
HAL Id: tel-04131500
https://theses.hal.science/tel-04131500

Submitted on 16 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Quantum chromodynamics at finite temperatures dans
densities : a renormalization group resummation of

perturbative series
Loïc Fernandez

To cite this version:
Loïc Fernandez. Quantum chromodynamics at finite temperatures dans densities : a renormalization
group resummation of perturbative series. Cristallography. Université de Montpellier, 2022. English.
�NNT : 2022UMONS095�. �tel-04131500�

https://theses.hal.science/tel-04131500
https://hal.archives-ouvertes.fr


THÈSE POUR OBTENIR LE GRADE DE DOCTEUR
DE L’UNIVERSITÉ DE MONTPELLIER

En Physique Fondamentale

École doctorale i2S

Laboratoire Charles Coulomb: Intéractions fondamentales, astroparticules et cosmologie

Chromodynamique Quantique à températures et densités finies:
resommation des séries perturbatives par le groupe de

renormalisation.

Quantum Chromodynamics at finite temperatures and densities: a
renormalization group resummation of perturbative series.

Présentée par Loïc FERNANDEZ
le 09/12/2022

Sous la direction de Jean-Loïc KNEUR

Devant le jury composé de

Hubert HANSEN, Maître de conférences, Université Claude Bernard Lyon 1 Rapporteur
Urko REINOSA, Chargé de recherche CNRS, CPHT, École Polytechnique Rapporteur
Sacha DAVIDSON, Directeur de recherche CNRS, LUPM, Université de Montpellier Présidente du Jury
Rudnei O. RAMOS, Professeur, Université d’état de Rio de Janeiro, Brésil Examinateur
Jean-Loïc KNEUR, Directeur de recherche CNRS, L2C, Université de Montpellier Directeur de thèse





À mes parents

i



Abstract en Français

Cette thèse couvre les recherches conduites à l’université de Montpellier, durant les trois années
de contrat financés par l’école doctorale I2S, dans le contexte de la théorie quantique des champs
dans un milieu dense et chaud. Cette théorie est un cadre de travail permettant de décrire les
champs quantiques à températures et densités finies. Un intérêt spécial est donné au groupe
de renormalisation et ses propriétés afin de définir un meilleur schéma de resommation des
divergences infrarouges qui affligent la théorie quantique des champs dans un milieu thermal.
Nous commençons par définir la méthode dite “renormalization group optimized perturbation
theory” (RGOPT), consistant à optimiser la série perturbative en accord avec le groupe de
renormalisation, un cadre de travail permettant de resommer les divergences infrarouges, puis
nous discutons son application dans différents modèles. Premièrement, l’application au modèle
scalaire, plus simple que la chromodynamique quantique (QCD), au troisième ordre perturbatif
où nous constatons une forte amélioration de la convergence de la série perturbative ainsi
qu’une diminution drastique de la dépendence résiduelle d’échelle de renormalisation. Puis,
nous explorons le cas de la QCD à haute densité et température nulle, où nous déterminons
une resommation originale à tous les ordres des logarithmes dominants et sous-dominants. La
discussion est ensuite étendue pour incorporer l’application de la méthode de resommation
RG dans le secteur des quarks, et une première approche à l’extension de ce formalisme au
secteur des gluons massifs, décrit par le formalisme Hard Thermal Loop (HTL), est exploré.
Finalement, nous discutons une première application de cette méthode de resommation pour
la détermination d’une équation d’état pour les étoiles à neutrons.
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English Abstract

This Thesis covers research conducted at the University of Montpellier, during the three years
of PhD contract financed by the doctorate school I2S, in the context of thermal quantum field
theory. This theory is a framework for describing quantum fields in a medium, specifically at
finite temperature and/or chemical potential (equivalently, density). A special focus is given
to the renormalization group and its properties to define a better resummation scheme for
the infrared divergences generically plaguing thermal field theory. We first define and apply
a so-called renormalization group optimized perturbation theory (RGOPT), a resummation
framework for the infrared divergences, for the specific case of the λφ4 model at next-to-next-
to-leading order, where we found sound results concerning the improvement of the convergence
of the series expansion as well as a drastic improvement with respect to the residual arbitrary
renormalization scale dependence. Cold and dense quantum chromodynamics is also explored,
where we derived an original all order resummation of the leading logarithms as well as the
so-called soft next-to-leading logarithms. The discussion is extended so as to include the ap-
plication of RG resummation in the quark sector at next-to-next-to-leading order, and first
developments for the specific case of massive gluons in the context of the Hard Thermal loop
perturbation theory. Finally, a preliminary applications of this resummation procedure to the
determination of an equation of state for neutron stars are discussed.
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Résumé en Français

Introduction

Lors des années 1950, l’invention des chambres à bulles a apporté avec elle la découverte d’un
grand nombre de particules, les hadrons, aux propriétés bien différentes. Un tel nombre, qu’il
fût vite évident que toutes ces particules ne pouvaient pas être fondamentales, mais plutôt des
structures composites, formées d’encore plus petites particules. Cette façon de penser étant
motivée par l’histoire de la recherche, et le fait que très souvent, la physique à très petites
échelles se révèle plus simple que de prime abord suite à la découverte d’une ou plusieurs
symmétries sous-jacentes. Gell-Mann et Zweig furent les premiers à proposer en 1963, indépen-
damment, un modèle avec une particule plus fondamentale existant en trois saveurs différentes,
qui permettaient alors de reconstituer la pléthore de particules hadroniques observées. De ces
trois saveurs de quark, les deux premières : up et down vinrent reconstituer les protons, les
neutrons et les pions. Tandis que différents mélanges avec la troisième saveur : strange expli-
quaient les propriétés des kaons. Ce modèle initial fut amélioré à plusieurs reprises durant la
décennie qui suivit afin notamment de coller avec la théorie de l’interaction électrofaible. Trois
autres quarks vinrent ainsi s’ajouter à l’édifice : le charm, le quark beauty et enfin le quark
truth1. Cependant, à ce stade, rien n’expliquait pourquoi ces quarks restaient liés au sein des
hadrons, ni comment certaines particules composites ne pouvaient même exister puisqu’elles
étaient en conflit avec le principe d’exclusion de Pauli. Ce principe stipule que deux particules
fermioniques (tels que les quarks) ne peuvent se trouver simultanément exactement dans le
même état quantique. Ces deux problèmes trouvèrent naturellement leurs réponses en donnant

1Il s’agit d’une vieille appellation qui n’a pas perduré, mais elle est préférée par l’auteur. Les quarks sont
désormais appelés up, down, strange, charm, bottomand top.
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un nouveau nombre quantique aux quarks: la charge de couleur. Ainsi, chacun des quarks
pouvait exister sous trois couleurs différentes, par analogie avec la lumière, et l’interaction de
ces couleurs permettait d’expliquer les états liés de quarks. Ce nouveau nombre quantique per-
mettait ainsi aux quarks de ne pas être exactement dans le même état quantique, et le principe
d’exclusion de Pauli, d’être satisfait. Les gluons émergèrent alors naturellement comme les
médiateurs de cette interaction. Une différence fondamentale entre les gluons et les photons
(les particules de lumière) est que ces derniers ne possèdent pas de charge électrique (la charge
de l’interaction qu’ils véhiculent), tandis que les gluons possèdent une charge de couleur (et
une autre d’anti-couleur), ce qui leurs permet d’interagir entre eux. Cette théorie est désormais
communément appelée la Chromodynamique Quantique (QCD) et prend tout son sens au sein
du formalisme de la théorie quantique des champs. Nous parlons également d’interaction forte
pour l’interaction entre hadrons, vue désormais comme une interaction effective, due à celle
plus fondamentale de la QCD.

Le confinement de la couleur

Si les quarks n’avaient pas été observés expérimentalement au préalable, c’est que ceux-ci de-
vaient être confinés dans les hadrons (protons, neutrons, pions...). L’interaction doit ainsi
croître exponentiellement avec la distance séparant les quarks, expliquant pourquoi nous n’ob-
servons jamais de quark libre, et inversement, être presque nulle lorsque les quarks sont très
proches les uns des autres. Sinon ils seraient forcés de se condenser en un seul point, ce qui
amènerait à une singularité.

Jusqu’à aujourd’hui, il n’y a pas de preuve mathématique rigoureuse de cette propriété de
la QCD. Pour cela, il faudrait pouvoir prouver que le potentiel d’interaction croit linéairement
avec la distance. En électromagnétisme, ce potentiel (de Coulomb) est bien connu et peut être
obtenu en résolvant les équations classiques de la force de Lorentz. En QCD, la résolution
des équations classiques de la QCD, une analogie “non abélienne” des équations de Maxwell,
est beaucoup plus compliqué dû aux auto-interactions des gluons2. Malgré de spectaculaires
avancées dans le domaine, la solution nous échappe encore. Ce phénomène est pourtant d’une
importance cruciale pour comprendre (en partie) l’origine de la masse dans l’univers observable.
Bien que la masse des particules fundamentales (quarks, leptons...) soient générées par leurs
interactions avec le champ de Higgs, cette masse ne représente qu’une infime partie de la masse
des hadrons. Ainsi, l’énergie mise en jeu dans le confinement des quarks au sein des hadrons,
ainsi que le phénomène de brisure de la symétrie chirale, est d’une importance essentielle pour
expliquer la masse des hadrons, et par extension, de tous les atomes de l’univers observable.

2Une introduction sur ces concepts est présenté entre autre dans les célèbres cours de Feynman sur la
chromodynamique quantique. Ceux ci furent en quelques sortes perdus durant des décennies puisque Feynman
fût emporté par la maladie avant de les compléter. Un anciant étudiant de Feynman, James M.Cline, publia en
2020 une version originale des “Feynman Lectures on the Strong Interactions”. Depuis, nombreuses revues plus
modernes, et plus complètes, traitent du sujet.
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Un milieu très chaud : le plasma de quarks et de gluons (QGP)

Cependant, ce comportement change sensiblement une fois que l’on chauffe les hadrons, ou
qu’un grand nombre d’entre eux se retrouvent compressés dans un faible volume. On parle
alors de densités, ou de façon équivalente techniquement pour les calculs, de potentiel chimique
très élevé. Après des années de recherches, une transition de déconfinement fut observée dans
les grands accélérateurs de particules du LHC au CERN à Genève et du RHIC à Brookhaven. À
partir de deux mille milliards de degré Kelvin/Celsius, les quarks et les gluons deviennent telle-
ment énergétiques que les quarks d’un hadron commencent à “voir” ceux d’un autre hadron. Ils
peuvent alors interagir ensemble et la notion même d’hadron perd son sens. Ce comportement
fut également confirmé par la QCD sur réseau, un modèle de l’interaction forte sur un espace-
temps discrétisé qui permet de procéder aux simulations numériques sur des super-calculateurs.
Bien que ce domaine du diagramme de phase de la QCD soit désormais bien connu, le domaine
des “faibles” températures3 et très hautes densités demeure plus mystérieux. Les collisionneurs
d’ions lourds ne peuvent pour l’instant pas atteindre ce domaine tandis que les calculs sur
réseau sont exclus à ce jour à cause du problème dit “du signe”. Ce problème a pour origine
les quarks avec un potentiel chimique. En tout généralité, il n’est pas toujours possible, pour
la description des quarks sur le réseau, d’utiliser une approche stochastique, nécessaire aux
calculs sur réseau. Notre meilleur espoir, pour l’instant, de mieux comprendre un tel état de la
matière, froid et très compact, se porte alors notamment sur les étoiles à neutrons, ces objets
célestes extrêmement compacts, au bord de l’effondrement gravitationnel. La récente détection
des ondes gravitationnelles a donné un nouvel essor aux observations astrophysiques. En com-
binant les informations que nous apportent les ondes gravitationnelles et électromagnétiques,
les contraintes sur l’équation d’état de ces étoiles se sont fortement améliorées ces dernières
années, nous permettant ainsi de remonter aux variables thermodynamiques de la QCD à très
haute densité. Mieux comprendre la structure de ces étoiles à neutrons, c’est à dire, l’état de
la matière au fur et à mesure que l’on se rapproche du noyau de l’étoile, permettrait d’affiner
notre compréhension du diagramme de phase de la QCD, et donc, de la QCD elle même.

Un aperçu analytique de la physique du QGP

À ces échelles d’énergie, le couplage de l’interaction forte devient de plus en plus petit. Cette
propriété de liberté asymptotique nous donne la possibilité d’exploiter la théorie des perturba-
tions afin d’approximer la théorie complète par une succession de corrections. Bien que réussir à
résoudre exactement la physique de la QCD est une tâche très difficle à cause de sa trop grande
complexité, il nous est néanmoins possible de faire des approximations permettant d’approcher
itérativement, au travers de corrections successives, la théorie exacte (non-perturbative). Cer-

3Faible vis à vis des 2 ∗ 1012 degrés
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tains effets cependant ne peuvent pas être évalués de cette manière et donc la théorie des
perturbations ne pourra jamais exactement reproduire la QCD complète.

Idéalement, nous souhaiterions pouvoir calculer ces corrections perturbatives à des ordres
de plus en plus élevés pour affiner notre compréhension du QGP, et ainsi essayer de s’approcher
analytiquement le plus possible de la transition de phase. Cependant, même à température
et densité zéro, la série perturbative de la QCD ne converge que (très) lentement, voir même
ne converge tout simplement pas. Cette divergence n’apparaît qu’à des ordres plus élevés que
nous ne pouvons pas atteindre pour l’instant.

Une fois les variables thermodynamiques introduites dans l’équation, la tâche se complique
davantage. Non seulement de nouveaux termes correctifs intermédiaires viennent se greffer, mais
en plus, pour une température non nulle, l’apparition de modes d’excitations collectifs, non-
perturbatifs, pour les gluons viennent stopper net la série perturbative à partir de la troisième
correction. En effet, dans le QGP, les corrélations à longues distances des gluons possèdent
un caractère intrinsèquement non-perturbatif. Nous parlons d’échelles “dures” (hard), pour les
particules (quarks et gluons) d’une énergie égale à la température ou de la densité du plasma,
d’échelle “douce” (soft) et “ultra-douce” (ultra-soft) (pour les gluons uniquement) d’énergie
bien plus basse que la température du plasma. C’est cette dernière échelle d’énergie qui donne
naissance aux modes non-perturbatifs des gluons. La série perturbative naïve est incapable de
décrire ces modes qui contribuent avec le même poids à tous les ordres successifs de la théorie
perturbative. Ce qui signifie que les corrections que nous calculons ne sont plus réellement des
corrections, puisqu’elles contribuent tout autant que les termes qu’elles sont censés corriger.

Heureusement, ces modes non perturbatifs (ultra-soft) disparaissent une fois le plasma re-
froidi. Néanmoins, il existe toujours dans le milieu des modes d’excitations collectifs à une
échelle intermédiaire : les modes soft. Pour la physique des hautes densités, la série perturbative
converge toujours faiblement, mais mieux qu’à température finie, et ne possède plus d’obstruc-
tion intrinsèquement non-perturbative suite à la disparition des modes ultra-soft. Ceci nous
motive à repousser le développement perturbatif toujours plus loin afin de pouvoir caractériser
au mieux la physique des hautes densités.

Le problème des divergences infrarouges

Ces modes collectifs nous compliquent la tâche, car ils proviennent des divergences infrarouges
(IR) apparaissant systématiquement dans les calculs perturbatifs. Ces divergences sont nom-
mées ainsi puiqu’elles traduisent des corrélations à longues distances dans le bain thermique.
En opposition aux divergences Ultra-Violette (UV) qui sont elles, des singularités locales. Si
nous souhaitons obtenir un résultat analytique, nous devons au préalable traiter le problème
de ces divergences IR. Les divergences qui apparaissent dans les calculs intermédiaires ne sont
cependant pas toutes indépendantes, et en les regroupant astucieusement et en les resommant,
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elles disparaissent naturellement au profit de l’apparition d’une masse effective pour les gluons.
Cette masse thermale nous apprends qu’en réalité les gluons se comportent comme des quasi-
particules massives lorsqu’ils se propagent lentement dans le plasma. L’utilisation d’une théorie
effective de la QCD, avec des gluons effectivement massifs plutôt que de masse nulle, devient
alors plus approprié pour décrire la physique du plasma de quarks et de gluons. Introduire
cette masse effective au sein même de la théorie nous définit ainsi un schéma de resommation,
pour les corrections perturbatives, qui va systématiquement réguler les divergences IR. De plus,
l’avantage d’un tel schéma de resommation, est que les corrections successives deviennent ef-
fectivement plus petites que les termes qu’elles corrigent, améliorant ainsi la convergence de la
série.

Le groupe de renormalisation

Avant de détailler davantage la méthode de resommation, il nous faut d’abord reprendre, briève-
ment, les concepts clés du groupe de renormalisation, essentiels pour les travaux présentés dans
cette thèse. Par construction, la théorie de l’interaction forte nous permet de faire des prédic-
tions sur la physique des quarks et des gluons. Mais pour décrire l’interaction, il faut commencer
par introduire un paramètre, le couplage, qui traduit l’intensité des interactions entre ces par-
ticules. Ce couplage n’est pas une observable physique. Dans les expériences de collisions de
particules, ce que nous observons sont des probabilités que les particules interagissent ou non,
et non l’intensité de cette interaction directement. Ainsi, nous pouvons fixer le couplage de
notre théorie par ajustement paramétrique (“Fit”) grâce aux observations expérimentales. Le
résultat d’une expérience à une échelle d’énergie E1 nous donnera une valeur de ce couplage
g1. Mais ce résultat va dépendre de l’énergie mise en jeu lors des collisions en question. Deux
échelles d’énergies différentes, E1, E2 donneront deux valeurs différentes pour le couplage: g1,
g2. Cependant, ces deux valeurs ne sont pas arbitrairement différentes. Sinon, notre approche
n’aurait que peu d’intérêt. La façon dont elles sont reliées nous est donnée par le groupe de
renormalisation. Ainsi, la connaissance de g1 à l’échelle d’énergie E1 nous permet de déterminer
(approximativement) la valeur de g2 à l’échelle E2. Cette connaissance du couplage et de son
évolution est cruciale pour la détermination d’une observable thermodynamique, telle que la
pression, à différentes échelles d’énergies (de manière équivalente, à différentes températures
et/ou densités).

