV [32],
make these QWs extremely attractive for observing quan-
tized edge conductance at high temperatures.

This work reports on the experimental realization
of strained 3L InAs/GaInSb QWs with large inverted
band-gap. Temperature-dependent magnetotransport
measurements of Hall bar devices made from 3L
InAs/Ga0.65In0.35Sb QWs in local and non-local geome-
tries reveal energy gaps as high as 45 meV, associated
with edge conductance attributed to topological states.
Note that the experimental gap values can be further
enhanced by growing 3L InAs/Ga1−xInxSb QWs with
higher values of x (cf. Ref. 31).

Materials and methods.–We have fabricated a set of
three QWs: S3054, S3052 and S3198, with distinct strain
and thickness parameters (see Table I). The samples were
grown by molecular beam epitaxy. The active part of
the samples sketched in Fig. 1(a) contains a symmetric
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TABLE I: Main sample parameters. For all fabricated Hall bars, W is the width, `p is the distance between the lateral probes
and l1 is the distance between the source (or drain) contact and the closest lateral probe.

Sample
InAs

thickness (nm)

Ga1−xInxSb

thickness (nm)
Outer barriers

Metamorphic

buffer
Device index (W , `p, l1 in µm)

∆ theory

(meV)

∆ exp.

(meV)

S3054 10.3 4.3 (x = 0.00) Al0.9Ga0.1As0.07Sb0.93 GaSb HB0(10, 22, 17) 14 N/A

S3052 7.5 3.1 (x = 0.35) Al0.9Ga0.1As0.07Sb0.93 AlSb HB1(100, 220, 170) 30 30 ± 2

S3198 7.5 3.1 (x = 0.35) AlSb AlSb HB4(20, 10, 40), HB6(20, 30, 30) 45 45 ± 8

FIG. 1: (a) Qualitative scheme of 3L QWs. (b) Sketch of
the Hall bar HB6. (c–g) Band structure, density of states and
Landau levels for samples S3198 (c,d,e) and S3052 (e,f,g). The
zero-mode Landau levels [6, 32] in panels (e,h) are indicated
by black solid lines.

3L InAs/Ga1−xInxSb QW embedded between AlGaAsSb
barriers. For the samples S3052 and S3198, the widths of
the InAs and Ga0.65In0.35Sb layers were chosen to be 25
and 10 monolayers, respectively. For the sample S3054,
the width of the InAs and GaSb layers were increased up
to 34 and 14 monolayers. Both samples S3054 and S3052
were grown on semi-insulating GaAs (001) substrates,
whereas sample S3198 was grown on a GaSb (001) sub-
strate. The samples have also different metamorphic
buffer layers, and different strain states.

All the samples were processed by optical lithography
into micro-sized Hall bar devices with a metallic front
gate, on a plasma-enhanced chemical vapor deposited
(PECVD) 300 nm-thick SiO2 for samples S3052 and on a
110-nm-thick stacking of SiO2/Si3N4 dielectric insulators

for S3054 and S3198. Transport measurements of vari-
ous gated Hall bars (see Tab. I) were performed in a cryo-
stat equipped either with a variable temperature insert or
with a Helium-3 insert for the temperatures below 1.7 K.
We used standard lock-in measurements with 10 nA cur-
rents at 11 Hz and high-impedance 1 TΩ preamplifiers.
The quantity Rij,kl corresponds to the voltage between
the probes k and l divided by the current flowing between
contacts i and j.

Bulk band-gap.– Figures 1(c,f) represent realistic band
structure calculations [32]. All the samples have an in-
verted band structure with the hole-like H1 band ly-
ing above the electron-like E1 band [38]. The cal-
culated band-gap for the samples S3052 and S3198 is
∆ ' 30 meV and 45 meV, respectively. Here, we note
an influence of the outer barriers on the band structure
of 3L InAs/GaInSb QWs at given layer thicknesses. The
sample S3054 with the smaller gap (∆ ' 14 meV) is sim-
ilar to the one studied in Ref. 36, in which the inverted
band structure was evidenced.

We first focus on measuring the longitudinal resistivity
ρxx ' R14,23W/`p as a function of the gate voltage Vg.
In HB0 device, ρxx(Vg) displays a peak at T = 2 K,
indicating a gap opening. However, this peak culminates
at ρxx ' 4.8 kΩ only with a weak insulating behavior as
shown in Fig. 2(b). Thus, the band-gap in HB0 device is
shunted either by edge states or a parasitic conductivity
channel in one of the cap or buffer layers [38]. Further, we
focus mainly on HB6 device (S3198 sample). Figure 2(a)
shows ρxx(Vg) for HB6 device, which evidences a much
higher peak of around 25 kΩ at low temperature. For
clarity, each curve has been horizontally offset by the
position of the peak maximum V max

g . The main peak
is flanked on its left side by a dip around Vg − V max

g =
−2.5 V. Such local ρxx minimum can be attributed to
the van Hove singularity (VHS) at the top of the valence
band as seen in Fig. 1(d). Similar dips were also observed
in InAs/GaSb QW bilayers [39–41], and recently in 3L
InAs/GaSb QWs [37].

Figure 2(c) shows the transverse magnetoresistance
ρxy for HB6 device at T = 300 mK. An ambipolar be-
havior centered at Vg = V max

g is evident. In the conduc-
tion band (CB), ρxy is linear at low B with a pronounced
quantum Hall effect at high magnetic field. In the valence
band (VB), ρxx is bended below B = 2 T even at the low-
est available gate voltage, Vg−V max

g = −5 V. At this volt-
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FIG. 2: (a,b) Longitudinal resistivity ρxx(Vg) at different tem-
peratures for HB6 (a) and HB0 device (b). (c) Transverse
magnetoresistance ρxy(B) as a function of Vg at T = 300 mK
for HB6 device. For clarity, a vertical voltage offset has been
introduced between V > V max

g and V ≤ V max
g . (d) Temper-

ature dependence of the peak resistivity ρmax
xx for the three

devices: HB1 (S3052), HB4 (S3198) and HB6 (S3198). Open
symbols corresponds to the experimental values, while the
dashed curves represent the fits as indicated in the text. The
inset shows the saturation of ρmax

xx for HB6 device at lower
temperatures down to 2 K.

age, both longitudinal and transverse magnetoresistances
are satisfactorily fitted by taking into account two types
of carriers: hole-like carriers of density nh = 7.0 × 1011

cm−2 and mobility µh ' 1, 000 cm2/V·s, and electron-
like carriers of density ne = 0.4× 1011 cm−2 and mobil-
ity µe ' 10, 000 cm2/V·s. This agrees well with the band
structure near the top of the VB, where the Fermi surface
has two distinct contours: an inner contour representing
electron-like particles and an outer contour correspond-
ing to hole-like particles (see Fig. 1(c)). In accordance
with the band structure calculations shown in Fig. 1(e),
the occupied low-indices Landau levels at B > 2 T are
formed by the outer contour states, while the states of
the inner contour become depopulated. Experimentally,
the measurements of Shubnikov-de Haas (SdH) oscilla-
tions at Vg − V max

g = −5 V reveal a single frequency
above B = 5 T corresponding to the carrier concentra-
tion nSdH = 8.3 × 1011 cm−2. This value corresponds
roughly to nh + ne ' 7.4× 1011 cm−2, as obtained from
the low-field analysis.

Figure 2(d) summarizes the temperature dependance
of the peak value of the resistivity, ρmax

xx , for three Hall
bars devices: HB1 (S3052), HB4 and HB6 (S3198). At
high temperatures (above 25 K for S3052 and 150 K for
S3198), the samples demonstrate an additional planar

conduction, therefore the corresponding data were dis-
carded. At lower temperatures, a strong increase of ρmax

xx

was observed, followed by a weaker temperature depen-
dance at even lower T . The latter is typically attributed
to disorder-induced localization gap or edge states, while
the strong temperature dependence is associated with
thermal activation through the band-gap. Note that a
similar behavior of ρmax

xx (T ) has been commonly observed
in inverted InAs/Ga(In)Sb QW bilayers [25, 31, 42, 43].