Resommer la série perturbative

Une des méthodes de resommation des divergences infrarouges qui fut largement utilisée dans
la littérature, nommée Hard Thermal Loop perturbation theory (HTLpt) permit une meilleure
organisation de la série perturbative afin d’affiner les prédictions de la physique du QGP. Mais
cette méthode présente parfois des résultats surprenants. Premièrement, la convergence de la
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série perturbative n’était pas aussi bonne qu’attendue. Deuxièmement, l’incertitude inhérente
due à l’échelle de renormalisation, qui est censée diminuer lorsque nous améliorons le calcul,
augmentait progressivement avec les ordres perturbatifs successifs. Autrement dit, la façon
dont les échelles d’énergies sont reliées entre elles ne semble pas entièrement correcte dans cette
approche, suggérant que le spropriétés du groupe de renormalisation n’ont pas été correctement
appréciés.

Récemment, une méthode alternative de resommation de la série perturbative (RGOPT),
plus conforme avec les propriétés du groupe de renormalisation, a été développée et donne
d’intéressants résultats à températures et densités finis pour QCD ainsi que pour des théories
plus simples. Le travail de cette thèse porte donc sur le groupe de renormalisation ainsi que
l’application de cette méthode aux ordres perturbatif plus élevés dans le but d’affiner nos
connaissances thermodynamiques de la physique du QGP.

La première application de la méthode par l’auteur, concerne le modèle plus simple d’un
champ scalaire, contrairement aux quarks et gluons qui sont respectivements des champs (plus
compliqués) spinoriels/vectoriels. Notamment, le troisième ordre perturbatifs a été exploré,
pour lequel des résultats très concluants sont venus conforter les attentes espérées pour cette
méthode de resommation. Autrement dit, la série perturbative est nettement plus convergente,
et l’incertitude résiduelle d’échelle de renormalisation a fortement diminuée.

Puis, l’exploration de la QCD à température zéro et à haute densité a été poursuivi. La
détermination originale des logarithmes dominants et des logarithmes sous-dominants à tous les
ordres, ainsi que leur resommation grace au groupe de renormalisation, a été établi, amenant
à une nette amélioration comparé à l’état de l’art des calculs du domaine.

Finalement, l’application de la méthode RGOPT pour le secteur des quarks et des gluons
est discutée en dernier, notamment les complications rencontrées pour le secteur des gluons.
Les premières ébauches de résultat pour l’application à la détermination d’une équation d’état
pour les étoiles à neutrons concluent les recherches menées par l’auteur.
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1
Introduction

Quantum Chromodynamics (QCD), the commonly accepted theory of strong interaction, de-
scribes the interaction between quarks through the exchange of colored particles, the gluons, in
the realm of quantum field theory (QFT). Due to this interaction, the low energy quarks and
gluons bound together to form the hadrons, the elementary components of the atoms. QCD
possesses genuine non perturbative features such as the confinement that prevents any direct
observation of colored particles. At very high energy, more than the QCD scale which is of order
ΛQCD ∼ 300MeV, the strong interaction weakens due to its asymptotic freedom (AF) property,
and the (unphysical) shell of the hadrons blurs. This behavior happens at high temperature
and/or density and it allows one to use weak coupling expansion in QFT to address the physics
of these nearly free quarks and gluons. The state-of-the-art calculations at high temperature
and vanishing chemical potential for the free energy is held by lattice QCD simulations (LQCD)
which predict a smooth crossover phase transition from a confined phase to a deconfined one
[1]. However, owing to the so-called sign problem [2], LQCD is unable to explore mid and
high ranges of the chemical potential domain, for µ/T & 1, where neutron stars are believed
to lies. Moreover, no earth-based experimentation can reach this region of interest, leaving us
nearly blind to this physics. At small baryon densities, chiral perturbation theory gives a pre-
cise description of the degrees of freedom of QCD whereas perturbative approaches are reliable
for very high baryon densities, leaving the mid range, in particular where Neutron Stars (NS)
lies, still uncertain. A lot of efforts have been made recently in order to reconnect the two
sides of the phase diagram looking forward to obtaining an accurate equation of state (EoS)
for compact stellar objects. But due to the (expected) phase transition at this specific order of
magnitude for the baryon density, model dependent approaches show huge error uncertainties
as they reach an energy scale of the order of ΛQCD.

Our hope resides now in advanced resummation techniques in perturbation theory which
could help us to tackle this physics. Introducing such scales (T, µ) makes analytical approaches
harder to use, first due to the intrinsic complexity of the calculations in thermal QFT, but also
because of the apparition of non-perturbative effects originating from the medium. These
non-perturbative effects originates from infrared divergences appearing in Feynman diagram
involving bosonic quantum fields. A consistent framework must be defined to address the
resummation of such infrared divergences in order to obtain a divergent-free prediction for
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the free energy of QCD. A pioneering work by Freedman and McLerran [3; 4; 5] provided the
next-to-next-to-leading order (NNLO) pressure for massless quarks at vanishing temperature
and finite baryon density (equivalently finite chemical potential). It has been forty years since
then and only recently this received an improvement by including corrections from finite quark
masses [6] and pushing to a higher order the perturbative corrections [7; 8; 9]. However, infrared
divergences appearing at finite temperature and density spoil a naive perturbative expansion,
calling for a resummation that thwart the task. Physics of the soft modes, engendered by the
temperature and the chemical potential, found a modern descriptions in the realm of Hard
Thermal Loop theory used to resum these long-range correlations. While non-perturbative
ultra-soft modes, due to the temperature only, is synonym to a break down the naive weak
coupling expansion. Fortunately, the ultra-soft modes disappear in the cold and dense case of
QCD (T = 0, µ 6= 0) and we are only left with the hard and soft modes. Therefore, one can
push to higher orders the weak coupling expansion looking forward to decrease the residual
(large) dependence in the renormalization scale observed in the perturbative series as well as
refine the precise value of the free energy of QCD.

From the renormalization group properties, we know that the QCD free energy is an invari-
ant of the renormalization group (RG) in the complete theory; but in practice, at finite order of
perturbative expansion, this property is only partially realized. Consequently, the resurgence
of a remnant renormalization scale dependence is inexorable. However, upon including higher
order terms from the expansion, we expect this sensitivity to decrease so as to recover the exact
invariance in the limit of full resummation. Nevertheless, it has been observed in the so-called
Hard Thermal Loop perturbation theory (HTLpt) framework [10; 11; 12; 13; 14], which relies
on the Optimized Perturbation Theory (OPT), that notably at finite temperature, the rather
important scale sensitivity increases when successive terms in the weak-coupling expansion
are considered. This indicates that the renormalization group properties might not have been
addressed properly.

Recently, a modified procedure, Renormalization Group Optimized Perturbation Theory
(RGOPT), was developed and aims at resolving this issue [15; 16; 17]. In the present thesis, we
explore the application of the RGOPT method in λφ4 model at next-to-next-to-leading order
(NNLO) [18], whose great improvement with respect to standard screened perturbation theory
(SPT) motivates us to pursue our efforts in order tor apply the method to gluons in QCD. Due
to the high complexity of the HTL framework, first application of RGOPT to NNLO for the
naive quark sector is investigated [19], which pushes to next order the previous work from [20].

Another application of renormalization group properties to the sector of massive gluons (in
the HTL framework) to determine the leading soft logarithms (LL) and next-to-leading soft
logarithms (NLL) at all order, more simply than involved HTL calculations, is presented, based
on [21], as well as a resummation formula for the two series. This work goes well beyond the
soft sector first evaluated by Gorda et al. [7; 8; 9] using much more involved calculations to
determine the second soft leading logarithm of the series. Finally, we present a work in progress
to pursue the RGOPT method applied to massive gluons in QCD following previous works in
HTLpt [22; 23; 13]. Only one piece is missing in order to complete the result, and we hope to
close the calculation very soon.

Before presenting more in depth the HTL formalism and RGOPT approach in chapter 5 and
6 respectively, we will begin with a review of renormalization and the renormalization group
in chapter 2. Chapter 3 on the other hand recalls few notions useful for the introduction of
QCD in vacuum and in a medium, discussed in chapter 4. Finally, applications to neutron star
physics are discussed in chapter 7.
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“ À l’échelle d’une carte, le monde est un
jeu d’enfant.”
“Scaled to a map, the world is a
playground.”

— Laurent Graff

2
Renormalization

The calculus framework of this thesis is Quantum Field Theory (QFT). While we do not have
space for introducing the theory, there is an important part of this thesis based on renormal-
ization group properties that we would like to address carefully. Thus, we assume the reader
to be familiar at least with basic concepts of QFT but we will discuss renormalization from
basics, followed by the renormalization group.

This chapter is not intended to be exhaustive. There is much more to renormalization and
the renormalization group (RG) than what will be addressed here. We only choose the relevant
points for our work. An interested reader is referred to reviews such as [1; 2] for the perturbative
side of the renormalization group which is the one at hand here.

Our additional goal for this chapter is to motivate the concept of vacuum energy density
and related renormalization and anomalous dimension, which is seldom appreciated in the
literature, especially in thermal field theory. The notations in this chapter is thought to be
self-consistent but some definitions will slightly differ from next chapters. The reason being
that some different definitions/conventions were used in the various articles (by the authors or
by others). We thus try to set up a clean notation framework for future works.

2.1 Renormalization: a natural procedure
Along the 20th century, QFT has self-imposed as the best tool to describe the microscopic
world. The fundamental particles becomes excitations of fields φ(x) promoted to the operator
status: φ̂(x). Interactions between these fields therefore encode the interactions between the
particles. Fields and their interactions are defined by their Lagrangian density integrated over
every point in space. Here comes the complication. If we state that two fields can interact at any
point in space no matter how far we zoom in, we expect singularities to occur at infinitesimal
distances (considering a local theory and no singularities emerging at long distances). The field
operator φ̂(x) is not in general a well-behaved function, but rather it is an operator valued
distribution. Products of distributions do not always make sense. Some care is needed to
define these properly, and this is in fact the subject of renormalization, in which by appropriate
redefinition of the non observable parameters of the theory, we can systematically kill the
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2.2. RENORMALIZATION

divergences. There is however an ambiguity when choosing this redefinition. This redefinition
means that we absorb the infinitesimal scale inside the parameters, but where do we draw the
line between what should be absorbed and what should not ? Drawing such line is what we call
specifying the renormalization scheme. This renormalization scheme depends on the energy
scale, or renormalization scale, and on the regularization procedure that we choose arbitrarily.

Specifying properly the energy scale will facilitate the description of the observables. It
should be of the order of the energy scale at which we evaluate the specific observable otherwise
it would lead to unnaturally large quantities. But the predictions must not depend on the
choice of this arbitrary energy scale, otherwise we could not make any predictions at all. This
constraint is consistently encoded in the renormalization group equation, that we will address
after giving a more precise insight in the formalism of renormalization.

One may wonder what would have happened if we did not have infinities in the first place.
They are commonly believed to be due to the fact that we do not possess yet a complete knowl-
edge of the Planck scale. But if we had it, it would not mean to throw away the renormalization
procedure. Even if we had a natural cut-off scale such as to regulate all the ill-defined integrals
appearing in QFT, the theory would still lead to unnaturally large logarithms involving ratio of
this intrinsic cut-off (living presumably at the Planck scale) and the momenta of the particles.
The renormalization procedure would still allows to absorb these large quantities such as to
define a more natural description1.

2.2 Renormalization
As a concrete example, we will use the massive scalar λφ4 model to discuss renormalization,
not only as a simpler model compared to QCD, but also because it will become handy when
discussing our specific work at next-to-next-to-leading order [3]. Starting from the euclidean
Lagrangian,

L =
1

2
(∂µφ0)(∂µφ0) +

1

2
m2

0φ
2
0 +

λ0
4!
φ4
0, (2.1)

where index “0” indicates bare quantities, the leading contribution to the self energy (in the
vacuum, denoted with index V ) in euclidean momentum space is:

ΠV
1 =

λ0
2

∫
d4P

(2π)4
1

P 2 +m2
0

, P = (P0, ~p), (2.2)

In fact, this integral is not properly defined since it blows up when |P | goes to infinity. But
this loop itself is not measurable, as discussed previously, the infinity appearing comes from the
lack of our knowledge on the infinitesimal distance scale. QFT has to be understood as a low
energy effective field theory valid up to some energy scale ΛUV . This scale being roughly the
inverse of a lattice spacing in coordinate space which parameterize our threshold of ignorance.

Nevertheless, to make any predictions out of this loop, we must first give a meaning to
this integral. To do so, we introduce a regulator. This regulator is certainly not unique and
concrete results should be independent of the specific regularization as we wish to remove it
ultimately. Specifying a regulator is called a regularization scheme. The most intuitive scheme
is simply to cut the integration at a specific UV scale Λ:

∫∞
0

7→
∫ Λ

0
. Choosing this regulator,

we define a scale that separates between what will be part of the infinity and what is not.
Now that we have regulated the divergence, we can renormalize the parameters of the theory

1In the sense of naturalness, i.e contributions would be of order one.
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CHAPTER 2. RENORMALIZATION

to cancel the divergence and then we can remove the regulator. To illustrate more clearly the
renormalization procedure, consider the result of Eqn.(2.2) using a cut-off regulator:

ΠV
1 =

λ0
32π2

[
Λ2 −m2

0 ln

(
Λ2 +m2

0

m2
0

)]
. (2.3)

Which is the first order correction to the propagator: 1
P 2+m2 7→ 1

P 2+m2+Π
. Upon redefinition of

the bare parameters,
φ0 = Zφr , m0 = Zmmr , λ0 = Zλλr (2.4)

we can define a counterterm δm (from Zm = 1 + δm) leading to an extra contribution2 2m2δm
to Eqn.(2.3). We can use the freedom of defining δm to absorb the divergent term. There are
infinitely many prescriptions to fix δm because we can also choose to absorb arbitrary finite
contributions at the same time. As already alluded, specifying what has been absorbed in the
counterterms defines a renormalization scheme. Here we absorb the divergent part of Π1 which
is given for Λ 7→ ∞:

λ

32π2

[
Λ2 −m2 ln

(
Λ2

m2

)]
+ 2m2 δm ≡ 0, (2.5)

defining a specific δm. This is the heart of renormalization: absorbing the ultraviolet (UV)
divergences inside the parameter of the theory. Cancellation of UV divergences is essential if a
theory is to yield quantitative physical predictions. We can systematically define counterterms
such as to absorb the arising divergences at every order. Whether it requires only a finite
number of them, we call the theory renormalizable, else it is said to be non-renormalizable.

Our notation is however slightly confusing. As we introduce a (yet unspecified) arbitrary
regulator in the theory, we are defining a somewhat different theory dependent of Λ. For the
prediction to be independent of the arbitrary choice of Λ, the coupling λ must be dependent of
this cut-off scale. Parameters mr, λr redefined in the manner of Eqn.(2.4), called renormalized
parameters, now become (renormalization) scale dependent.

What we observe in experiments are solely cross sections, not parameters of the constructed
theory. These parameters must be determined experimentally at some energy scale Λ0, and
knowing how they evolve with the energy, we can make a prediction for the cross section at
an higher energy scale Λ1. For a theory of n parameters, we need n of such inputs called
renormalization conditions. In QCD, neglecting quark masses to simplify, there is only one
scale free to fix associated to the evolution of the coupling, whose renormalization condition
leads to the definition of the (renormalization scheme dependent) scale ΛQCD.

Historically and intuitively, it is best to start with the momentum cut off scheme but with
the rise of dimension regularization [4; 5; 6] in QFT, it has become evident since then that
this scheme is much more powerful and it is widely used in the literature now. It respects
gauge invariance, chiral symmetry, Poincaré invariance, as well as being the sole scheme where
calculations are tractable in high loop order calculations. Moreover, a cut-off regulator leads
to contributions proportional to the scale, see Eqn.(2.5), which ruins intuitive power counting
in effective field theory (EFT).

2Note that the factor of 2 comes from the definition of m0 = Zm mr instead of m2
0 = Zm m2

r also seen in
the literature.
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2.2. RENORMALIZATION

2.2.1 Dimensional regularization and the MS scheme

Dimensional regularization originates from the idea that loop integrals are divergent in four
dimensions but not necessarily in smaller ones. So, if we analytically continue our theory in
D = 4− 2ε dimension instead, no infinities will arise as long as we keep ε 6= 0.

Vector spaces are only defined for integer dimensions so we should not try to take it too
literally. It can be given a precise mathematical definition, see e.g [1], but we can just use
dimensional regularization as a set of well-established prescriptions. All we need to know is
that it exists, it is uniquely defined as long as we axiomatically impose the operator (the
would be “D-dimension integration”) to satisfy three rules: linearity, scaling and translational
invariance. The last two read: ∫

dD~p f(~p+ ~q) =

∫
dD~p f(~p)∫

dD~p f(s ~p) = s−D
∫
dD~p f(~p).

(2.6)

Following this definition, a very important result is that any scaleless integral vanishes:∫
dD~p (~p)α , ∀α ∈ R. (2.7)

This can be seen easily from the general result for a one-loop integration,

M2ε

∫
dD~k

(2π)D
(~k2)a

(~k2 −M2)b
=

iM2ε

(4π)
D
2

(−1)a−b Γ(D
2
+ a)Γ(b− a− D

2
)

Γ(D
2
)Γ(b)

(M2)
D
2
+a−b (2.8)

upon taking the limit M 7→ 0 (which is valid for D
2
+a−b > 0, but can be analytically continued

for more general values).
This framework translates the power or logarithmic UV/IR divergences of the initial integral

into poles of gamma functions. Now, upon changing the dimension one has to re-scale the
dimension of the parameters in order to keep the Lagrangian density proportional to the inverse
D-th power of a length scale. For the coupling, this leads to introduce an arbitrary energy scale:

λ 7→ λM4−D (2.9)

which defines the minimal subtraction scheme (MS). This explain the factor M2ε inside
Eqn.(2.8). Calculations in this scheme lead to inconvenient factor of γE (Euler’s gamma)
and ln 4π, terms that we can absorb by changing the renormalization scheme to the so-called
modified minimal subtraction scheme (MS):

M2 = M̄2 e
γE

4π
. (2.10)

We shall work now in this scheme and drop the bar over the M for convenience. As a concrete
outcome, now Eqns.(2.3) and (2.5) become:

ΠV
1 =

λ0
2

∫
dDP

(2π)D
1

P 2 +m2
0

= −m0 λ0
32π2ε

− λ0m
2
0

32π2

(
1− ln

(
m2

0

M2

))
+O(ε), (2.11)

2m2δm =
m2 λ

32π2ε
. (2.12)
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CHAPTER 2. RENORMALIZATION

2.2.2 Weinberg’s theorem and renormalizability
So far, we discussed a theory that we implicitly assumed to be renormalizable. But renormal-
izable theories are only a tiny subset of the available theories at our disposal. A renormalizable
theory has the welcome property to only require a finite set of counterterms to be rendered
finite, whereas non-renormalizable theory requires a systematic introduction of an infinite set of
new counterterms at higher and higher orders to predict finite results. Renormalizable theories
were historically preferred, nevertheless, non-renormalizable theories are also powerful tools.
The theory of Hard Thermal Loop (HTL), to be addressed in chapter 5, has not yet been
proven renormalizable beyond three-loop order and the high-temperature approximation, yet,
its predictive power makes it a very standard use in modern thermal field theory.

From power counting argument, we can classify theories in three categories depending on
the dimension of their coupling. If the coupling has a dimension Di > 0, the theory is super-
renormalizable, if Di = 0 it is renormalizable and if Di < 0 then it is non-renormalizable. A
super-renormalizable theory only has a finite number of divergent Feynman diagrams, while a
renormalizable theory has an infinity of them at all perturbative orders, but requires only a
finite number of counterterms to be regulated.

To prove a theory renormalizable, one need to prove that local counterterms3 can be written
and that only a finite amount of them are needed, with the same form as the original (bare)
Lagrangian. The first point was proven long ago by Weinberg [7] as long as the divergences
appearing in Feynman diagram are polynomials in its external momenta. The second condition
is answered by the above power counting argument for a local field theory. Non-local field
theories (such as HTL) does not possess yet a general proof of renormalizability. We will
examine the renormalizability of HTL in more details in chapter 5.

2.3 Renormalization Group
“The renormalization group is one of those brilliant ideas that lets you get something for nothing
through clever reorganization of things you already know” [8].

To clarify immediately, the renormalization group is not a group in the mathematical sense.
The renormalization group, as previously mentioned, will ensure that observables are renor-
malization scale invariant. This designation, sometimes shorten to “scale invariant” is slightly
misleading as we should not confuse it with the genuine scale invariance of conformal theories.
To avoid any possible confusion we will stick with the designation: “RG invariant” when stat-
ing that any observable must be independent of the renormalization scale or explicitly write
“renormalization scale”.

Mathematically, this requirement can be embedded in the following differential equation,
the RG equation,

M
d

dM
Oi(M, g1(M), . . . , gj(M)) = 0. (2.13)

for any observable Oi dependent of j parameters, typically masses and couplings. The RG
equation relates how a change in the renormalization scale M must be compensated by a change
in the parameters of the theory such that the prediction remains RG invariant. Pictorially, the
RG equation describes a curve of constant physics on the graph above the hyperspace of the
parameters of the theory (see Fig.2.1). Wandering away from the curve will result in non RG

3In QFT context, we talk about non-local operator as having an inverse dependence on the derivative:
∂−1 at tree level. In practical calculations and in Fourier space, such terms leads to non-analytic terms as
ln (M1/M2), for two generic (non-renormalization) scale.
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2.3. RENORMALIZATION GROUP

Figure 2.1: RG flow along the curve of constant physics. The M direction has not been drawn.

invariant quantities that we cannot call observables. Thus, we should check for consistency
that our final results satisfy, at least perturbatively, the RG equation. If the theory contains
only one parameter, e.g λ for massless λφ4 theory, then Eqn.(2.13) will read explicitly

M
d

dM
Oi(M,λ(M)) =

(
M

∂

∂M
+ β(λ)

∂

∂λ

)
Oi(M,λ(M)), (2.14)

where β(λ) ≡ M dλ
dM

. We will refer to this equation as the “RG reduced equation”, since it
describes the RG evolution of a massless theory, in opposition to the more general massive RG
equation4,

M
d

dM
=M

∂

∂M
+ β(λ)

∂

∂λ
+mγm(λ)

∂

∂m
, γm(λ) =

d ln(m)

d ln M
. (2.15)

However, for a massive theory, this operator does not encode the complete RG dependence
since it is blind to the RG evolution of the vacuum energy. We shall review this point in the
eponymous section. In this thesis, we mainly consider 0-point functions, associated to the free
energy in thermal field theory, that is why we systematically neglect the anomalous dimension
of the fields in the RG operator. To be more complete, if applied to an n-point Green function,
the RG operator would pick extra terms:

∑n
i=1 γi with γi ≡ −M ∂φi

∂M
.

To understand how the renormalization group invariance occurs in practice, it is good to
start with a simple example. Considering the pressure dependent of a mass scale and a coupling
λ), the renormalization scale appears in the perturbative expansion inside logarithms according
to the following pattern (the first index is for the perturbative order, the second for the power

4Note that our convention for γm in λφ4 differs of a minus from our convention in QCD that we will recall
in chapter 5.
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of the logarithm):

P
m4

= −s0
λ

+ a0,1 ln

(
Λ

m

)
+ a1,2λ ln

2

(
Λ

m

)
+ a2,3λ

2 ln3

(
Λ

m

)
a0,0 + a1,1λ ln

(
Λ

m

)
+ a2,2λ

2 ln2

(
Λ

m

)
+ a1,0λ + a2,1λ

2 ln

(
Λ

m

) (2.16)

The first line, with the dominant logarithm, is called the leading logarithm family (LL), while
the second line is the first non-logarithmic coefficient a2,0 plus the first sub-dominant loga-
rithm family called the next-to-leading logarithm family (NLL) and so on and so forth. For
this pressure to be RG invariant, the explicit scale dependence inside the logarithms must be
compensated by the intrinsic dependence of the parameters (g(Λ),m(Λ)) on the renormaliza-
tion scale. Working out the RG equation of this generic pressure leads to recursive relations
to be satisfied to ensure RG invariance. The very first things that comes out is that we need
the first term s0 since RG invariance requires cancellation between the coupling at order O(λk)
and the explicit logarithm at order O(λk+1) to be satisfied. This will be discussed in the next
section. Restricting the beta function to its leading order contribution also tells us that the
renormalization scale cancellation occurs between terms of the leading logarithm family. There-
fore, upon resumming the LL and using the leading order running of the coupling and of the
mass parameter leads to an exactly renormalization group invariant pressure.

However, we are blind to the precise value of the higher order contributions, and it is hard to
estimate the uncertainties associated to these missing terms. Since the RG cancellation occurs
between terms of different orders, missing terms from higher order can be traduced by a missing
RG cancellation and therefore the appearance of a remnant scale dependence (if we did not
resummed logarithm families). Upon varying the remnant scale dependence, we can estimate
the uncertainty associated to the missing higher order contributions. Hence, from this simple
example we can understand that upon resummation of logarithms families, we can decrease the
residual renormalization scale dependence of the pressure (which also incorporates higher order
contribution), but to keep track of the missing higher orders non-logarithmic contributions, we
must choose higher order running couplings so that the cancellation between the resummation
and the running of the parameter mismatch by perturbative corrections.

2.3.1 Renormalization group flow equations
β function: the anomalous coupling dimension

Green functions obtained from the bare Lagrangian depend on the bare parameters obviously
independent of the scale M , so the bare parameters satisfy the RG equation:

M
dλ0
dM

= 0. (2.17)

Solving Eqn.(2.17) for λ0 = M4−Dλ̄0 = M4−DλZλ, it can be expressed in term of the bare
coupling:

β(λ) = −(4−D)λ̄0
∂λ λ̄0

= − (4−D)λ

1 + λ∂λ lnZλ

. (2.18)

We do not have complete knowledge of the beta function in general, rather, only the first
few perturbative orders. Due to the truncation error of the intrinsically limited perturbative
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2.3. RENORMALIZATION GROUP

series, the beta function is only well defined for a specific range of the coupling, namely when
it is sufficiently small so that perturbation theory is valid. To digress slightly, for QCD whose
coupling runs to zero at very high energy, there is a Landau pole in the IR sector where the
coupling values growth exponentially fast, while for QED it is the opposite. The beta function
may or may not have other non trivial zeros β(λ∗) = 0 for specific finite λ∗ values. It is possible
typically, if there are alternative signs in the perturbative coefficient expansion. In QCD, it
appears that every order calculated so far, up to 5-loop, gives a negative sign, so at least for
realistic quark flavor numbers, no such fixed points has been found so far. There may be
even non-perturbative fixed points, that we ignore the existence, that could be evaluated only
through an all order resummation of the series expansion. Fixed points in the theory leads to
very interesting physics, as the RG invariance (for a massless theory) becomes trivially satisfied
and the theory itself becomes conformally invariant.

Back to λφ4, expanding in perturbation theory, the first few orders of the beta function
reads:

β(λ) = b0 λ
2 + b1 λ

3 + . . .

b0 =
3

(4π)2

b1 = − 17

3(4π)4

b2 =
3915 + 2592 ζ(3)

216(4π)6

(2.19)

Note that the beta function given by Eqn.(2.19) picks up another contribution when applied
to bare quantities (see Eqn.(2.18):

β(λ) = −2ε λ+ b0 λ
2 + b1 λ

3 + . . . (2.20)

indeed, the beta function is easily evaluated from the counterterm,

Zλ = 1+δλ = 1+δλ,1λ+δλ,2λ
2+· · · = 1+

δ
(1)
λ,1

ε
λ+

(
δ
(1)
λ,2

ε
+
δ
(2)
λ,2

ε2

)
λ2+· · · = 1+

b0
2ε
λ+O(λ2) (2.21)

and Eqn.(2.18):

β(λ) =
(−2ε)λ

1 + λ∂λ ln(1 + δλ)
= −2ελ+ 2δ

(1)
λ,1λ

2 + 4δ
(1)
λ,2 + . . . (2.22)

Note that δ(2)λ,2 is given by δ
(1)
λ,1 and they cancelled out in the above formula. From Eqn.(2.19)

at first order in λ, we obtain the leading order RG flow of the coupling:

λ(M1) =
λ0

1− b0 λ(M0) ln
(
M1

M0

) . (2.23)

This is exactly what we use to specify the coupling parameter. We measure different cross-
sections at a given energy scale M0, trace back what would be the value of λ(M0) that would
have given this outcome, and using the running of the coupling, we can predict how the coupling
evolve and so on for the cross-section.
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γm function: the anomalous mass dimension

Just like λ, the mass m is dependent of the renormalization scale M and “runs” (with M) while
m0 is RG invariant. Following the definition in Eqn.(2.15):

γm =
d ln(m(M))

d ln(M)
, (2.24)

keeping the same notation as in the last section, we give for completeness the following relations:

γ(λ) = γ0 λ+ γ1 λ
2 + . . .

γ0 =
1

2(4π)2

γ1 = − 5

12(4π)4)

γ2 =
7

4(4π)6

(2.25)

Zm(λ) = 1 + δm(λ) = 1 +
δ
(1)
m,1

ε
λ+ · · · = 1 +

γ0
2ε
λ+O(λ2) (2.26)

M
dm0

dM
= 0, m0 = mZm 7→ γm(λ) = −β(λ)∂λ ln(1 + δm(λ)) (2.27)

In dimensional regularization, Eqn.(2.5) reads (for the divergence only):

− λm2

32π2 ε
+ 2m2δm = 0 (2.28)

Which is satisfied for δ(1)m,1 =
γ0
2

.

Γv function: the vacuum energy anomalous dimension

In massive field theory, the leading-order bubble diagram reads, after some algebra,

PLO = =
−1

2

(
eγEM2

4π

)ε ∫
dDP

(2π)D
ln
(
P 2 +m2

0

)
=

m4
0

64π2

(
1

ε
+

3

2
− ln

(
m2

0

M2

))
. (2.29)

Where the momentum integral is easily evaluated in dimensional regularization from Eqn.(2.48)
using ln(P 2 +m2

0) =
∫ m2

0

0
dm2 1

P 2+m2 . Here we see two issues emerging:

1. The loop is divergent, and it cannot be absorbed by m0 renormalization since the latter
is necessarily of next order: m0 ≡ mZm ' m(1− γ0/ε λ).

2. Even after renormalizing the mass, and naively minimally subtracting the divergent term,
the RG equation is in fact not even satisfied already at this leading one-loop order: Acting
with the RG operator of Eqn.(2.15) leaves a remnant term O(m4 lnM).

Both issues can be addressed upon introducing in the Lagrangian a new operator E0: the
vacuum energy density [9; 10].

This operator does not possess a perturbative expansion expressed in terms of Feynman
diagram, thus in the perturbative framework we use, we can only evaluate its contribution
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through the RG equation. Following [9; 10; 11; 12; 13], we express its contribution in terms of
a perturbative expansion in λ0, necessarily starting at order 1/λ0:

E0 = −m
4
0

λ0

∞∑
k=0

sk λ
k
0. (2.30)

Upon renormalization of this operator: m0 = mZm, λ0 =M2ελZλ, (we define E0 =M−2ε(E −
m4Zv) where E is the same but without the zero index), it generates a counterterms of the same
order in λ as in Eqn.2.29. This is a manifestation that perturbative RG invariance occurs from
cancellations between terms from the RG equation at order λk and the explicit M dependence
at the next order λk+1.

The counterterm Zv can be read off directly from the expression of the pressure, namely
here, following Eqn.(2.29):

Zv =
δ
(1)
v,1

ε
λ+

(
δ
(2)
v,2

ε2
+
δ
(1)
v,2

ε

)
λ2 + · · · ' m4

0

64π2
(2.31)

The coefficients sn can be determined iteratively from the remnant contribution of the
massive RG operator in Eqn.(2.15) applied to the pressure,

M
d

dM
E ≡ −M d

dM
P(E = 0) (2.32)

or, equivalently, by requiring the counterterms to cancel the remnant divergences of the pressure.
For λφ4, the first ones were determined in [14; 3]5:

(4π)2s0 = − 1

2(b0 − 4γ0)
= −8π2,

(4π)2s1 = − b1 − 4γ1
8γ0(b0 − 4γ0)

= 1,

(4π)2s2 = −23 + 36 ζ(3)

480π2
' −0.01399,

(4π)2s3 = −−709 + 12π4 − 2628 ζ(3)− 5400 ζ(5)

720(16π2)2
.

(2.33)

For simplicity, we redefine what we called the pressure P 7→ PRGI = P + E , which will then
satisfy the massive RG equation and thus becomes an observable. Equivalently Eqn.(2.32)
defines the action of the RG operator on E :

d E
d lnM

≡ Γ̂(λ)m4. (2.34)

ˆΓ(λ), the anomalous dimension of the vacuum energy density, is determined perturbatively
Γ̂ = Γ0 + Γ1 λ + . . . most easily using the counterterm Zv which can be read off directly from
the pressure. Together with the RG equation for the bare vacuum energy:

dE0
d lnM

≡ 0, (2.35)

5sn coefficients were at that time defined with respect to (4π)2F , we prefer now to define them as subtraction
to the pressure thus the extra factor of −1/(4π)2 with respect to our article [3].
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it leads after algebra to:
Γ̂(λ) =M−2ε

(
E −m4Zv

)
. (2.36)

Using Eqn.(2.34), we can relate the counterterm Zv to the subtraction coefficients sn permitting
a simpler evaluation of these coefficients:

Γ̂ = b0 s0 + 4s0 γ0 + (b1 s0 + 4s1 γ0 + 4s0 γ1)λ+ · · · = − 1

32π2
+O(λ2) (2.37)

Note that in λφ4, the coefficient of order λ in Γ̂v is strictly zero. This construction – adding
the vacuum energy – will be ultimately very relevant to the determination of a resummation
formula for the massive logarithms appearing in hard thermal loop theory. This will be discuss
in depth in chapter 5.

2.3.2 Connection with finite temperature field theory
Anticipating slightly our discussion of finite temperature field theory, we can already easily
define how the counterterms will depend on the temperature (or the chemical potential): they
will not. We discussed divergences in momentum space, but going back to coordinate space,
we can understand this statement quite clearly. In coordinate space, divergences originate from
singularity at x = 0 of the free propagator. Counterterms will then be defined as delta function
or derivative of the delta function (thus the notion of locality for counterterms).

As will be discussed later, introducing the temperature in QFT for thermodynamics at equi-
librium, means compactifying the time direction integration in the action. The free propagator
in coordinate space is not affected by any boundary conditions, thereby its counterterm will
remain the same as the T = 0 theory [1]. At least, this is true for standard local theory, but
maybe not for non-local theories such as Hard Thermal Loop (see chapter 5).

In the context of thermal field theory, the matter contribution decouples from the vacuum
contribution, the former coming with an extra factor of nB(~p) or nF (~p), respectively the Bose-
Einstein/Fermi-Dirac distribution, that decrease exponentially with ‖~p‖ → ∞ shielding the
term from UV divergences. However, importantly, they lead to IR divergences that we will
address in chapter 3. Moreover, even though the counterterms should not depend on T , within
higher order calculations, temperature dependent divergences arise at intermediate steps, due
to nested (sub)divergences, that are not always easy to disentangle.
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2.4 Logs galore

2.4.1 Constraints on the poles
The bare coupling λ0 contains formally all poles for ε 7→ 0 that will renormalize the Feynman
diagrams. For a renormalizable theory, by definition all these divergences cannot be totally in-
dependent. This link can be enlighten through the RG equation. Starting from, cf. Eqn.(2.18),

β(λ, ε) =
(D − 4)λ̄0

∂λ̄0
∂λ

, λ0 =M2ε

(
λ+

∞∑
j=1

dj(λ)ε
−j

)
, (2.38)

we can solve (formally) the beta function equation for the coefficient dj for every power of ε.
The coefficients dj(λ) are functions that we develop in power of λ. Defining β(λ) ≡ −2ε+β∗(λ),
the first orders give,

β(λ, ε) = −2ε+ 2 (λ∂λ − 1) d1(λ) 7→ β∗(λ) = 2 (λ∂λ − 1) d1(λ). (2.39)

Often in perturbative calculations, one drops the factor of ε in the beta function such that we
use β(λ, ε) ' β∗(λ)as ε 7→ 0, however, forgetting this factor here will lead to wrong results. This
equation already tells us that we only need the 1/ε divergences to evaluate the beta function.
Then, we determine generically for the order ε−j:

2(1− λ∂λ)dj+1(λ) + β∗(λ)
∂dj(λ)

∂λ
= 0, (2.40)

which means that knowing the beta function, thus the 1/ε divergences at each successive orders,
is sufficient to determine every other infinities that the coupling will renormalize. Repeating
this procedure for every parameter of the theory, in the end, we only need to calculate the
simple poles as well as the finite coefficients to determine exactly an observable at order λk.
This knowledge will become particularly handy once we discuss cold QCD in chapter 5, since we
used a similar reasoning to evaluate and resum every leading and next-to-leading logarithms.

2.5 Renormalization scheme change
For convenience and sensible comparisons, we are working in MS, however, the scheme is
arbitrary so nothing prevents us from changing scheme at some point. In chapter 6, we will
see that changing the scheme will become quite handy. First, a scheme is specified by its
(renormalized) parameters, counterterms and renormalization point. Practically, one specifies
the renormalization scheme by the renormalization scale and the coefficients of the anomalous
dimensions.