As seen from Fig. 2(d), ρmax
xx as a function of T

is well fitted by the sum of two activation processes
with an additional constant term [31]: (ρmax

xx )
−1

=
σa exp (−∆/2kBT ) + σloc exp (−∆loc/kBT ) + σ0, where
kB is the Boltzmann constant and σ0, σa, σloc (∆ and
∆loc) have the dimensions of conductivity (energy). As
we impose ∆loc < ∆, the term σa exp (−∆/2kBT ) repre-
sents the strong T -dependence, while the two other terms
describe weak temperature-dependence in the saturation
regime. The fits give the energies ∆ = 45 ± 8 meV for
S3198 (HB4 and HB6), ∆ = 30±2 meV for S3052 (HB1),
and ∆loc lying in the range 0.7–1.2 meV for all devices (cf.
Ref 31). As seen, experimental band-gap energies are in
good agreement with their theoretical expectations. Note
that the error bar for S3052 is smaller because it does not
include the device-to-device variations.

Nonlocal resistances.– As evidenced from the inset in
Fig. 2(d), the resistance peak ρmax

xx for HB6 device satu-
rates and becomes constant below 10 K, where no activa-
tion energy can be found. Further, we demonstrate that
this saturation is mainly caused by the conductivity via
the edge states. Figure 3(a) shows the local resistance
R14,23 as a function of Vg − V max

g for device HB4 in the
temperature range from 3 K up to 80 K. As seen, the peak
amplitude is comparable to the one shown in Fig. 2(a),
while the Vg range is reduced in order to focus on the
gap region with the insulating behavior. Figure 3(b) pro-
vides the temperature dependence of non-local resistance
R26,35. One can see that at |Vg − V max

g | ' 2 V corre-
sponding to the edges of CB and VB, the local resistance
exceeds the non-local one for all the temperatures. At
these Vg values, the non-local resistance finds its origin
in the current spreading in the bulk of the Hall bars:
R26,35 ' (4ρ/π) exp(−π`p/W ), where ρ = R14,23W/`p is
the bulk resistivity. Experimentally, R26,35/R14,23 ' 0.1–
0.3 in the CB and VB [38], which yields `p ' 12–17 µm.
The latter is in qualitative agreement with the geometry
of HB4 when the finite width of the lateral probes (10
µm) is taken into account.

The situation changes significantly when Vg ap-
proaches V max

g corresponding to the middle of the band-
gap. In this case, R26,35 increases and becomes more
than twice larger than R14,23, that cannot be explained
within the model above. A similar increase of R26,35

was also observed in HB1 and HB6 devices. In HB0 de-
vice, even though the non-local resistance increases more
moderately, it still becomes ten times higher than the
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FIG. 3: (a) Local resistance R14,23 and (b) non-local resis-
tance R26,35 for HB4 as a function of Vg − V max

g , at different
temperatures from T = 80 K down to T = 3 K. The inset
sketches a minimal resistor square network. (c) Current dis-
sipation calculated in HB4 at three gate voltages, as given by
the fitting of R14,23 and R26,35 by the network model. (d) Fit-
ting parameters (Gedge × 10: dotted lines, σbulk: solid lines)
extracted from panels (a,b) for HB4 as a function of Vg−V max

g ,
at different T . The inset shows Gedge(T ) and σbulk(T ) at
Vg = V max

g . (e) Gedge and σbulk for HB0 (triangle), HB1
(circle), HB4 (cross), and HB6 (square), at Vg = V max

g and
T = 3 K. Solid black line: σbulk = Gedge. Vertical dashed
line: Gedge = e2/h (ballistic edge conduction). Red region:
additional parasitic edge conductivity. Green dashed region:
diffusive edge conduction. The temperature dependence of
(Gedge, σbulk) is indicated for HB1 (up to 16 K) and HB4 (up
to 57 K).

evaluation within the current spreading model.

Resistive network model.– Non-local resistance is often
observed in InAs-based QSHI [25, 44–47]. It has been
unambiguously related to edge state conduction by com-
bining electric measurements with spatial imaging using
SQUID microscopy [48, 49] and scanning tunneling mi-
croscopy [50]. To separate the edge and bulk contribu-
tions, each Hall bar device was modeled by a 2D resistor
square network, parametrized by the edge and bulk con-
ductivities: σedge (in µm/Ω) and σbulk (in �/Ω). These
two parameters are used to fit simultaneously the local
and non-local resistances at given gate voltage, which al-
lows visualizing the resulting current dissipation in the

devices, see Fig. 3(c).

To compare the relative contribution from σedge and
σbulk into the resistance measurement, we introduce the
edge conductance as Gedge= σedge/`p. The fitting pa-
rameters Gedge and σbulk as a function of Vg for HB4
device are shown in Fig. 3(d). In the gap region corre-
sponding to |Vg − V max

g | < 1 V, at T = 3 K, σbulk is
about 5 times smaller than Gedge and the edge conduc-
tance dominates. At the contrary, Gedge vanishes outside
the band-gap region. This disappearance is also observed
in HB1 and HB6[38], and is convincing evidence of the
topological nature of the edge states. At the top of the
VB, Gedge is non-zero and even has a local maximum
as seen in Fig. 3(d) when Vg − V max

g ' −1 V. Actu-
ally, we cannot attribute this phenomenon to possible
inhomogeneities of the HB4 device, since the similar be-
havior is also reproduced in HB6 and HB1. Moreover,
the non-zero Gedge contribution in the top VB region is
not surprising in view of recent theoretical studies pre-
dicting the coexistence of edge and bulk states in com-
plex VB of HgTe QWs [51]. Note that the valence band
of our 3L InAs/GaInSb QWs [38] is similar to the ones
of HgTe QWs [17]. Additionally, the inset of Fig. 3(d)
shows Gedge and σbulk at Vg = V max

g and confirms the
main points of the previous analysis: σbulk has a strong
T -dependance due to thermal activation above 40 K,
while Gedge dominates the bulk contribution below 40 K.
Clearly, the two curves cross at T ' 40 K. Above 40 K,
the sudden collapse of Gedge may indicate a brutal disap-
pearance of the edge states, but a quantitative analysis
of Gedge is difficult in this temperature range.

Assuming that the edge states are helical, the edge
conductance in the diffusive regime is given by Gedge =
(e2/h)λ/`p, where λ is the characteristic length at which
the two counter propagating edge states equilibrate.
From σedge at Vg = V max

g and the lowest temperature,
one extracts λ = 24, 2, 4 and 10 µm for HB0, HB1,
HB4 and HB6 devices, respectively. For HB0 device, as
λ(HB0) = 24 µm is larger than the distance `p between
the HB0 probes, Gedge(HB0) goes beyond the quantum
limit e2/h, and thus cannot be attributed to topological
edge states only: additional parasitic edge conduction is
at play. By contrast, in HB1, HB4 and HB6 devices,
Gedge remains smaller than e2/h, and edge conduction
via topological edge states only is possible with λ values
comparable to those of the literature [25, 52]. Figure 3(e)
summarizes the values of (σbulk, Gedge) at Vg = V max

g for
all the devices. In HB0 device, σbulk ' Gedge, and the
current flows equally in bulk and edges. By contrast,
in the other devices, the current in the band-gap region
flows mainly on the edges at T = 3 K.