Previously, we already mentioned a change of renormalization scheme (RSC) in Eqn.(2.10)
when going from the MS scheme to the MS one. This is a specific RSC where only the sub-
traction point M is modified. There is also a possibility to change the regulator D = 4− 2ε 7→
D = 4 − α keeping the renormalization point unchanged. In practice, it amounts of changing
the λ and m. Generically, we will consider a RSC with coefficients that do not depend on the
mass. Suppose now that we have a second scheme in which the new mass and coupling are m′

and λ′, related to the other scheme as a perturbative series :

λ′ = λ′(λ) = λ
(
1 + A1 λ+ A2 λ

2 + . . .
)
,

m′2 = m2Zm(λ) = m
(
1 +B1 λ+B2 λ

2 + . . .
)
.

(2.41)
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Using the chain rule, the operator M d
dM

in Eqn.(2.15) in the original scheme can be expressed
in terms of M d

dM
in the new one (see e.g [1; 15]), which leads to:

b′0 = b0,

b′1 = b1,

b′2 = b2 − A1 b1 + (A2 − A2
1)b0,

b′3 = b3 − 2A1 b2 + A2
1 b1 + (4A3

1 − 6A1A2 + 2A3)b0,

(2.42)

γ′0 =γ0,

γ′1 =γ1 + 2b0B1 − γ0A1,

γ′2 =γ2 + 2B1 b1 + 2(2B2 −B2
1)b0 − γ0A2 − 2A1 γ1,

γ′3 =γ3 − A3 γ0 − (A2
1 + 2A2)γ1 − 3A1 γ2 + 2b2B1

− 2b1(B
2
1 − 2B2) + 2b0(B

3
1 − 3B1B2 + 3B3)

(2.43)

We see clearly that γ0, b0 and b1 are RSC invariant, i.e universal quantities.

2.5.1 Dimensional regularization glossary

Working in dimensional regularization, one needs to modify the metric such that its trace gives
the right number of dimensions:

gµνgµν = d 7→ γµγ
µ = d. (2.44)

In T = 0 quantum field theory (QFT), we commonly keep the D-dimensional integration
measure as dDk to proceed to integration. However, in HTL theory at finite temperature, as
we will see in chapter 5, the integrand is generally dependent on the angle between k0 and ~k,
the integrated momentum, so we separate the integration measure:∫

ddk =

∫
dΩd

∫
dk kd−1, (2.45)

where the d dimensional angle reads:

dΩd = sind−2(φd−1)sin
d−3(φd−2) . . . dφ1 . . . dφd−1 (2.46)

Ωd =

∫
dΩd = 2π

d−1∏
n=2

(∫ π

0

dφn sin
d−1φn

)
= 2π

d−1∏
n=2

√
π

(
Γ(n

2
)

Γ(n+1
2
)

)
=

2πd/2

Γ(d
2
)
. (2.47)

In the last equation, the integral leading to a factor of πd/2 is actually an axiom of dimensional
regularization. The most common integrals over Euclidean momentum are:∫

dk
ka

(k2 +∆)b
= ∆

a+1
2

−b Γ(
a+1
2
)Γ(b− a+1

2
)

2 Γ(b)
(2.48)

The analytic properties of the gamma function, with well identified poles at negative integers,
provides a useful analytic continuation for any a,b values.
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“A picture is worth a thousand words.”
— Confucius

3
Groups, representations and all sorts of fibers

The modern formulation of particle physics became exponentially greedy in terms of mathe-
matical notions and notations. When tackling the background of the Standard Model (SM),
we need tools such as Quantum field Theory (QFT) and Yang-Mills theory which has become
the cornerstone of particle physics. None of them is actually completely understood. Practical
calculations in Quantum Field Theory remain ill-defined, as we saw in the previous chapter,
and the theory is too difficult to be exactly solved, while there is still a missing proof at the
heart of Yang-Mills theory concerning its classical solutions. The theory of the strong inter-
action, Quantum ChromoDynamics (QCD), among other fundamental interaction, is based on
QFT and Yang-Mills theories. We will not discuss QFT here, however, we will recall the main
concepts at the core of Yang-Mills theory, namely, groups, groups representations and finally
fiber bundles.

3.1 Lie Group and representations

3.1.1 Symmetries in nature
It seems a bit ambitious to try to discuss all the symmetries in our surrounding world. And
yet, it may be very useful. Obviously, what is man-made is almost always very symmetric,
but also the world without our footprint. Flowers have discrete rotational symmetries; trees
are cylindrical; leaves have a plane symmetry... Our earth is nearly perfectly spherical, our
universe up to its far away confines appears to have a uniformly distributed electromagnetic
radiation. This has even motivated mathematician to describe “beauty” in mathematical terms
based on symmetry [1; 2]. Not all objects display exact symmetries, but the latter are at least
approximate. It seems that stable complex systems are just a gathering of small symmetric
constituent blocks assembled in a regular way[3]. Thus, physicists went digging for every
possible symmetries, at the microscopic scale, that could help simplifying the description of the
world. Knowing all of these symmetries allow to simplify the description of the sub-scale and
how the building blocks merge together. At the microscopic scale, this lead to describe matter
and its interaction using only symmetry groups. This is the modern formulation of quantum
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physics in terms of Quantum Field Theory, group (of symmetry) theory and the gauge principle:
the Standard Model.

Group definition

A group G of cardinality n, is a set {ga}i , i = 1, . . . , n of symmetries, called group elements,
which compose together. The composition "o" is inherent to the group and associative:

∀g1 ∈ G, ∀g2 ∈ G, (g1 o g2) ∈ G

Every ga in the group possesses its own inverse in the group such that: ga o g−1
a = 1G, where

1G is the group unitary element, included in {ga}i. If the group composition is commutative,
thus ga o gb = gb o ga, then the group is Abelian. Furthermore, the group is said to be simple
if it cannot be reduced into direct sum of smaller groups. The group GL(n,K)) is the group of
square matrices of dimension n, invertible, defined on the number field K. Jpq is the diagonal
matrix consisting of p times one and q times minus one. Then

O(p, q) =
{
A ∈ GL(p+ q,R)

/
A JpqA

t = Jpq
}

SU(N) ≡
{
A ∈ GL(N,C)

/
A†A = 1 & det(A) = 1

} (3.1)

Note that lifting the restriction on the determinant defines the group U(N). Of great impor-
tance is the group O(1, 3) which is the Lorentz group encoding rotational symmetry and boost
invariance.

Differentiable manifold and Lie groups

Lie groups are continuous groups of symmetries also defined as a differentiable manifold. Thus,
we have two pictures for the same objects: an algebraic structure and a geometric structure.
This allow to take advantage from both sides.

As the Lie group is locally an euclidean space, in each point of the manifold lies a vector
space. At the identity, the vector space is the Lie algebra g = T1G

G. Precisely,

Lie G =
{
A ∈ gl(n,K)

∣∣ ∀t ∈ R, et A ∈ G
}
. (3.2)

From the algebraic structure of the Lie group, the Lie algebra is equipped with an intern
composition law, usually wrote “[, ]” and called “Lie bracket”, satisfying:

∀X,Y ∈ g [X,Y ] = −[Y,X]

∀X,Y ∈ g [X, [Y, Z]] + [Z, [X,Y ]] + [Y, [Z,X]] = 0. (Jacobi′s identity)
(3.3)

Since we will consider unitary Lie group, whose determinant are equal to one, then the
elements of the Lie algebra must be traceless and since ∀G1, G2 ∈ G → G1 oG2 ∈ G it implies
∀Ta, Tb ∈ g → [Ta, Tb] ∈ g since the commutator is also traceless. The algebra being closed,
the Lie bracket defines the structure coefficients:

[Ta, Tb] = i fabc Tc (3.4)

Lie algebra is said to be the “logarithm of the group G”, this is always true by construction
but the inverse is not. Indeed, the exponential function cannot reach (it is not surjective), in
general, all components of G. It does only if the group G is compact and connected. One last
subtlety however, two non isomorphic groups may have isomorphic Lie algebra. For example,
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Lie SO(3) = Lie SU(2) but SO(3) = SU(2)/Z2 with Z2 = {−1, 1} being the second group of
congruence. SU(2) forms the covering space of SO(3) and gives the spinor representations of
the Lorentz group. There is also the case of SU(3) and SU(3)/Z3 which possess the same Lie
algebra. The center symmetry Z3 plays an important role in the confinement of color charges
in pure Yang-Mills theory at finite temperature (see chapter 4).

3.1.2 Representation theory on a Hilbert space

Previously, the group action was defined making abstraction of the specific structure upon which
it acts. Furthermore, we only defined abstract group elements from their composition without
specifying what they were. There are infinitely many different ways to represent the group
action, leading to different representations (nevertheless, they are not all linearly independent).
For a representation of group elements, we essentially ask for the latter to preserve the inner
structure of the group, that is to say that a representation of G on a vector space V is a group
homomorphism:

ρ : G → GL(V ), ∀g1, g2 ∈ G → ρ(g1 o g2) = c(g1, g2) ρ(g1)ρ(g2). (3.5)

The function c(g1, g2) introduced here reminds us that states in the Hilbert space do not nec-
essarily need to transform under representation of the group (that would mean c(g1, g2) = 1).
Quantum states are defined only up to a phase factor, so they only need to transform under
projective representations (i.e representation of the covering space).

In practice, there is an infinity of representations, most of them being redundant as they are
reducible and can be decomposed into lower dimensional representations ρi: R = ⊕iρi. Among
all the representations of the group elements, there are two of great importance: the defining
(F, also called fundamental) and the adjoint (adj.) representations. The first one is on the
vector space V ∼= CN for N ∈ N∗, N = 0 being the trivial representation, while the adjoint is
on the Lie algebra.Denoting respectively D and d for the representations of the Lie group and
Lie algebra, for G = SU(N), A ∈ G, g = Lie(G) and ai ∈ g:

DF(A) = A ⇐⇒ dF(Ta) = Ta dim(DF) = N

Dadj.
A (a) = AaA−1 ⇐⇒ dadj.a1

(a2) = [a1, a2] dim(Dadj.) = N2 − 1
(3.6)

The Casimir operators of the representation R characterize the representation:∑
a

TR
a T

R
a = C2(R)1 (3.7)

and they are dependant on the normalization of the generators of the Lie algebra:

Tr
(
TR

a T
R
a

)
= I(R)δab. (3.8)

We usually set for SU(3) : Ta = 1
2
λa, where λa are the Gell-Mann matrices, recalled explicitly

in appendix A. This definition gives:

I(R = F ) =
1

2
= TF , C2(R = F ) =

N2 − 1

2N
= CF

I(R = adj.) = TA = N = C2(R = adj.) = CA

dA ≡ N2 − 1 , dF ≡ dA TF
CF

= N , facdfbcd = Nδab

(3.9)
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3.2 Fiber Bundle

3.2.1 Principal Bundle
Every interaction in modern physics is characterized by a gauge symmetry group. Matter
fields, gauged under these symmetry groups are then charged under these interactions. The
goal now is to define fiber bundles which give a geometrical definition. First, we need to
be given a 4-dimensional manifold in which the fields live. Then we need to attach in every
point of this manifold a copy of the gauge group to reflect the underlying symmetry of the
matter fields. This structure is a fiber bundle. Mathematically, a fiber bundle is a triplet
(P , π,M) where P is called the total space, M the base, and π is a projection from P to M.

Figure 3.1: the Moëbius strip seen as a
fiber bundle. The orange arrow represent
the application π while the red one is σ.

If F is a Lie group, then we call the fiber bundle
a principal bundle. These are the one we are in-
terested in. Locally, P is a product space M×F
where F is the fiber. However, it may not be the
case globally due to non trivial topology, first from
the topology of the base space but also due to the
fibers. Take the Moëbius strip which is the perfect
example (see fig.3.1): locally, P looks like R2, but
globally, the base space identify to the circle S1

and not R. Yet, there is at least two total space
that relies on the circle: the Moëbius strip and the
cylinder. In the first case the fiber can rotate of π
around the base space.

To discriminate between the two shapes, we
need to introduce a section σ. As can be seen on
fig.3.1, the section is a continuous map from the
base to the total space. It associates one point in
M to one point on the fiber above M. The section
grants us with an origin on the fiber. It is often
said that the section is the inverse of π but this
is misleading, π projects the whole fiber on M whereas the section specifies, by an arbitrary
choice, one point on the fiber. To bo given a section is equivalent to be given a specific topology
of P . In physics, this section is related to the gauge fixing condition and the ghost fields that
we will explore in the next chapter.

Associated bundle: Bundle of Bundle of...

This structure of a fiber bundle is pretty generic, and we could choose one fiber bundle as being
the base space of another bundle. While this seems like self-harming at this point, it is actually
of practical use when trying to define the connection on a fiber bundle together with matter
field living in a representation of the gauge group, and not the gauge group itself. For a matter
field living in a given representation ρ (on the vector space V ) of the gauge group, one defines
the space where it lives as the associated vector bundle E = P ×G Vρ = P × Vρ/G.

Connection on a fiber bundle

Consider the point u in the total space P . By definition, it is a point x in M with a specific
referential in the symmetry describes by the Lie group G (or its representation ρ(G) on the
fiber F ). We would like to transport this referential along a curve in P , as we move from x to
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y ∈ M, keeping the referential parallel to itself in order to compare vectors from two different
points in the bundle. This is achieved through the connection which projects the basis vectors
onto each other as we move along the curve.

The connection act on vectors from TP (tangent space of P ) and takes values in g. It can
be cast on the tangent space of M via a given section,

TP
A−→ g

σ ↑↓ π

TM −→
A

g

(3.10)

such that the connection is a 1-form on M instead of P . We see here that we need a section
to define the connection form on the base space. In physicist language, this means that we
will need ghost fields so that the gauge fields may be described on space-time. Unfortunately,
the theory of connection would lead us way too far from thermal quantum field theory at this
point, thus we will restrain from discussing these notions more deeply. Only we need to know
is:

We will consider trivializable principal bundle which means that it can locally be expressed
as a product space. So, we can define locally a 1-form along the natural local coordinates of
1-forms dxµ. Since the connection takes values in the lie algebra, we can expand it in terms of
the generators of the Lie algebra (in any representation). In a given representation ρ it reads:

ρ(A) = Aa
µ ρ(Xa)dx

µ. (3.11)

For convenience, we will write ρ(Xα) = XR
α for a given representation R from now on.
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“Color! What a deep and mysterious
language, the language of dreams.”

— Paul Gauguin

4
Quantum Chromodynamics in a medium

Adapted from https://xkcd.com/1489/

4.1 Hadrons, baryons, mesons, quarks and gluons ?
In the 1950s, the invention of the bubble chambers lead to the discovery of a large number of
particles in high-energy collision experiments: the hadrons. So many of them that it became
unreasonable for particle physicists to think of them as the most elementary ones. In funda-
mental physics, we are looking for simplification and unification. Physicists were also guided by
the fact that some particles could not even possibly exist as they were not satisfying the Pauli
exclusion principle. To reconcile theory and experiments, Gell-Mann [1] and Zweig [2] proposed
independently in 1963 a model of smaller particles existing in three flavors which could explain
the observed abundance of Hadrons. Protons, neutrons and pions could therefore be explained
with the first two flavors: up and down, while the strange quark was required to explain the
properties of the Kaons. In 1968, a scaling in deep-inelastic electron-nucleon scattering was
observed implying a point-like substructure that was given the name of “partons” [3; 4]. Par-
tons were later identified to be the quarks (and gluons) of the Gell-Mann and Zweig model.
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4.1. HADRONS, BARYONS, MESONS, QUARKS AND GLUONS ?

Quark flavor mass Charge (QED)

up 2.16+0.49
−0.26MeV/c2 +2

3
e

down 4.67+0.48
−0.17MeV/c2 +−1

3
e

strange 93+11
−5 MeV/c2 +−1

3
e

charm 1.27+0.02
−0.02GeV/c2 +2

3
e

bottom 4.18+0.03
−0.02GeV/c2 +−1

3
e

top 172.76+0.30
−0.30GeV/c2 +2

3
e

Table 4.1: Current quark masses [13] at M ' 2GeV and charge with respect to QED.

Gell-Mann also discussed a theory of interacting quarks through the exchange of gluons, the
mediator of the interaction, which also resolved the issue that the wave function of the three
quarks in the baryon ∆++ could not be anti-symmetric without an extra quantum number.
This charge, which comes in three different types in contrast with electromagnetism, was given
the name of color by loose analogy with the three fundamental colors of the visible spectrum
of light. Therefore, three-particle composite objects described the baryons while particle/anti-
particle described the mesons. The nascent theory was thus named Quantum Chromodynamics
(QCD). Just a year after the birth of QCD by Gell-Mann and Zweig, Glashow and Bjorken [5]
proposed to introduce a new flavor: the charm quark in order to obtain a better description
of the weak interactions, the latter having the same number of families for the quarks and the
leptons. This was later reinforced [6] since an additional quark could explained the suppres-
sion of neutral current processes (GIM mechanism) involving change in the strange isospin.
Soon after, in 1974, it was discovered independently by two teams [7; 8]. Yet, Kobayashi and
Maskawa, following an old idea of Cabbibo [9] predicted in 1973 that it required a new pair of
quarks in order to reproduce CP violation in weak interactions. While the first one, the beauty
quark (commonly named bottom now) was observed at Fermilab [10] in 1977, physicists at that
time had to wait until 1995 [11; 12] for the discovery of the last one: the truth quark (called
top now). Quantum numbers and presently known masses for the quarks are summarized in
Table.(4.1). Even though the proton was believed since long to be composed of two up and
one down quarks, quantum field theory predicts that in addition there is an infinite number of
quark/antiquark pairs that could emerge from the vacuum. Thus, it has been argued that the
proton could have a sizable intrinsic component of the lightest heavy quark, the charm quark.
Recently, an evidence at the statistical three sigma level for this intrinsic charm quark inside
the proton was reported [14]. This now demands to be confirmed by another group.

The strong interactions is confined inside the core of the Hadrons since color charge has
never been observed directly until now. This suggests that only “white” composite particles
exist as bound states. Yet, this confinement property of QCD has not been proven rigorously
mathematically for all values of the coupling, even though it has been observed, at finite
temperature, on lattice computations of the theory [15; 16]. In 1973, Politzer [17], Gross
and Wilczek[18] showed that the only-renormalizable force at long distance and decreasing at
short distance was of Yang-Mills types [19]. In this theory, the leading order contribution in
perturbation theory to the beta function that drives the coupling evolution with the energy
scale is, in appropriate units,

β = − g4

32π2

(
11

3
Nc −

2

3
Nf

)
+O(g6). (4.1)
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Where Nc is the number of colors, specifically, three for QCD. For Nf ≤ 33/2, the beta
function is negative leading to a logarithm fall off of the coupling at high energy, i.e. at short
distances. In this range, quarks and gluons become nearly free particles, able to roam outside
hadrons, although the confinement property still holds strictly (quarks and gluons never appear
in isolation).