Summary.– We have demonstrated large inverted
band-gap in strained 3L InAs/GaInSb QWs, whose value
is comparable with those in compressively strained HgTe
QWs [15] and 1T ′-WTe2 monolayers [9]. The band-gap
in 3L InAs/GaInSb QWs can be even higher than our
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reported values [32]. Quantitative analysis of the exper-
imental data evidenced topological edge channels.
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A. Band structure and growth scheme of the samples

Band structure calculations were performed by using the eight-band Kane model1, which directly takes into account
the interactions between Γ6, Γ8, and Γ7 bands in bulk materials. This model well describes the electronic states
in a wide range of narrow-gap semiconductor QWs, particularly in the broken-gap InAs/Ga(In)Sb quantum wells
(QWs)2–5. In the eight-band Kane Hamiltonian, we also took into account the terms, describing the strain effect
arising because of the mismatch of lattice constants in the buffer, QW layers, and AlSb barriers. To calculate LLs, we
used the so-called axial approximation. Within this approximation, one keeps in-plane rotation symmetry by omitting
the warping terms in the Hamiltonian. The calculations had been performed by expanding the eight-component
envelope wave functions in the basis set of plane waves and by numerical solution of the eigenvalue problem. Details
of calculations, notations of the LLs, and the form of the Hamiltonian can be found elsewhere1. Parameters for the
bulk materials and valence band offsets used in the eight-band Kane model are taken from Refs6–8.

FIG. S1: Band structure of three samples: S3054 (a), S3052 (b) and S3198 (c). Numbers in brackets denote crystal directions.
The values of ∆ represent the theoretical band-gap. The insets show the sequence and width of the grown layers for each
sample.

Figure S1 provides the band structure and the growth scheme for all three samples under study (see the main text).
Blue and red curves represent the band dispersion of electron-like and hole-like subbands, respectively. The electronic
levels have been classified as electron-like or hole-like subbands by comparing the relative contribution to this level at
zero quasimomentum from the basis states of |Γ6,±1/2〉, |Γ7,±1/2〉 and |Γ8,±1/2〉 bands with the contribution from
the heavy-hole band |Γ8,±3/2〉9.

B. Activation energy

To determine experimental values of the band-gap, we have focused on measuring the longitudinal resistivity
ρxx ' R14,23W/lp in local geometry. Here, W is the width of fabricated Hall bar, while lp is the distance between
the lateral probes (see Fig. 1 in the main text). Note that ρxx also includes the edge state contribution. Similar to
the case of InAs/GaInSb QW bilayers10, the temperature dependance of the resistivity were fitted by a sum of three
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terms:

(
ρpeakxx

)−1
= σa exp

(
− ∆

2kBT

)
+ σl(T ) + σ0. (S1)

Here, in the right hand side, the first term corresponds to the activation energy, the second term is due to localization
gap, and the last term G0 represents the conductance of the edge states.

We assume that the localization is induced by nearest neighbor hopping and takes the form:

σl(T ) = σloc exp

(
−∆loc

kBT

)
. (S2)

Two Hall bars, namely HB4 and HB6 devices, were fabricated from sample S3198. Starting from T = 300 mK, the
devices were progressively warmed up, while the gate voltage was continuously swept. Then, the maximum of the
resistivity was retrieved for each temperature.

FIG. S2: Fits of ρpeakxx as a function of temperature for HB4 and HB6 devices fabricated from sample S3198 (see the main
text). The left panel corresponds to the fits performed separately for HB4 and HB6 devices. The right panel represents the
fits, which were are done simultaneously imposing the same activation energy ∆ for both devices.

To extract the band-gap for sample S3198, we have first fitted separately the temperature dependence of the
resistivity peak measured in HB4 and HB6 devices (see Fig. S2). The fits give ∆ = 36 meV and ∆ =54 meV for HB4
and HB6 devices, respectively. Then, we also fitted simultaneously ρpeakxx for both devices, imposing the same values
of ∆. The latter also gives reasonable fits with ∆ = 46 meV. By combining experimental band-gap values obtained
by different types of the fitting for both devices, we have got ∆ = 45 ± 8 meV, which also includes the device to
device variations. For sample S3052, we have performed the fit of experimental data obtained in the HB1 device only
(see the main text). The device was progressively warmed up, while the resistance was measured at the gate voltage
corresponding to the resistivity peak at T = 300 mK. The fitting analysis provided in Fig. S3 gives ∆ = 30±0.3 meV.
Note that the error bar obtained in HB1 device includes only the standard deviation from the data fitting.

By analyzing the transport measurements in HB6 device, one can also estimate experimental values of the density
of states D inside the band-gap. The D values is defined by the difference ∆V between the gate voltage values
corresponding to the middle of the band-gap and the van Hove singularity observed in HB6 device (see the main
text):

∆ = 2∆V (Cg/q)/D, (S3)

where −q is the electron charge, Cg is the gate capacitance. With ∆V ' 2.5 V, ∆ = 45 meV, we get D =
8×1012 eV−1cm−2. The latter is approximately ten times smaller than the density of states expected in the conduction
and valence bands (see Fig. 1(d) in the main text), thus confirming the existence of the band-gap.

Additionally, let us detail Mott’s approach and nearest neighbor hopping. In this model, the energy barrier between
nearest sites separated by a distance a is defined by the energy gap:

∆loc = (Da2)−1. (S4)
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FIG. S3: Fits of ρpeakxx as a function of temperature for HB1 device fabricated from sample S3052 (see the main text).

For three devices HB1, HB4, and HB6, one cand find ∆loc = 3.4± 1.6 meV resulting in a ∼50–100 nm, a rather large
value. We note that, strictly speaking, the localization contribution σl(T ) in Eq. (S1) can be caused by a mechanism
other than the nearest neighbor hopping. For instance, Mott’s variable range hopping (VRH) follows the expression:

σl(T ) = σloc exp

[
−
(

∆loc

kBT

)1/3
]
. (S5)

Being introduced in Eq. (S1), it also gives very good fits as seen from Fig. S4. The gap estimation remains identical
for S3052 – ∆V RH(S3052) = 30 meV, and slightly differ for V3198 – ∆(S3198) = 41±12 meV. For the sake of clarity,
we stick to the simplest NN localization model in the main text.

FIG. S4: Fits of ρpeakxx for HB4 and HB6, assuming variable range hopping for the localization contribution σl(T ) (see Eq. (S5)).
The fits were performed separately for HB4 and HB6 devices.

C. Square lattice model of conductances

In the main text, each of the Hall bar devices is modeled by 2D nL × nW square-lattice network of resistances (see
Fig. S5). On the two edges of the Hall bar, the conductance is given by σedge (in units of length per Ohm). Thus, the
conductance of a single edge resistance is given by σedge/lc, where lc is the side length of the squares. In the bulk,
the conductance is defined to the bulk conductivity (in ohm per square). Thus, the conductance of one of the inner
resistances is given by σbulk. At each i node, the potential Vi obeys the equation of current conservation:
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FIG. S5: Sketch of resistance square network for a given Hall bar geometry (nL = 22, nW = 4). The squares have a side length
lc. The red resistors represent the contribution from 1D edge state. They have a resistance σ−1

edgelc. The light blue resistors

model the 2D bulk and they have a resistance σ−1
bulk/�.

∑

j=NN

Gi,j(Vj − Vi) = Bi, (S6)

where j lists the nearest neighbors, Gi,j is the conductance element between the sites i and j (which equals either
σedge/lc or σbulk). Note that Bi in Eq. (S6) is defined by the boundary condition. The Bi value is non-zero only if the
i node is connected to an additional contact acting as a current source or drain. In the latter case, Bi = Gc(Vi − Vc),
where Gc is the contact resistance, Vc is the voltage of the contact. The exact value of Gc is unimportant for the
measurements in the four-probe geometry. Obviously, the network is described by the set of coupled linear equations
for the unknown Vi’s. This problem can be solved numerically when the voltages of the source and drain contacts are
imposed.

FIG. S6: Comparison of the numerical estimate of the non-local resistance, R25,34, as given by the square network, and
conventional formula R25,34 = 4/πρ exp(−πL/W ). Here, L is the distance between the probes 2 and 3, while W is the Hall bar
width. The width of the Hall bar has been divided into nW = 40 squares.