Due to this asymptotic freedom property, it seems reasonable to pursue a weak coupling
expansion at high energy. However it is well known for a while that the perturbative series
is presumably not convergent in QCD, but only a so-called asymptotic series [20]1. However,
it is believed that the perturbative series will converge for the first N terms before diverging.
The precise value of N is unknown but roughly of the order of the inverse of the coupling. See
[21] for a detailed argument. We will assume that the instabilities of the series arise at a much
higher order than what will be addressed in this thesis.

4.1.1 Color screening and asymptotic freedom, an intuitive picture
The relative sign between the number of colors Nc and the number of flavors Nf in the beta
function states that gluons and quarks operate oppositely in the screening of the bare charge.
Same color quarks repel each others, while for quarks of different colors it is slightly more
complicated. They can either attract each others, or, there is a possibility that they exchange
their colors and the this is a repulsive channel. Averaging over the color charge, quarks repel
each others while they are attracted to anti-quarks, similarly to QED. Even though the inter-
action between quarks are slightly more complicated than in QED, they give the same positive
screening that tends to make us see a smaller charge as we move away from a color charge. On
the contrary, as we move forward the central quark, we penetrate the screening cloud of virtual
quark-antiquark pairs and gluons and we see a greater fraction of the true color charge. How-
ever, as gluons carry a pair of charge/anti-charge, the picture is totally modified. Penetrating
the screening cloud, we see less and less gluons, carriers of a charge. This contribution being
stronger, it drives the beta function to be negative. Overall, we see less and less of the charge
as we move in, explaining the asymptotic freedom of QCD.

4.2 Yang-Mills theory and the gauge principle
Now, moving on to QCD, we assign to the quarks a color charge and the three colored fields
are embedded in a color multiplet living in the fundamental representation 3 of SU(3). The
six flavors of quark fields are described as elements of the trivial bundle P whose base space is
space-time and the fiber is the fundamental representation of the (global) symmetry SUcolor(3).
Upon using the gauge principle, thus requiring the symmetry to be preserved locally, gluon fields
emerge as the connection in the adjoint representation on the fiber bundle. This connection is
well-defined if and only if we give a specific section on the fiber bundle as discussed in the last
part of chapter 3 (see Fig.3.1). This section, a gauge fixing term, is called the ghost fields in
QCD terminology. We will see below how ghost emerge in the Faddeev-Popov procedure.

Gauging the quark fields under the SU(3) symmetry using the minimal coupling procedure
and expanding the gluon fields on the fundamental representation of SU(3):

∂µ → D(A)
µ ψ ≡ (∂µ − igAµ)ψ, Aµ = Aa

µ T
a
F , (4.2)

1Strictly speaking, the argument was developed for QED as QCD was not yet invented, however, the
generalization holds.
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with the Nc × Nc matrices T aF of the fundamental representation. For a local gauge transfor-
mation2 U(x) = ei g αa(x)Ta , which acts on ψ → U(x)ψ, the transformation law of the gluons in
the adjoint representation:

A′
µ = UAµU

−1 +
i

g
U(∂µU

−1) ⇒ D(A′)
µ UR = URD(A)

µ (4.3)

makes the Lagrangian for quarks explicitly gauge invariant under both global and local trans-
formations:

Lq = ψ̄α,j,f
(
iγµ(D(A)

µ )jk −mf δj,k
)
ψαk,f . (4.4)

Greek indices α denotes spinor indices while µ is for Lorentz vector indices. Latin letter except
f are used for color indices while f is for the flavor. On top of that, we include the Yang-Mills
Lagrangian for the gluon fields:

LYM = − 1

4 I(R)
Tr (F µνFµν) = −1

4
F µν
a F a

µν , F a
µν = ∂µAa

ν − ∂νAa
µ + g fabcAb

µAc
ν . (4.5)

The coefficients related to representations are given in chapter 3. Finally, from these two
Lagrangian terms, we construct the one for QCD:

LQCD =

Nf∑
f=1

ψ̄α,j,f
(
iγµ(D(A)

µ )jk −mf δj,k
)
ψαk,f −

1

4
F µν
a F a

µν . (4.6)

Where we added different mass terms mf for each flavor of quarks. The Lagrangian in Eqn.(4.6)
only contains information about the strong interaction, not from the electroweak sector. In
particular, the masses present in the Dirac terms are not truly static in the context of the
full Standard Model, but rather dynamically generated by the spontaneous breaking of the
electroweak symmetry via the Yukawa interactions between quarks and the Higgs field. One
final last step is to perform a Wick rotation t → τ = i t, for later convenience, which leads to
the Euclidean action:

SQCD =

∫
dDx

1

4
F a
µνF

µν
a +

Nf∑
f

ψ̄f (γ
µDµ +mf )ψf

 . (4.7)

Note that to obtain this expression we redefined the following quantities [22]:

γ̃0 ≡ γ0 , γ̃k ≡ −iγk

Aa0 → iÃa0
(4.8)

4.2.1 Quantization of YM gauge theory: path-integral approach
In this thesis, we shall use only the Feynman’s path integral approach to the quantization of
QCD as it is more straightforward to introduce the temperature and density in the theory
afterwards. Assuming implicit product over spinor, vector and color indices in the measure,
the naive partition function for QCD reads:

Z = N
∫
DA

∫
Dψ̄Dψ e−SQCD . (4.9)

2Einstein’s summation rule is understood for every repeated indices.
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However, this naive partition function leads to a non-invertible operator Kµν for the gluons
quadratic terms so we cannot define a propagator. Mathematically, this is because we did not
specify a section yet, thus the projection π from the total space to the base space, taking A ∈
P → Aµdx

µ ∈ M (see Eqn. 3.10) is not invertible. Equivalently, in a more physical picture,
this is because we have a redundancy in the gauge space configurations along the so-called gauge
orbit OA (the fiber) and we need to introduce a gauge fixing term to define a propagator for the
gluons.

A OA

G
f(A) = B

A

A′

Figure 4.1: Gauge configura-
tions

Letting A be the configuration space of the gauge field that is
integrated over in Eqn.(4.9), we rewrite A = OA × A/OA to sep-
arate the degrees of freedom, with A/OA = G being the orbit
space. To eliminate the redundancy in the gauge space, we in-
troduce a generalized gauge fixing term f(A) = B, where B is
a given field independent of A . This defines a gauge slicing not
necessarily perpendicular to the gauge orbits (see fig.(4.1)). For
the rest of this thesis, we will assume that this equation admits
a unique solution for each gauge orbit. Then, we can follow the
Faddeev-Popov procedure [23] to implement the gauge slicing
term inside Z. To begin with, we insert a factor of unity in the
functional integral in the form:

1 = ∆A
FP

∫
OA

DU δ(f(AU)−B)), ∆A
FP =

δf(AU)

δU
. (4.10)

Using Grassmann fields c, c̄ and associated properties of Gaussian-like integrals, we may rewrite
this determinant in terms of the ghost fields:

∆A
FP =

∫
Dc̄Dc e−Sghost(A,c̄,c). (4.11)

Having introduced an arbitrary field B, we average on this condition with a gaussian weight
exp
(

1
2ξ

∫
dDxTrB2

)
, that we integrate over, where ξ a gauge fixing parameter. Ultimately,

physical observables should be independent of the gauge fixing condition , thus, should be
independent of ξ. The delta function kills the B-integration leading to B → f(A). From this
construction, the integration over the (infinite) gauge orbit volume factorizes and defines a new
integration constant N ′. Finally, we are left with the standard expression for the (Faddeev-
Popov) QCD path integral :

Z = N ′
∫
DADc̄DcDψ̄Dψ e−SYM−Sfix.−Sghost−Sq (4.12)

Sghost ≡
∫
dDx

∫
dDy c̄a(x)

δfa(AU(x))

δU b(y)

∣∣∣
α=0

cb(y) , Sfix. =
1

2ξ

∫
dDx Tr(f(A(x))2). (4.13)

The infinite constant N ′ cancels between the numerator and the denominator of the following
expression when considering expectation values of observables:

〈O 〉 =
∫
DADc̄DcDψ̄Dψ O(A, . . . , ψ) e−SYM−Sfix.−Sghost−Sq∫

DADc̄DcDψ̄Dψ e−SYM−Sfix.−Sghost−Sq
(4.14)

We started from a gauge invariant Lagrangian and ended with a path integral which is explicitly
not due to the Faddeev-Popov gauge fixing term. This might seems contradictory at first.
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However, practical calculations show that observables remain independent of the gauge fixing
parameter ξ. Even with the gauge symmetry being explicitly broken, there is still a hidden
global symmetry remaining in the theory: the BRST symmetry [24]. This symmetry puts a
lot of constraints on the gauge theory. First, it ensures that the ghosts are excluded from
the physical asymptotic states when performing calculations. Second, since it is preserved
by higher order loop calculations, it prevents introduction of counterterms which might spoil
renormalizability. For a proof of QCD’s renormalization, see [25; 26]. BRST also ensures that
the expectation value of a gauge invariant functional does not depend on the choice of gauge
fixing condition.

Gribov ambiguity

We assumed earlier that a solution to the gauge slicing equation existed and that it was unique.
This was quite a strong assumption. It was first Gribov [27] who realized that actually it turns
out to be wrong in general. It appears that multiple solutions exist for this equation: the
Gribov copies. But the assumption we used is well justified at weak coupling values where the
degeneracy disappears.

4.2.2 Symmetries of QCD
Chiral symmetry

Fermions, described by Dirac spinors, live in the spinor representation of the Lorentz group
SO+(1, 3) ∼= SU(2) ⊕ SU(2) that decomposes into two irreducible representations of SU(2).
Their charge is (1/2, 0)⊕(0, 1/2) and are called the left and right Weyl spinors. Accordingly, we
introduce the projection operators PR = 1+γ5

2
, PL = 1−γ5

2
, and decompose ψ into PL,R ψ = ψL,R

such that ψ = ψL + ψR. Each of these Weyl spinors are invariant under respectively U(1) left
and right symmetry:

U(1)L : ψL → ei θLψL & ψR → ψR,

U(1)R : ψL → ψL & ψR → ei θRψR,
(4.15)

expressing that the two spinors decouple and operate separately. In the massless quark approx-
imation, considering that QCD does not discriminate between the massless flavors of quarks,
we can embed the quarks inside a (Nf dimensional) fundamental representation of SU(Nf) sym-
metry, while anti-quarks live in the anti-fundamental one. Proceeding for both left and right
Weyl spinors, the multiplets are invariant under both SU(Nf)L and SU(Nf)R group of transfor-
mations. The whole chiral group is then U(Nf)L ⊗U(Nf)R. This symmetry can be decomposed
into:

SU(Nf)L ⊗ SU(Nf)R
ZNf

⊗ U(1)L ⊗ U(1)R. (4.16)

This group transformation can be recast in an equivalent form:

SU(Nf)V ⊗ SU(Nf)A
ZNf

⊗ U(1)V ⊗ U(1)A, (4.17)

where the diagonal vector subgroup characterizes chiral transformations satisfying θL = θR
while the axial one satisfes θL = −θR. Charm, bottom and top quark are far from massless
while up, down and to some extend strange have relatively small masses compared to hadronic
scale ∼ O(1GeV). The chiral symmetry is only approximately relevant for the first three flavors
of quarks.
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Although this is a symmetry of the Lagrangian, it is not a symmetry of QCD. First because
it is broken explicitly by quark masses, so it is at most an approximate symmetry, but most
importantly because of non perturbative effects. The chiral symmetry SU(3)A is spontaneously
broken by the quark condensate 〈ψ̄ψ〉[28; 29], while U(1)A is explicitly broken by the, instanton
induced, chiral anomaly [30]. Breaking of the axial SU(3) symmetry leads to the generation
of eight massless Goldstone bosons, the pions, the kaons and the meson η. The spontaneous
breaking of the symmetry is mainly responsible for the mass of the proton and the neutron.
The remaining U(1)V symmetry is identified to U(1)B, the conservation of baryon number. The
remaining symmetries are:

SU(Nf)V ⊗ U(1)B (4.18)
and remain exact. Notably, because SU(Nf)A is broken, no opposite parity partner of the
pseudo-Goldstone bosons are observed.

Conformal symmetry

The Lagrangian of QCD possesses yet another symmetry which is broken at the quantum level:
conformal transformations. Conformal invariance reflects, among other things, the invariance
under dilatation of space-time coordinates. Even in absence of quark masses, quantum cor-
rections typically require to introduce a regularization parameter that defines a length scale in
the theory. The latter is not compatible with conformal transformation except at particular
values of the parameter: the fixed point of the RG equation. Precisely, restoration of conformal
invariance requires the trace of the energy-momentum tensor to vanish. The latter one being
directly related to the beta function, in the following (non-perturbative) relation :

T µµ =
β(g)

2g2
F a
µνF

µν
a + (1 + γm)

∑
q

q̄ mq q (4.19)

No fixed point for the beta function (assuming massless quarks) has been found so far, but due
to asymptotic freedom, QCD must be asymptotically conformally invariant.

4.2.3 Limits of perturbative QCD
Even if the QCD perturbative series would converge ultimately, it would not encode other
genuinely non-perturbative features of QCD. To cite some of them:

Instantons: They are classical solutions to the Lagrange equation, maximizing the Gaus-
sian weight in the partition function. They are responsible, by quantum tunneling, of “jumps”
from one vacuum to another. The instanton effect allowed ’t Hooft [31] to solve the U(1)A
puzzle which was that there was no explicit breaking mechanism of U(1)A therefore, since the
symmetry was not observed (i.e no opposite parity partner) it could only be spontaneously
broken with an associated Goldstone boson, again, not observed. Instantons explicitly break
the U(1)A symmetry and the puzzle was resolved. In QCD, their effects are reliably computed
only at short distances (equivalently at high temperature or chemical potential) but in this
domain they are always dominated by perturbative corrections [32]. Moreover, light quarks
greatly suppress instanton [33], so we will not consider their effects in this thesis as we are
working mostly with massless flavors of quarks .

Quark condensate: The chiral quark condensate 〈q̄ q〉 is a main order parameter of spon-
taneous chiral symmetry breaking for massless quarks. As such it is intrinsically nonperturba-
tive, indeed vanishing at any finite order of (ordinary) perturbative QCD in the chiral limit.
In this framework, the quark condensate can be evaluated only through effective QCD models
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[34], Lattice techniques (see for a recent review [35]), or possibly through RG resummation
techniques [36].

4.3 QCD in a thermal bath
Soon after the advent of Quantum Chromodynamics as the theory of strong interaction, it
became clear that there should be a qualitative change in the properties of hadronic matter as
the temperature or density increases. At low-energy, due to confinement, quarks and gluons are
stuck inside hadronic matter forming a dilute system of composite particles. In a very dense
system, however, such extended composite particles would overlap, and quarks and gluons would
start to interact with quarks and gluons from other hadrons. Likewise, at very high temperature,
thermal excitations from the medium tend to break the bound between quarks and gluons. A
phase transition from hadron gas to this plasma of quarks and gluons (QGP) requires a very
large amount of energy not commonly seen in nature. It is believed that this transition could
have occurred soon after the big bang, or still commonly today in the core of neutron stars,
or occurring during high energy heavy ion collisions. Recently, after tremendous efforts, it was
observed experimentally at the Relativistic Heavy Ion Collider (RHIC) of Brookhaven [37] and
at the Large hadron Collider (LHC) of CERN [38; 39] for a critical temperature of roughly
Tc ∼ 150MeV and vanishing chemical potential. This critical temperature is associated to the
deconfinement transition as well as the restoration of chiral symmetry. Both on the theoretical
side and the experimental one, the high temperature and vanishing chemical potential part
of the phase diagram is well understood. In a now bedrock article [40], the Lattice QCD
community observed the QGP phase transition, in a realistic setup, and predicted a smooth
crossover transition between the two phases. However, it is expected to qualitatively change
in the opposite regime, namely, vanishing temperature and high chemical potential. This
domain of the phase diagram remains very mysterious and is subject to many studies and
conjectures. The only thing we know for sure at the moment is the first order liquid-gas
transition taking place at one nuclear saturation density n0 from a gas of nuclei to a liquid of
nuclear matter[41; 42]. A first order phase transition is believed to occur, due to the restoration
of the chiral symmetry at an energy scale yet unknown. But it is likely to be at some density
existing inside Neutron Stars (NS) so that the latter could become probe for that physics.
Additionally, the chiral transition and the deconfinement one may not take place at the same
energy scale anymore. This would allow the possibility to have an exotic Quarkyonic state
[43]. At even higher baryon density, the quark near the Fermi surface become correlated in
Cooper pairs and form a state of color superconductivity(CSC)[44; 45]. A conjectured phase
diagram is given in fig. (4.2) illustrating the previous discussion, but there is much more at
hand concerning the horizontal axis than what has been discussed.

At the moment, we remain nearly blind to this region of physics. While we do not have yet
experiments running in the vanishing temperature and high chemical potential side of the phase
diagram, lots of efforts are made in this direction [46; 47]. Concerning Lattice QCD, due to the
so-called sign problem [48] (see below for a short description), LQCD is hampered to pursue
Monte-Carlo simulations hence cannot give us a glimpse of this physics. On top of that, the
method relies on imaginary time formalism; thus only static observable may be addressed. Our
best hope at the moment, for experimental observations, comes from the sky and the rapidly
developing domain of gravitational wave physics conjointly used with information coming from
the light spectrum. This will be discussed further in chapter 7. The need to quantitatively
understand the physics of high temperature and chemical potential both at real and imaginary
time is consequent in particle and nuclear physics as well as in cosmology. On the theory
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Figure 4.2: A theorized QCD phase diagram. Source: [49].

side, at the moment, weak coupling expansion methods is our best option to tackle this region
motivating us to pursue efforts in this direction.

A recurrent issue in thermal perturbative calculations, however, is the appearance of in-
frared divergences caused by long range correlations inside the medium. One needs to perform
somehow a resummation of these IR divergences at all loop orders to reach a result valid at
some specific order in g. The lack of convergence of the series expansion is even stronger
at finite temperature due to the breakdown of the naive perturbative expansion. Inevitably,
the weak expansion fades at g6 order due to the famous Linde problem [50]. Collective ex-
citations of the chromomagnetic modes at the scale g2T , appearing at g6 order, cannot be
calculated perturbatively since every n-loop diagrams, n ≥ 4, will contribute to this coefficient
[51; 52; 53; 54; 55; 22]. For an overview of the QGP see also [56].