When nL, nW →∞, the square network model becomes equivalent to the finite difference method for the resolution
of the Laplace equation ∇2V = 0. The voltages of the source and drain contacts are imposed, yielding Dirichlet
boundary conditions. The boundary conditions imposed by the edge states are:

σedge∂
2V/∂x2 + σbulk∂V/∂y = 0. (S7)

We have checked that the model reproduces satisfactorily the expected non-local resistance R25,34 of an homogeneous
device (i.e. without edge conduction), when the size of the square mesh lc tends to zero. In practice, it is sufficient
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to choose nW ≥ 40. This is illustrated in Fig. S6, where the non-local resistance of the square network has been
calculated when the ratio L/W of the Hall bar is varied. Here, L is the distance between the contacts 2 and 3, W is
the Hall bar width. The model reproduces satisfactorily the well known formula for the current spreading:

R25,34 =
4

π
ρ exp(−πL/W ), (S8)

up to the relative precision of 10−14. All the calculation presented in the manuscript have been done with nW ≥ 20.

FIG. S7: (a) upper figure: experimental non-local and local resistances for HB0 device (open circles) and their values obtained
by fitting analysis in the resistive network model (dashed lines). Lower figure: fitting parameters Gedge = σedge/`p and σbulk.
(b–d): same figures for HB1, HB4 and HB6 devices, respectively.

In the main text, resistance square networks have been applied to each Hall bar device, and both bulk and edge
contributions were extracted by fitting the non-local and local transport measurements. The agreement between the
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FIG. S8: (a) Colormap of the local resistance R14,23, as a function of B and Vg at T = 300 mK. The white lines are guides for the
eyes, corresponding to integer filling factors ν = −5,−4,−3, 1, 3, 5, 7 and 9. (b) Similar colormap for the non local resistance
R26,35. The arrow shows the non local resistance at ν ' 2.5 induced by backscattering of the topmost LL11. (c) Fitting
parameters σbulk and Gedge, as a function of Vg, at different magnetic fields. The inset sketches a minimalist model of a square
resistor network, where σ−1

bulk and σ−1
edgelc are indicated as white and black resistors respectively (lc is the size of the square).

experimental and calculated resistances is demonstrated in Fig. S7. For HB0 device, whose data are provided in panel
(a), the edge contribution does not vanishes when the Fermi level lies in the bulk bands, suggesting parasitic edge
conduction. By contrast, for HB1 (panel (b)), HB4 (panel (c)) and HB6 (panel (d)) devices, Gedge ≥ σbulk in the
band-gap but Gedge ≤ σbulk in the bulk bands. This behavior suggests that helical edge conduction is at play. As it is
seen, an unexpected overshoot of the edge conductance appears at the boundary between the band-gap and the bulk
bands. Experimentally, this is caused by the fact that the width of the non-local resistance peak was systematically
larger than the width of the local resistance peak in our measurements. In the gap, the observed local resistance
of the HB4 device is considerably larger in Fig. S7 than in Fig. 3 of the main text. The two figures correspond to
two different cool-downs of the same device. This illustrates the importance of mastering the electrostatics of these
devices in future works.

D. Magnetoresistance

Fig. S8(a) shows colormaps of the local magnetoresistance R14,23 for HB6 at T = 300 mK, as a function of B and
Vg. Landau levels (LL) of the CB are well visible on R14,23 for B > 5 T, Vg − V max

g > 1 V. Some LLs are also visible
in the VB. The LL formation is evidenced by the white lines which correspond to filling factor ν = -5,-4,-3, 1, 3,
5, 7, and 9. At Vg − V max

g = 5 V, the SdH concentration nSdH = 1.06 × 1011 cm−2 is in accordance with the Hall

concentration nH = 1.15× 1011 cm−2. At B = 12 T and ν = 2, the device is in the quantum Hall regime and R14,23

becomes as low as ' 20 Ω, which gives a residual conductivity σxx ' 0.1 µS. Thus, parallel conduction is negligible
in HB6.