4.3.1 Sign problem
This section would probably deserve it own thesis as it is possibly the most challenging problem
of LQCD now that computational power has exponentially grown during the last decades. A
more thorough description of LQCD can be found in classic papers [57; 58; 59] and we will
restrict here only to a short overview of the sign problem. The argument is adapted from [48].

The starting point of Lattice QCD is to consider the Euclidean path integral in Eqn.(4.9)
discretized on a space time lattice. The exponential factor is a highly oscillating function that
we do not know how to evaluate in closed form. The integration is carried out using stochastic
method.
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Aside from the complications of high dimensional integration, discretizing fermions on a
lattice, considering small mass for the fermions and assessing the relevant gauge configurations,
this works perfectly fine. As long as we work with zero chemical potential, of course.

For fermions, we know how to integrate the path integral in closed form. This is exactly
how we introduced the ghosts fields in the first place. This leads to a factor det

(
/D +m+ µγ0

)
.

Because of γ5 /Dγ5 = /D
†, this operator satisfies:

γ5
(
/D +m+ µγ0

)
γ5 =

(
/D +m− µ∗γ0

)†
. (4.20)

With the star denoting the complex conjugate operation. Ultimately, this means:

det
(
/D +m+ µγ0

)
= det∗

(
/D +m− µ∗γ0

)
. (4.21)

which constraints the determinant to be real only for Re(µ) = 0.If we consider now an even
number of flavors with the same mass and chemical potential, then the determinant is positive
definite and Monte-Carlo techniques apply.

In the general case, the determinant is imaginary and with an imaginary determinant, it is
no longer possible to use importance sampling methods as we can no longer give a probabilistic
interpretation of the integrand; the very basics of lattice simulations. Many researches are
pursued to circumvent this issue, a more detailed overview is given in [48].

4.4 In medium QFT

In thermal quantum field theory, the concept of asymptotic states fade since any state is subject
to thermal interactions. One must instead define mixture of microscopic pure states as the new
vacuum state of the theory. This is consistently incorporated inside the density matrix operator.
For micro-states |i〉 (not necessarily orthogonals) with probability pi(t0), this operator reads:

ρ̂(t0) ≡
∑
i

pi(t0) |i〉 〈i| . (4.22)

Then any expectation values of observables can be expanded on this basis:

〈Ô(t0)〉 = Tr ˆρ(t0) ˆO(t0). (4.23)

We will be interested only in static observables such as the pressure, so we can directly express
the density matrix operator at equilibrium, using the grand canonical ensemble:

ρ̂eq. =
e
−β

(
Ĥ−µi N̂i

)
Z

, Z = Tr e
−β

(
Ĥ−µi N̂i

)
. (4.24)

Where Ĥ is the Hamiltonian operator, N̂i the conserved charge operator, β ≡ 1/T the inverse
of the temperature and Z the partition function. The quantity µi, the chemical potential
for a flavor i, is a Lagrange multiplier determining the mean number of particles of type i in
the system. The density matrix ρ̂, or equivalently, the partition function Z, contains all the
thermodynamic properties of the system. For example, the pressure, particle number, entropy,
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and energy density are, in the infinite-volume limit, given by

P =
∂ (T lnZ)

∂V
, Ni =

∂ (T lnZ)

∂µi
,

S =
∂ (T lnZ)

∂T
, E = −PV + TS + µiNi.

(4.25)

Inserting the field basis closure relation in this trace, it can be expressed in terms of path
integrals [55; 22]. From here, the previously developed formalism of path integral quantization
of QCD using the Faddeev-Popov procedure becomes very handy.

4.4.1 Imaginary time formalism

This formalism is particularly well suited for the determination of bulk thermodynamic quan-
tities which are time independent.

The Faddeev-Popov path integral in Eqn.(4.12) and the normalization constant in Eqn.(4.24)
can be identified assuming we apply to Eqn.(4.12) the right transformations. First, the anal-
ogy between the Boltzmann factor and the exponential of the action suggests that we should
identify the euclidean action with β Ĥ, meaning that the imaginary time integration becomes
restricted to (0, β). Second, the cyclicity of the trace in the partition function (and the commu-
tating/anti-commutating nature of bosonic/grassmannian fields) induce that bosonic/fermionic
fields must respect periodic/anti-periodic boundary conditions respectively.

In the imaginary time formalism, the resulting modification in the Feynman rules is to
trade the usual Fourier transform of the time component for a Fourier series on the so-called
Matsubara frequencies. The chemical potential µi, associated with the conservation of the
quark number, can be readily introduced in the Lagrangian using Legendre transformation.
This appears as an extra term µi ψ̄γ0ψ inside the Lagrangian. Finally, the partition function
reads (defining d = D − 1 = 3− 2ε):

Z =

∫
p.

DA
∫
a.p.

Dψ̄Dψ
∫
p.

Dc̄Dc e−
∫ β
0dτ

∫
ddx

(
LFP+

∑
i ψ̄fµiγ

0ψf

)
. (4.26)

Importantly, despite their Grassmann nature, the ghost fields satisfy periodic (p.) instead of
antiperiodic (a.p.) boundary conditions, owing to the fact that the original matrix determinant
is purely bosonic. Going in momentum space, the Matsubara frequencies take very different
values for bosons and fermions:

ωB = 2π nT , ω̃F = (2n+ 1)πT− i µi , n ∈ Z, (4.27)

that leads to crucial differences in the IR sector for the bosons and the fermions.
This construction with Matsubara frequencies is obviously at the cost of the real-time pa-

rameter required to describe out-of-equilibrium systems. This problem can be cured by carrying
an analytic continuation from Euclidean to Minkoswki space. It is however possible to avoid
using the imaginary time formalism. This requires to introduce a specific contour in the com-
plex plane, known as the Schwinger-Keldysh contour, allowing calculations for two operators
acting at different times.

The real-time formalism is out of the scope of this thesis as we only use imaginary time
formalism, much more convenient for our purpose. More information can be found in [51; 60].
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Feynman rules in euclidean space at finite temperature and density are recapitulated in the
appendix A.

Center symmetry of SU(Nc)

Among all gauge transformations, there is one especially simple.:

ZN = ei
2π
N
k1, k = 0, 1, . . . , N − 1. (4.28)

It is not possible for the integer k to change continuously between two different space-time
points, consequently, center symmetries are only global symmetries.

Although this is a symmetry of the full QCD Lagrangian, at finite temperature, due to the
compactification of time, this is no longer true [31; 61; 62]. Because gauge fields and quark
fields satisfy different boundary conditions, the center symmetry will act differently on them.
For a gauge transformation which does not satisfy this periodicity U(~x, β) = Ub.c 6= U(~x, 0),
the gluons in the adjoint representation are invariant while the quarks in the fundamental
representation are not:

A′
µ(~x, β) = U †

b.cAµ(~x, β)Ub.c = Aµ(~x, β) = Aµ(~x),

ψ′(~x, β) = Ub.cψ(~x, β) = −Ub.cψ(~x, 0) 6= −ψ(~x, 0).
(4.29)

The global Zn center symmetry of QCD is spoiled by any fields in the fundamental represen-
tation at finite temperature. However, the center symmetry in pure Yang-Mills is still present,
but, it happens to be spontaneously broken at high-energy. Despite the fact that the pure
Yang-Mills theory does not incorporate all effect of QCD, it is believed to capture non-trivial
features of it through the non-abelian interactions. In particular, unlike the physical QCD case,
the deconfinement transition appears here as a genuine phase transition, associated with the
breaking of the center symmetry. An order parameter [63] for the ZN symmetry breaking is
the Polyakov loop:

LP (~x) ≡ TrP exp

{∫ β

0

dτ A0(τ, ~x)

}
. (4.30)

P here is the path ordering operator. The object inside the trace is the Wilson line which,
constructed from gluon fields, obviously transforms in the adjoint representation. From the
cyclic property of the trace and the transformation law of the adjoint representation (4.3), the
Polyakov loop is a gauge invariant quantity.

At very high temperature, the theory is weakly coupled, and naively we would think that
LP → 1. Instead, the allowed vacua exhibit a N-fold degeneracy:

〈LP 〉 = e
2πi
n
kL0, L0 −−−→

T→∞
1 (4.31)

At zero temperature, due to the confinement, the Polyakov loop must vanish L0 → 0. Crossing
the critical temperature Tc, the center symmetry is spontaneously broken and the Polyakov
loop select one specific vacuum. This is different from the physical QCD case where a smooth
crossover between the two states takes place [64; 65]. In the context of low energy effective
model of QCD such as the Nambu-Jona-Lasinio (NJL) model [66], this Polyakov loop can be
introduced at tree level in order to treat the chiral symmetry breaking/restoration as well as
the deconfinement transition within a single model (PNJL) [67]. This is particularly powerful
to scan the QCD phase diagram at finite temperatures and densities, looking for the critical
endpoint of QCD [68].
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4.4.2 QCD pressure at leading order

First things first, thermal field theory calculations can become much more complicated than its
zero temperature counterpart. Before going more in depth of the Hard Thermal Loop theory
and its involved calculations, we start by giving some well known results as a warm up and a
useful tool to setup notations.

Notably, bosonic Matsubara frequencies are denoted P while fermionic ones are {P} as it
is standard in the literature. The free energy F is given by3 F = limV→∞

−1
V β

lnZ and is the
opposite of the pressure P = −F .

Once reduced to scalar integrals, the QCD pressure for free gluons and Nf flavors of equal
mass quarks is given by the sum of the following three contributions :

Pq = 2Nf Nc

∑∫
{P}

ln
(
P 2 +m2

)
,

Pgl. = −dA
∑∫
P

(
(d+ 1)

2
lnP 2 − 1

2
ln(ξ)

)
,

Pgh. = dA
∑∫
P

lnP 2.

(4.32)

Where, in dimensional regularization,

∑∫
P/{P}

= T
∑(

eγEM2

4π

)ε ∫
ddP

(2π)d
(4.33)

d = 3 − 2ε and γE is the Euler gamma constant. The sum integral on ξ is independent of
the temperature and scale free, therefore, it vanishes in dimensional regularization and it is a
crosscheck that we do have a gauge invariant observable.

The final task now is to evaluate the two sum integrals:

∑∫
P

lnP 2 = T
∑
n

∫
dd~p

(2π)d
ln
(
ω2
B + ~p 2

)
,

∑∫
{P}

ln
(
P 2 +m2

)
= T

∑
n

∫
dd~p

(2π)d
ln
(
ω̃2
F + ~p 2 +m2

)
.

(4.34)

Proceeding to the sum, the general method is to identify T
∑

with the poles of a weighting
function fw and via the residue theorem to rewrite the sum as a contour integral. Before doing
so, we will simplify the sum by differentiating with respect to |~p| such as to avoid contour

3V β here is the volume of space time. In any Feynman diagrams, there is an overall delta functions and a
Kronecker delta that appears and give a factor of V β cancelling the one in the free energy definitions. Thus,
we systematically neglect to write this factor.
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integration around the branch cut of the logarithm.

∑∫
P

lnP 2 =
2πd/2

(2π)dΓ(d/2)

(
eγEM2

4π

) 3−d
2

︸ ︷︷ ︸
H(d)

∫
dp pd−1

∫ p

0

2dp1 p1 T
∑
n

1

ω2
B + ~p1 2

,

= H(d)

∫
dp pd−1

∫ p

0

2dp1 p1
1

2p1
(1 + 2nB(p1)) ,

= H(d)

∫
dp pd−1

(
p− 2T ln

(
1− e−β p

))
,

= −2T H(d)

∫
dp pd−1

∑
n

e−nβ p

n
= −2T H(d)

∑
n

(
T

n

)d
Γ(d),

= −2T d+1H(d) Γ(d)ζ(d+ 1),

d=3
= −π

2T 4

45
.

(4.35)

This is a very standard calculation [22], more information on how we went from the first to the
second line is given in appendix A. One might be interested in introducing a mass in Eqn.(4.35),
lnP 2 → ln(P 2 +m2). Actually, it is not known how to evaluate this massive sum integral in
closed form for both non-vanishing temperature and mass. Upon isolating the zero Matsubara
mode, we can proceed to a systematic expansion in mass in different limits m/T → ∞ or
m/T → 0 to include corrections. In the latter, it reads :

∑∫
P

ln
(
P 2 +m2

)
' −π

2T 4

45
+
m2T 2

12
− m3T

6π
− m4

(2π)2

(
ln

(
meγE

4πT

)
− 3

4

)
+

2m6ζ(3)

3(4π)4T 2
+O(

m8

T 4
).

(4.36)
Where the non-analytic term comes from the n = 0 mode.

The second sum integral in Eqn.(4.34) is however much more challenging. For simplicity,
we will restrict here to T, µ 6= 0 and m = 0:

∑∫
{P}

lnP 2 =
21−dT d+1

πd/2Γ(d/2)

( ( µ
T
)d+1

d(d+ 1)
− Γ(d)(1 + (−1)d)Lid+1(−e−µ/T )

+
∑
n=1

(−1)n+1

nd+1

(
Γ(d,

nµ

T
)e

nµ
T − (−1)dΓ(d,−nµ

T
)e−

nµ
T

)) (4.37)

Where Li is the polylogarithm function. The derivation is quite similar except that we must
be careful when expanding the logarithm in power series. This expansion is not justified for
any p and separation of the integral in two regions is required. Again, using high temperature
expansion, mass correction terms can be included [22].

Then, in d = 3 dimensions, omitting here at the moment a divergent but T, µ-independent
contribution, the free density pressure for QCD reads:

PQCD(mf = 0) =
π2T 4

90

{
2dA +

7

2
Nf Nc +Nf

µ2/T 2

6
+Nf

µ4/T 4

12π2

}
. (4.38)

At T = 0, a closed form including the mass of the quarks can be evaluated and will be the
topic of the section “Cold & Dense” in the next chapter.
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4.4.3 Infrared divergences of thermal field theory.

While the UV sector of (massless) QCD is well known from T = µ = 0, and dictated by the
beta function, in medium QCD suffers from additional infrared divergences. Fermions do not
make any trouble since the Matsubara modes never take zero value, but it does for the bosons.
Moreover, fermions have a mass term that protect them from developing IR divergences which is
not the case for bosons. Accumulating massless bosonic propagators inside a Feynman diagram
will accordingly lead to new IR divergences.

How bad could be these divergences ? It depends. Some of them are easily recognized to be
related, and we can find a resummation scheme such that in the end it leads to a finite result.
They are the divergences occurring at the so-called soft scale and reflect the apparition of long-
range interactions in the medium, which cannot be consistently reproduced by a naive weak
coupling expansion. However, there are also divergences which require to resum every single
Feynman diagrams, starting at four loop order, to regulate the divergences. These intrinsically
non-perturbative contributions at the ultra-soft scale [50] is responsible for the inevitable break
down of perturbation theory at finite temperature.

This is easily understood regarding the contributions of every scale at hand in the theory.
For the non-zero mode, the 4-vector P = (ω

F/B
n , ~p), necessarily takes value at the hard scale

πT , but for the zero mode of the bosons, it may also takes values at the soft scale P = (0, g T )
or at the ultra-soft scale P = (0, g2 T ), where it is assumed that every components of ~p is of
the order of the concerned scale. By power-counting arguments, static gluons will contribute
to the pressure as

∫
dp p3nB(p) hence for a generic scale P = (0, gn T ), the outcome is [51]:∫

dp p3 nB(p) ∼ (gn T )4nB(g
n T ) ∼ g4n T 4

(gn)
∼ g3nT 4. (4.39)

Corrections from higher orders would be to add a loop of gluons, corresponding by power-
counting as an extra factor g2nB(p). Proceeding similarly, this corrections gives contribution
of the order g2/(gnT ) ∼ g2−nT . For n ≥ 2, this correction is of the same perturbative orders in
the weak coupling expansion as the quantity it corrects. Contributions from the ultra-soft and
higher scales are therefore purely non-perturbative. Nevertheless, it should be noted that while
there is also a similar soft scale g µ at zero temperature but finite chemical potential, there
is no ultrasoft scale, which is purely a finite temperature contribution. This is precisely why
at finite µ the perturbative expansion suffers less instability than its counterpart at finite T .
At zero temperatures, the gluons do not fill the medium; they only appear through quantum
mechanical processes, and so cannot form a condensate at small wavelengths resulting in non-
perturbative physics. Another at first intriguing result from Eqn.(4.39) is that the soft scale
gives contributions with odd power in g at finite temperature, thus non-analytic in αs ∼ g2/4π.
These odd powers in the weak expansion arise solely from the n = 0 Matsubara mode, which
cannot be isolated at T = 0, µ 6= 0 hence are not present at T = 0, µ 6= 0. A more complete
power-counting argument (see [55]) refines this picture to also include logarithm dependence in
the coupling. To summarize, the pressure in QCD at T 6= 0, µ 6= 0 takes the following form:

P = #+#g2 +#g3 + g4(# ln g +#) +#g5 + g6(# ln g +#). (4.40)

While at zero temperature but finite chemical potential,

P = #+#g2 + g4(# ln g +#) + g6(# ln2 g +# ln g +#) + . . . (4.41)

Note the doubling of the logarithm that appears at finite chemical potential and at order g6.
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Nearly every coefficient displayed here was calculated during the last forty years or so.
Only the full coefficient of #g6 ln g + #g6 at T = 0, µ 6= 0 which requires a full four loop
calculations remains unknown. A schematic overview of the contribution to the domain is
given in Table(4.2).

T = 0, µ 6= 0 T 6= 0, µ = 0 T 6= 0, µ 6= 0

g0 Stefan Boltzmann
g2 Freedman & McLerran [69; 70; 71](1977) Shuryak [72](1978) Kapusta [54](1979)
g3 Kapusta [54](1979) (mf 6= 0)
g4 ln g Freedman & McLerran [69; 70; 71]*(1977) Toimela [73](1983) Toimela [73](1983)**
g4 Freedman & McLerran [69; 70; 71]*(1977), Arnold & Zhai [74] (1994) Vuorinen [75](2003)**

Baluni [76](1978), Ipp et al. [77](2006)
Kurkela et al.(mf 6= 0)[78](2010)

g5 Zhai & Kastening [79](1995) Vuorinen [75](2003)**
g6 ln2 g Gorda et al.(2018) [80]
g6 ln g Not yet determined*** Kajantie et al. [81](2003) Vuorinen [75](2003)**
g6 Not yet determined*** Non perturbative [82; 83; 84; 85] Non perturbative [86]

Table 4.2: State-of-the-art calculations for standard QCD in medium. This results stands for
massless quarks otherwise stated. *Note that for this work the g4 order was not evaluated in
the covariant gauge. **These results were obtained in the framework of EQCD whose range of
applicability stands for 4µf < T .***While the hard and mixed sector have not been evaluated
yet, the soft sector has been completed last year [87; 88].

Identifying and resumming the IR divergent diagrams can be very tedious and the conver-
gence of the strict pQCD series evaluated in that way is extremely poor. This is how it was
originally done, resumming the so-called ring diagrams (or Daisy diagrams) but more refined
framework has been found since then. By identifying the origin of the IR bad behavior we
can be more efficient and realize that this resummation can be realized using a massive theory
framework. But here come the first difficulty: we do not know how to introduce a mass term
for the gluons. What have been done mostly in the literature is to use the Hard Thermal Loop
framework, that naturally incorporates, among other things, a gauge invariant mass term for
the gluons at tree level. This Lagrangian has the welcome property to reproduce the gluons
self-energy in the static limit and provide a framework where we can organize the degrees of
freedom using kinematic arguments. But this Lagrangian comes at the cost of the non-locality
and it is technically very involved to conduct loop calculations. Another option at hand would
be to use the Curci-Ferrari model [89; 90; 91] where one simply add a more naive mass term.
Benefits of this framework are that calculations are much easier, the model is known to be
renormalizable and it takes into account the Gribov copies. The price to pay however is to
loose the gauge invariance. In this thesis we will work exclusively in the HTL framework and
let the second for possible future investigation.
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4.4.4 Electrostatic QCD and effective field theory
EQCD

Many of the works mentioned in table (4.2) were realised using an effective field theory for
static QCD relevant at very high temperature. This theory relies on the observation that in
this region, the integration on the time direction become asymptotically zero and we end up
with a three dimensional theory instead. This suggests carrying the integration over these hard
degrees of freedom (non-static fields necessarily live at the hard scale) and define a dimensionally
reduced 3D effective field theory (EFT): Electrostatic QCD (EQCD). This theory now reflects
the physics of the soft mode and their interactions where the hard modes are incorporated as
shift in the Wilson coefficients. These are just the coefficients multiplying the operators in the
Lagrangian, as we will explore below. Just like for any EFT, it requires to incorporate in the
Lagrangian every possible operator satisfying the symmetries of the theory. Power counting
arguments will then tell which of these operators are relevant or not. This new theory of
massive electric fields can be further integrated such as to describe the physics of the spatial
chromomagnetic gauge field Ai. As alluded before, this theory is now purely non-perturbative,
containing the ultra soft scale. However, it can be evaluated on the lattice (see table 4.2).

While this theory is highly valuable at high temperature, its applicability undeniably disap-
pears at zero temperature due to its construction. However, the arguments used to construct
the EFT are worth to take some time for further investigations. It will be particularly important
for the discussion of cold and dense QCD in the next chapter.

Effective Field theory, brief overview

If one is interested in making prediction out of a certain theory, which we will call the UV
theory, one may encounter the possible appearance of multiple intrinsic scales while pursuing
calculations of the perturbative corrections. In QCD at finite temperature, these scales are
the one we discussed: hard, soft and ultra-soft which are determined by the medium. On
top of that, considering Nf degenerate flavors of massive quarks also add Nf scales inside
the picture. Generally, calculations involving multiple scales are much harder than with only
one scale. An EFT construction allow to disentangle the contributions from a specific scale
such that practical calculation in this constructed EFT will only contain one less scale than
in the original theory. Iterating the procedure allow to define successive EFT successively
disentangling contributions from each scale. For instance the EQCD effective theory described
the soft modes of QCD at high temperature but still possesses the ultra soft scale.Further
integrating out the soft modes of EQCD gives an EFT describing the chromo-magnetic sector
(the ultra-soft scale). Knowing the exact contribution of each scale may not be relevant since
they do not necessarily weight the same in the perturbative expansion. If we wish to predict
the result of a scattering experiment of Hadrons at an energy

√
s = 1GeV, knowing the exact

structure of the contribution of the up quark or of the gauge boson W is irrelevant since these
mass scales are far away from the center energy of the experiment. The mass of the up quark can
be neglected while the exchange of the boson W can be efficiently described by a local point-like
operator. One particularly powerful consequence of using an EFT to describe the UV theory,
is the resummation of the large logarithm involving the ratio of two mass scales of different
magnitudes. The perturbative corrections Agk are no longer small even when g � 1 if it is
multiplied by such large logarithms. Therefore, it becomes crucial to resum such logarithms,
and it can be achieved using the renormalization group in the EFT. This will be the topic of
the next chapter in HTL.

To illustrate the principles of an EFT, we will do a short digression and discuss the principles
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of EFT in a simpler toy model that will only involve one-loop integration and two different mass
scales. All principles can be directly applied to QCD too, but the formalism is more involved.
So the simple picture is to consider a UV theory containing only two scales, an IR mass scale
m and an UV mass scale M with m � M . We wish to disentangle the contribution from the
IR scale to a certain observable we are looking for. So, if a certain matrix element of the UV
theory is MUV (for instance φφ → φφ scattering), we would like to have an EFT description,
which should be obviously simpler, that would reproduce perturbatively MUV in the limits
m/M � 1 and pi/M � 1, where pi is the set of external momenta. We will neglect this last
complication here (see e.g [92]) :

MEFT ' MUV((m
2/M2)k−1) +O

((
m2

M2

)k)
. (4.42)

Where k should be chosen accordingly to the perturbative order we are looking for. This
equation is called the matching in the vocabulary of EFT.

Let’s consider the following Lagrangian:

LUV =
1

2

[
(∂µφ)

2 −m2
Lφ

2 + (∂µH)2 −M2φ2
]
− λ0

4!
φ4 − λ1

3!
φ3H. (4.43)

The calculation of the matrix element can be carried out in the UV theory using the exact
propagator of the heavy field, then taking the limits discussed previously. Or, equivalently, the
propagator of the heavy field can be expanded:

1

k2 −M2
= − 1

M2

(
1 +

k2

M2
+

k4

M4
+ . . .

)
(4.44)

and we define an effective Lagrangian with a point-like interaction that must reproduce per-
turbatively the UV theory. This procedure is called integrating out the field H. To write the
Lagrangian for the EFT, we must add every operators that respect the original symmetries of
the UV theory. Higher order operators involving partial derivatives are redundant and can be
eliminated by field redefinition (fore more details see the review from [93]).

In the EFT Lagrangian, we only have a light field φ (different from the one in the UV
theory), therefore :

LEFT =
1

2

[
(∂µφ)

2 −m2φ2
]
+ Ôd≥4 (4.45)

where the higher dimensional operators are suppressed by higher powers of the UV scale :

Ôd≥4 = C4Ôd=4 +
C5

M
Ôd=5 +

C6

M2
Ôd=6 + · · · ' −C4

φ4

4!
− C6

M2

φ6

6!
, (4.46)

While operators of dimension less than four are called relevant, the operators of dimension
higher than four are called irrelevant due to this scaling. They organize as higher order contri-
butions in practical calculations. This core concept of an EFT construction is called the power
counting argument. Simply by looking at the dimension of an operator (and the number of
loops), we know at which orders this contributions will enter. For operators of dimension four,
called marginal, the classical dimension cannot tell whether they are relevant or not. Only
through the computation of the anomalous dimensions we can answer this question. The coeffi-
cients Ci are called the Wilson coefficients and are determined, order by order, by the matching
condition such that it correctly reproduces the matrix element of the UV theory. Since the UV
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scale has been integrated out, there is only one scale that can appear in Feynman diagrams
which drastically simplify the picture. If the theory contains more scales, for instance three
scales m1 � m � M , the procedure can be iterated, however, there is one subtlety in the
matching procedure (see [94] for a concrete example). Indeed, the matching in Eqn.(4.42) has
to be proceeded for a renormalization scale of the order of the UV scale Λ ∼M . This determine
the Wilson coefficients of the first EFT (let’s call it EFT1) at the scale Λ ∼ M , now using
the RG equations, we can evolve the Wilson coefficients of EFT1 down to the scale Λ ∼ m
where we can now integrate the light field of mass m. This defines a second EFT (EFT2) with
new Wilson coefficients containing only the super-light field of mass m1. These new Wilson
coefficients can be determined in terms of the Wilson coefficients of EFT1 but the matching has
to be done at the renormalization scale Λ ∼ m this time. For each EFT, the Wilson coefficients
are determined at the scale where the corresponding field has been integrated out.

But, the matching in Eqn.(4.42) still requires to evaluate the matrix element in the complete
UV theory, then to take the limit m�M to get the Wilson coefficients, so what would be the
benefit of an EFT construction (beside summing the large logarithms) if we already have to
evaluate the exact contribution ? First, the Wilson coefficients are universal, once determined,
it is done, so one could fix the Wilson coefficients using one calculation in the full UV theory
then use the EFT to make other predictions. Second, this full theory calculations is actually
not needed. The beauty of an EFT construction is that it allows to dissociate a complicated
calculations into easier steps. To understand that, we need first to study the divergences that
appear in EFT.

Since the UV scale has been integrated out, the UV behavior of the theory has been modified,
therefore the UV divergences of the UV theory and of the EFT are completely different and
each of them need to be renormalized by appropriate counterterms. Such that Eqn.(4.42) is
understand after renormalization. But, integrating out an UV scale has no effects on the IR
behavior of the theory. This sector is left unchanged while constructing the EFT such that the
full theory and the EFT will display the same IR divergences and non-logarithmic contributions
in the IR scale. We can use this to our advantage to avoid the evaluation of the exact matrix
element in the full theory. Consider the following difference :

Mren.
UV −Mren.

EFT = (Mren.
UV −Mren.

EFT) |Expanded in the IR scales, (4.47)

The notation ren. is to remind us that we have to renormalize the UV divergences first. The
argument below is completely generic and applies to any theory and any object, whether they
are observables or not. Because the two theories have the same IR sector, in the above difference
one can do the expansion in the IR scale (or all the IR scales if there is more than one IR scale
in the theory) without affecting the result. The exact evaluation of the UV matrix element
is not required, but only its expansion in the IR scales, breaking down an intrinsic two-scale
calculations into two, much more simple, one-scale calculation: : the EFT calculation and the
matching. The last term MEFT |exp. is always a scaleless integral since both the UV and the IR
scale has been expanded out. But it is useful to remember that even though it is zero, because
1/εUV − 1/εIR appears, the UV divergence is renormalized thus the IR divergence is used to
cancel the exact same IR divergence of the expanded UV theory.

As a concrete example, the matching at tree and loop order of the EFT Lagrangian in
Eqn.(4.45) to the UV Lagrangian requires :

mL = m (4.48)

Because we want the two point function to match in the theory. The 4-point green function of
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the light field on the other hand gives :

Ctree
4 = λ0, Ctree

6 = 0, (4.49)

where we introduced a notation to remember that the Wilson coefficients are modified by higher
order contributions when we match at higher loop orders.

Ci = Ctree
i + C1L

i + C2L
i + . . . (4.50)

The matching of this theory at loop order is discussed in [95]. Quoting the result adapted to
our notation:

C1L
6 = −20λ21, C1L

4 = (4!)
λ21
(3!)2

1

16π2

(
ln

Λ2

M2
+ 1

)
. (4.51)

Connection to Cold and Dense QCD

The entire previous discussion was completely generic. All the arguments presented there will
apply to the context of EFT using the so-called Hard Thermal Loop theory to be presented
in the next chapter. In Cold and Dense QCD, the two scales are given by the medium. The
UV scale is the chemical potential µ and called the hard scale while the IR scale is called the
soft scale and given by the Debye mass m2

E ∼ #αsµ
2. The expansion in the IR scale with

respect to the UV scale thus becomes m2/M2 QCD→ #αs such that the small mass expansion is
the perturbative expansion. For this reason, we need the EFT to match the full calculation
only at the relevant order at which the latter is originally (perturbatively) calculated, namely
up to unknown higher orders.

46



CHAPTER 4. QUANTUM CHROMODYNAMICS IN A MEDIUM

4.5 Bibliography

[1] Murray Gell-Mann. A Schematic Model of Baryons and Mesons. Phys. Lett., 8:214–215,
1964.

[2] G. Zweig. An SU(3) model for strong interaction symmetry and its breaking. Version 2,
pages 22–101. 2 1964.

[3] E. D. Bloom, D. H. Coward, H. DeStaebler, J. Drees, G. Miller, L. W. Mo, R. E. Taylor,
M. Breidenbach, J. I. Friedman, G. C. Hartmann, and H. W. Kendall. High-energy inelastic
e− p scattering at 6ř and 10ř. Phys. Rev. Lett., 23:930–934, Oct 1969.

[4] M. Breidenbach, J. I. Friedman, H. W. Kendall, E. D. Bloom, D. H. Coward, H. DeStaebler,
J. Drees, L. W. Mo, and R. E. Taylor. Observed behavior of highly inelastic electron-proton
scattering. Phys. Rev. Lett., 23:935–939, Oct 1969.

[5] B.J. Bjørken and S.L. Glashow. Elementary particles and SU(4). Physics Letters,
11(3):255–257, 1964.

[6] S. L. Glashow, J. Iliopoulos, and L. Maiani. Weak interactions with lepton-hadron sym-
metry. Phys. Rev. D, 2:1285–1292, Oct 1970.

[7] J. E. Augustin, A. M. Boyarski, M. Breidenbach, F. Bulos, J. T. Dakin, G. J. Feldman,
G. E. Fischer, D. Fryberger, G. Hanson, B. Jean-Marie, R. R. Larsen, V. Lüth, H. L.
Lynch, D. Lyon, C. C. Morehouse, J. M. Paterson, M. L. Perl, B. Richter, P. Rapidis,
R. F. Schwitters, W. M. Tanenbaum, F. Vannucci, G. S. Abrams, D. Briggs, W. Chinowsky,
C. E. Friedberg, G. Goldhaber, R. J. Hollebeek, J. A. Kadyk, B. Lulu, F. Pierre, G. H.
Trilling, J. S. Whitaker, J. Wiss, and J. E. Zipse. Discovery of a narrow resonance in e+e−
annihilation. Phys. Rev. Lett., 33:1406–1408, Dec 1974.

[8] J. J. Aubert, U. Becker, P. J. Biggs, J. Burger, M. Chen, G. Everhart, P. Goldhagen,
J. Leong, T. McCorriston, T. G. Rhoades, M. Rohde, Samuel C. C. Ting, Sau Lan Wu, and
Y. Y. Lee. Experimental observation of a heavy particle j. Phys. Rev. Lett., 33:1404–1406,
Dec 1974.

[9] Makoto Kobayashi and Toshihide Maskawa. CP-Violation in the Renormalizable Theory
of Weak Interaction. Progress of Theoretical Physics, 49(2):652–657, 02 1973, https://aca-
demic.oup.com/ptp/article-pdf/49/2/652/5257692/49-2-652.pdf.

[10] S. W. Herb, D. C. Hom, L. M. Lederman, J. C. Sens, H. D. Snyder, J. K. Yoh, J. A.
Appel, B. C. Brown, C. N. Brown, W. R. Innes, K. Ueno, T. Yamanouchi, A. S. Ito,
H. Jöstlein, D. M. Kaplan, and R. D. Kephart. Observation of a dimuon resonance at 9.5
gev in 400-gev proton-nucleus collisions. Phys. Rev. Lett., 39:252–255, Aug 1977.

[11] S. Abachi et al. Observation of the top quark. Phys. Rev. Lett., 74:2632–2637, 1995,
hep-ex/9503003.

[12] F. Abe et al. Observation of top quark production in p̄p collisions. Phys. Rev. Lett.,
74:2626–2631, 1995, hep-ex/9503002.

[13] Particle Data Group. Review of Particle Physics. Progress of Theoretical
and Experimental Physics, 2020(8), 08 2020, https://academic.oup.com/ptep/article-
pdf/2020/8/083C01/34673722/ptaa104.pdf. 083C01.

47



4.5. BIBLIOGRAPHY

[14] Richard D. Ball, Alessandro Candido, Juan Cruz-Martinez, Stefano Forte, Tommaso Giani,
Felix Hekhorn, Kirill Kudashkin, Giacomo Magni, and Juan Rojo. Evidence for intrinsic
charm quarks in the proton. Nature, 608(7923):483–487, 2022, 2208.08372.

[15] M. Okamoto et al. Equation of state for pure SU(3) gauge theory with renormalization
group improved action. Phys. Rev. D, 60:094510, 1999, hep-lat/9905005.

[16] F. Karsch. Lattice QCD at high temperature and density. Lect. Notes Phys., 583:209–249,
2002, hep-lat/0106019.

[17] H. David Politzer. Reliable Perturbative Results for Strong Interactions? Phys. Rev. Lett.,
30:1346–1349, Jun 1973.

[18] David J. Gross and Frank Wilczek. Ultraviolet behavior of Non-Abelian Gauge Theories.
Phys. Rev. Lett., 30:1343–1346, Jun 1973.

[19] C. N. Yang and R. L. Mills. Conservation of Isotopic Spin and Isotopic Gauge Invariance.
Phys. Rev., 96:191–195, Oct 1954.

[20] F. J. Dyson. Divergence of perturbation theory in quantum electrodynamics. Phys. Rev.,
85:631–632, Feb 1952.

[21] Mario Flory, Robert C. Helling, and Constantin Sluka. How I Learned to Stop Worrying
and Love QFT. 1 2012, 1201.2714.

[22] Mikko Laine and Aleksi Vuorinen. Basics of Thermal Field Theory, volume 925. Springer,
2016, 1701.01554.

[23] L.D. Faddeev and V.N. Popov. Feynman diagrams for the yang-mills field. Physics Letters
B, 25(1):29–30, 1967.

[24] C. Becchi, A. Rouet, and R. Stora. The abelian higgs kibble model, unitarity of the
s-operator. Physics Letters B, 52(3):344–346, 1974.

[25] G. ’t Hooft and M. Veltman. Regularization and renormalization of gauge fields. Nuclear
Physics B, 44(1):189–213, 1972.

[26] J. Zinn-Justin. Renormalization of gauge theories. In H. Rollnik and K. Dietz, editors,
Trends in Elementary Particle Theory, pages 1–39, Berlin, Heidelberg, 1975. Springer
Berlin Heidelberg.

[27] V.N. Gribov. Quantization of non-abelian gauge theories. Nuclear Physics B, 139(1):1–19,
1978.

[28] Y. Nambu and G. Jona-Lasinio. Dynamical model of elementary particles based on an
analogy with superconductivity. i. Phys. Rev., 122:345–358, Apr 1961.

[29] Yoichiro Nambu and G. Jona-Lasinio. DYNAMICAL MODEL OF ELEMENTARY PAR-
TICLES BASED ON AN ANALOGY WITH SUPERCONDUCTIVITY. II. Phys. Rev.,
124:246–254, 1961.