Fig. S8(b) shows a similar colormap for the nonlocal resistance R26,35. In the conduction and valence band, the
non-local resistance finds its origin in the current spreading in the bulk of the Hall bars: Rexp

26,35 ' (4ρ/π) exp(−π`p/W )
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where ρ = Rexp
14,23W/`p is the bulk resistivity, `p is the distance between probes 2 and 3 and W is the Hall bar width.

This yields, Rexp
26,35 ' Rexp

14,23× 10−2, as approximately observed when |Vg − V max
g | > 2, see Figs. S8(a,b). Remarkably,

the non local resistance has a maximum along ν ' 2.5, whose relatively modest amplitude (200 Ω) is well explained
by the backscattering of the topmost LL (BTLL)11. The fitting parameters Gedge and σbulk are shown in Fig. S8c
for HB6, as a function of Vg, for non-quantizing magnetic fields. In the gap (|Vg − V max

g | < 1 V), σbulk � Gedge and
edge conductance dominates. Numerically, 1/σbulk reaches values as high as 1 MΩ, whereas the edge conductance is
about 10 µS, at least ten times higher than σbulk. In the VB, σbulk decreases with B, as expected in the two-fluid
model, whereas Gedge decreases smoothly when Vg decreases. In the CB, the decrease of Gedge(Vg) is much steeper
and σbulk gives the main contribution to both local and non local resistances. Even if our model is only adapted to
helical edge states, it correctly interprets the BTLL11 non-local resistance as an additional edge contribution, visible
as a peak around Vg − V max

g ' 2 V.
We also note that the edge state conductivity is resilient to magnetic fields up to 12 T in accordance with the LL

calculations shown in Fig. 1(e,h) in the main text, which show the crossing of zero-mode LLs in S3198 (S3052) only
at B ' 15 T (20 T).

∗ frederic.teppe@umontpellier.fr
† benoit.jouault@umontpellier.fr
1 S. S. Krishtopenko, I. Yahniuk, D. B. But, V. I. Gavrilenko, W. Knap, and F. Teppe, Phys. Rev. B 94, 245402 (2016).
2 S. S. Krishtopenko and F. Teppe, Sci. Adv. 4, eaap7529 (2018).
3 S. S. Krishtopenko, S. Ruffenach, F. Gonzalez-Posada, G. Boissier, M. Marcinkiewicz, M. A. Fadeev, A. M. Kadykov, V. V.

Rumyantsev, S. V. Morozov, V. I. Gavrilenko, et al., Phys. Rev. B 97, 245419 (2018).
4 S. S. Krishtopenko, S. Ruffenach, F. Gonzalez-Posada, C. Consejo, W. Desrat, B. Jouault, W. Knap, M. A. Fadeev, A. M.

Kadykov, V. V. Rumyantsev, et al., JETP Lett. 109, 96 (2019).
5 S. S. Krishtopenko, W. Desrat, K. E. Spirin, C. Consejo, S. Ruffenach, F. Gonzalez-Posada, B. Jouault, W. Knap, K. V.

Maremyanin, V. I. Gavrilenko, et al., Phys. Rev. B 99, 121405 (2019).
6 I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001), URL https://doi.org/10.1063/1.

1368156.
7 S. S. Krishtopenko, A. V. Ikonnikov, A. V. Maremyanin, K. E. Spirin, V. I. Gavrilenko, Y. G. Sadofyev, M. Goiran,

M. Sadowsky, and Y. B. Vasilyev, J. Appl. Phys. 111, 093711 (2012), URL https://doi.org/10.1063/1.4712042.
8 S. S. Krishtopenko, A. V. Ikonnikov, M. Orlita, Y. G. Sadofyev, M. Goiran, F. Teppe, W. Knap, and V. I. Gavrilenko, J.

Appl. Phys. 117, 112813 (2015), URL https://doi.org/10.1063/1.4913927.
9 S. S. Krishtopenko and F. Teppe, Phys. Rev. B 97, 165408 (2018), URL https://link.aps.org/doi/10.1103/PhysRevB.

97.165408.
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