[30] Gerard ’t Hooft. How Instantons Solve the U(1) Problem. Phys. Rept., 142:357–387, 1986.

[31] Gerard’ T. Hooft. Does Quantum Chromodynamics Imply Confinement?, pages 19–31.
Springer US, Boston, MA, 1984.

48



CHAPTER 4. QUANTUM CHROMODYNAMICS IN A MEDIUM

[32] David J. Gross, Robert D. Pisarski, and Laurence G. Yaffe. QCD and Instantons at Finite
Temperature. Rev. Mod. Phys., 53:43, 1981.

[33] Curtis G. Callan, Roger Dashen, and David J. Gross. Toward a theory of the strong
interactions. Phys. Rev. D, 17:2717–2763, May 1978.

[34] M BUBALLA. NJL-model analysis of dense quark matter. Physics Reports, 407(4-
6):205–376, feb 2005.

[35] Y. Aoki et al. FLAG Review 2021. Eur. Phys. J. C, 82(10):869, 2022, 2111.09849.

[36] Jean-Loïc Kneur and André Neveu. Chiral condensate from renormalization group opti-
mized perturbation. Phys. Rev. D, 92(7):074027, 2015, 1506.07506.

[37] Miklos Gyulassy. The QGP discovered at RHIC. In NATO Advanced Study Institute:
Structure and Dynamics of Elementary Matter, pages 159–182, 3 2004, nucl-th/0403032.

[38] Ulrich Heinz and Maurice Jacob. Evidence for a new state of matter: An assessment of
the results from the cern lead beam programme, 2000.

[39] Berndt Muller, Jurgen Schukraft, and Boleslaw Wyslouch. First Results from Pb+Pb
collisions at the LHC. Ann. Rev. Nucl. Part. Sci., 62:361–386, 2012, 1202.3233.

[40] Y. Aoki, G. Endrodi, Z. Fodor, S. D. Katz, and K. K. Szabo. The Order of the quantum
chromodynamics transition predicted by the standard model of particle physics. Nature,
443:675–678, 2006, hep-lat/0611014.

[41] M. D’Agostino, M. Bruno, F. Gulminelli, F. Cannata, Ph. Chomaz, G. Casini, E. Geraci,
F. Gramegna, A. Moroni, and G. Vannini. Nuclear liquid-gas phase transition: Experimen-
tal signals. Nuclear Physics A, 749:55–64, 2005. Phase transitions in strongly interacting
matter. Proceedings of the 18th Nuclear Physics Division Conference of the EPS.

[42] J. B. Elliott, P. T. Lake, L. G. Moretto, and L. Phair. Determination of the coexistence
curve, critical temperature, density, and pressure of bulk nuclear matter from fragment
emission data. Phys. Rev. C, 87:054622, May 2013.

[43] Larry McLerran and Robert D. Pisarski. Phases of cold, dense quarks at large N(c). Nucl.
Phys. A, 796:83–100, 2007, 0706.2191.

[44] D. Bailin and A. Love. Superfluidity and superconductivity in relativistic fermion systems.
Physics Reports, 107(6):325–385, 1984.

[45] Mark G. Alford, Andreas Schmitt, Krishna Rajagopal, and Thomas Schäfer. Color super-
conductivity in dense quark matter. Rev. Mod. Phys., 80:1455–1515, 2008, 0709.4635.

[46] Gert Aarts. Introductory lectures on lattice QCD at nonzero baryon number. J. Phys.
Conf. Ser., 706(2):022004, 2016, 1512.05145.

[47] David Tlusty. The RHIC Beam Energy Scan Phase II: Physics and Upgrades. In 13th
Conference on the Intersections of Particle and Nuclear Physics, 10 2018, 1810.04767.

[48] Philippe de Forcrand. Simulating QCD at finite density. PoS, LAT2009:010, 2009,
1005.0539.

49



4.5. BIBLIOGRAPHY

[49] Slavko Bogdanov et al. Snowmass 2021 Cosmic Frontier White Paper: The Dense Matter
Equation of State and QCD Phase Transitions. In 2022 Snowmass Summer Study, 9 2022,
2209.07412.

[50] Andrei D. Linde. Infrared Problem in Thermodynamics of the Yang-Mills Gas. Phys. Lett.
B, 96:289–292, 1980.

[51] Jacopo Ghiglieri, Aleksi Kurkela, Michael Strickland, and Aleksi Vuorinen. Perturbative
Thermal QCD: Formalism and Applications. Phys. Rept., 880:1–73, 2020, 2002.10188.

[52] PETER ARNOLD. QUARK-GLUON PLASMA AND THERMALIZATION. Interna-
tional Journal of Modern Physics E, 16(09):2555–2594, oct 2007.

[53] Ulrike Kraemmer and Anton Rebhan. Advances in perturbative thermal field theory. Rept.
Prog. Phys., 67:351, 2004, hep-ph/0310337.

[54] Joseph I. Kapusta. Quantum Chromodynamics at High Temperature. Nucl. Phys. B,
148:461–498, 1979.

[55] Joseph I. Kapusta and Charles Gale. Finite-Temperature Field Theory: Principles and
Applications. Cambridge Monographs on Mathematical Physics. Cambridge University
Press, 2 edition, 2006.

[56] K. Yagi, T. Hatsuda, and Y. Miake. Quark-gluon plasma: From big bang to little bang,
volume 23. 2005.

[57] Zoltan Fodor and Christian Hoelbling. Light Hadron Masses from Lattice QCD. Rev.
Mod. Phys., 84:449, 2012, 1203.4789.

[58] F. Karsch. Lattice QCD at high temperature and density. Lect. Notes Phys., 583:209–249,
2002, hep-lat/0106019.

[59] Christof Gattringer and Christian B. Lang. Quantum chromodynamics on the lattice,
volume 788. Springer, Berlin, 2010.

[60] Michel Le Bellac. Thermal Field Theory. Cambridge Monographs on Mathematical
Physics. Cambridge University Press, 1996.

[61] Urko Reinosa. Perturbative aspects of the deconfinement transition – physics beyond the
faddeev-popov model, 2020.

[62] Robert D. Pisarski. Notes on the deconfining phase transition, 2002.

[63] Nathan Weiss. Effective potential for the order parameter of gauge theories at finite
temperature. Phys. Rev. D, 24:475–480, Jul 1981.

[64] Szabocls Borsanyi, Zoltan Fodor, Christian Hoelbling, Sandor D. Katz, Stefan Krieg, and
Kalman K. Szabo. Full result for the QCD equation of state with 2+1 flavors. Phys. Lett.
B, 730:99–104, 2014, 1309.5258.

[65] Szabolcs Borsanyi, Zoltan Fodor, Matteo Giordano, Jana N. Guenther, Kornél Kapás,
Sandor K. Katz, Kalman K. Szabó, Attila Pasztor, Israel Portillo, and Claudia Ratti.
Searching the QCD critical endpoint with lattice simulations. EPJ Web Conf., 235:02004,
2020.

50



CHAPTER 4. QUANTUM CHROMODYNAMICS IN A MEDIUM

[66] S. P. Klevansky. The nambu—jona-lasinio model of quantum chromodynamics. Rev. Mod.
Phys., 64:649–708, Jul 1992.

[67] Kenji Fukushima. Chiral effective model with the Polyakov loop. Phys. Lett. B,
591:277–284, 2004, hep-ph/0310121.

[68] Pedro Costa, M. C. Ruivo, C. A. de Sousa, and H. Hansen. Phase diagram and critical
properties within an effective model of QCD: the Nambu-Jona-Lasinio model coupled to
the Polyakov loop. Symmetry, 2:1338–1374, 2010, 1007.1380.

[69] Barry A. Freedman and Larry D. McLerran. Fermions and gauge vector mesons at finite
temperature and density. i. formal techniques. Phys. Rev. D, 16:1130–1146, Aug 1977.

[70] Barry A. Freedman and Larry D. McLerran. Fermions and gauge vector mesons at finite
temperature and density. ii. the ground-state energy of a relativistic electron gas. Phys.
Rev. D, 16:1147–1168, Aug 1977.

[71] Barry A. Freedman and Larry D. McLerran. Fermions and gauge vector mesons at finite
temperature and density. iii. the ground-state energy of a relativistic quark gas. Phys. Rev.
D, 16:1169–1185, Aug 1977.

[72] Edward V. Shuryak. Theory of Hadronic Plasma. Sov. Phys. JETP, 47:212–219, 1978.

[73] T. Toimela. The next term in the thermodynamic potential of QCD. Physics Letters B,
124(5):407–409, 1983.

[74] Peter Brockway Arnold and Cheng-Xing Zhai. The Three loop free energy for pure gauge
QCD. Phys. Rev. D, 50:7603–7623, 1994, hep-ph/9408276.

[75] A. Vuorinen. The Pressure of QCD at finite temperatures and chemical potentials. Phys.
Rev. D, 68:054017, 2003, hep-ph/0305183.

[76] Varouzhan Baluni. Non-abelian gauge theories of fermi systems: Quantum-chromodynamic
theory of highly condensed matter. Phys. Rev. D, 17:2092–2121, Apr 1978.

[77] A. Ipp, K. Kajantie, A. Rebhan, and A. Vuorinen. Pressure of deconfined QCD for all
temperatures and quark chemical potentials. Phys. Rev. D, 74:045016, Aug 2006.

[78] Aleksi Kurkela, Paul Romatschke, and Aleksi Vuorinen. Cold Quark Matter. Phys. Rev.
D, 81:105021, 2010, 0912.1856.

[79] Cheng-xing Zhai and Boris M. Kastening. The Free energy of hot gauge theories with
fermions through g**5. Phys. Rev. D, 52:7232–7246, 1995, hep-ph/9507380.

[80] Tyler Gorda, Aleksi Kurkela, Paul Romatschke, Matias Säppi, and Aleksi Vuorinen. Next-
to-Next-to-Next-to-Leading Order Pressure of Cold Quark Matter: Leading Logarithm.
Phys. Rev. Lett., 121(20):202701, 2018, 1807.04120.

[81] K. Kajantie, M. Laine, K. Rummukainen, and Y. Schröder. Pressure of hot QCD up to
g6ln(1/g). Phys. Rev. D, 67:105008, May 2003.

[82] Guy D. Moore. Pressure of hot QCD at large N(f). JHEP, 10:055, 2002, hep-ph/0209190.

[83] A. Gynther, A. Kurkela, and A. Vuorinen. The N(f)**3 g**6 term in the pressure of hot
QCD. Phys. Rev. D, 80:096002, 2009, 0909.3521.

51



4.5. BIBLIOGRAPHY

[84] A. Hietanen, K. Kajantie, M. Laine, K. Rummukainen, and Y. Schroder. Plaquette ex-
pectation value and gluon condensate in three dimensions. JHEP, 01:013, 2005, hep-
lat/0412008.

[85] F. Di Renzo, M Laine, V Miccio, Y Schröder, and C Torrero. The leading non-perturbative
coefficient in the weak-coupling expansion of hot QCD pressure. Journal of High Energy
Physics, 2006(07):026–026, jul 2006.

[86] Andreas Ipp and Anton Rebhan. Thermodynamics of large-nf QCD at finite chemical
potential. Journal of High Energy Physics, 2003(06):032–032, jun 2003.

[87] Tyler Gorda, Aleksi Kurkela, Risto Paatelainen, Saga Säppi, and Aleksi Vuorinen. Soft
Interactions in Cold Quark Matter. Phys. Rev. Lett., 127(16):162003, 2021, 2103.05658.

[88] Tyler Gorda, Aleksi Kurkela, Risto Paatelainen, Saga Säppi, and Aleksi Vuorinen. Cold
quark matter at N3LO: Soft contributions. Phys. Rev. D, 104(7):074015, 2021, 2103.07427.

[89] Urko Reinosa. QCD at finite temperature and density from the Curci-Ferrari model. PoS,
LC2019:074, 2020.

[90] Marcela Peláez, Urko Reinosa, Julien Serreau, Matthieu Tissier, and Nicolás Wsche-
bor. A window on infrared QCD with small expansion parameters. Rept. Prog. Phys.,
84(12):124202, 2021, 2106.04526.

[91] Duifje Maria van Egmond, Urko Reinosa, Julien Serreau, and Matthieu Tissier. A novel
background field approach to the confinement-deconfinement transition. SciPost Phys.,
12(3):087, 2022, 2104.08974.

[92] Andrzej J. Buras. Weak hamiltonian, cp violation and rare decays, 1998.

[93] Adam FALKOWSKI. Lectures on effective field theories, Jan 2019.

[94] Aneesh V. Manohar. Effective field theories. In Perturbative and Nonperturbative Aspects
of Quantum Field Theory, pages 311–362. Springer Berlin Heidelberg.

[95] Aneesh V. Manohar. Introduction to Effective Field Theories. In Effective Field Theory
in Particle Physics and Cosmology: Lecture Notes of the Les Houches Summer School:
Volume 108, July 2017. Oxford University Press, 04 2020.

52



5
Hard Thermal Loop theory

An alternative method for performing a high-temperature resummation based on the Hard
Thermal Loop (HTL) effective theory is discussed. While the beginning of this chapter is
mainly a review of textbook material, the last section contains our original contribution [1]
that relies on the HTL picture and formalism.

5.1 One ring to resum them all
For static observables, the perturbative series suffers from IR divergences that occur due to
the bosonic Matsubara zero mode. Naively, defining an EFT for this mode works perfectly as
a resummation scheme. In practice, this is the content of EQCD that we briefly described in
sec.4.4.4. However, for non-static observables, we need all Mastubara modes in order to proceed
to analytic continuation, suggesting that we should incorporate all modes at tree level. As it
turns out, all of these can be collected into a compact effective action which is manifestly gauge
invariant [2; 3; 4; 5; 6]. It started from the observation that an arbitrary number of insertions
of the self-energy of the gluons are perturbatively of the same order, if the gluon momentum is
soft. This non-perturbative behavior then requires to resum all hard loops to specify a specific
perturbative order. This Lagrangian was thus dubbed Hard Thermal Loop. In this description,
the static leading order contributions to the self-energy of quarks and gluons are included in the
Lagrangian, in addition to resummed vertices which are necessary in order to maintain gauge
invariance. For a complete proof of this statement, see [7]. This effective Lagrangian allows for
a consistent definition of the propagation and the interactions of the collective modes living at
the soft scale. Connection of this effective description for quasi-particles with a kinetic picture
for the underlying hard modes is discussed in depth in [8]. It should be emphasized that HTL
does not incorporate any information about the ultra-soft scale which remains irremediably
non-perturbative. For more properties of HTL, see [9; 10; 11; 12].

HTL renormalizability has not been proven at arbitrary orders yet. Until now, its renor-
malizability has been established at LO (m4

g), or equivalently NNLO (α2
s), in [13], and then we

extended the proof of renormalization to NLO (αsm4
g), equivalently NNNLO α3

s [1].
To motivate the effective Lagrangian for HTL, it is better to start with a more schematic
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5.2. HTL FORMALISM

picture of the perturbative series. Following the power counting in Eqn.(4.39), we expect the
first IR divergences to appear at order g3 at finite temperature. This is indeed the case, and
it originates from the ring diagram in Fig.(5.1) with only two insertions of the self-energy.

Figure 5.1: Ring
diagrams

Upon resumming all of the ring diagram with an arbitrary number of self-
energy, it leads to a finite result whose starting contribution is at order g3.
Higher order contributions to the ring refine this picture and give g4 ln g,
g5 and so on1. If the momentum flowing in the loop is hard, i.e ‖~p‖ ∼ T
(or ‖~p‖ ∼ µ), this resummed diagram is perturbative and it can be re-
expanded. But when the momentum is soft, i.e ‖~p‖ ∼ gT (or ‖~p‖ ∼ gµ),
every single insertion contributes at the same order. This motivates to
resum the static infrared limit of the self-energy and to define an EFT
using this self-energy. At finite T or µ, we are often only interested in
matter contributions to the self-energy so we will split the latter (M) from
the vacuum contribution (V).

Since the divergences arise from the static and infrared limit k0 =
0, ‖~k‖ → 0, we expand the self-energy in power of the external momentum
and define successive approximations in terms of this parameter. At finite
temperature, it requires to select first the mode n = 0 for the momentum K running through the
loop and then expanding in ‖~k‖. At zero temperature and finite chemical potential, since the
mode zero cannot be isolated, it reads (the label indicates the first, second order contributions
etc.) [14; 15] :

ΠQCD(K,Φ) =Π1(K,Φ) + Π2(K,Φ) + . . .

=
(
ΠHTL

1 (0,Φ) +K2Πpow.
0 (0,Φ) +O(K4)

)
+
(
ΠNLO

2 (0,Φ) +O(K2)
)
+O(g4).

(5.1)

Where Φ is the four dimensional angle: tan Φ = |~k|/K0. The leading order is what we call the
HTL contribution while the next contributions constitute higher dimensional operators that
are beyond our current scope.

In this thesis we will only work with the first HTL correction, which happens to be sufficient
to address consistently up to g4 ln g order in cold and dense QCD.

5.2 HTL formalism
We shall now define more precisely the formalism of HTL. The notation follows mostly [16; 17].

At zero temperature, there are only two tensors relevant due to the Lorentz invariance : δµν
and KµKν . But at finite temperature, the introduction of a thermal bath breaks explicitly the
Lorentz invariance. Introducing the rest frame for the thermal bath (in Euclidean)Nµ = (−i, 0),
now the general basis decomposition is extended. Since the gluons satisfy the Ward identity,
PµΠ

µν = 0, they are D-dimensional transverse and the decomposition simplifies. Introducing
convenient projection operators on longitudinal and transverse modes in D and d dimensions:

T µν(K̂) ≡ δµiδνj
(
δij − k̂ik̂j

)
,

Lµν(K̂) ≡ δµν − K̂µK̂ν − T µν(K̂),
(5.2)

1It continues to higher orders, as we will discuss in the context of cold and dense QCD, but at finite
temperature these contributions are not very meaningful due to the presence of the ultra-soft scale and associated
non-perturbative corrections.
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CHAPTER 5. HARD THERMAL LOOP THEORY

with K̂ = K/|K| and k̂ = k/|k|, then, the HTL self energy tensor decomposes into:

Figure 5.2: Gluon self energy at leading order

Πµν(K) = T µν(K̂)ΠT (K) + Lµν(K̂)ΠL(K), (5.3)

Evaluation of the self-energy requires the calculations of the Feynman diagrams presented in
appendix A.1.5 and depicted in fig.(5.2). Using the decomposition in Eqn.(5.1), the leading
order contribution (HTL) reads after some algebra (see [9; 11] for a detailed derivation):

Πµν(K) = m2
g

∫
v̂

(
δµ0δν0 − iK0

K · V
V µV ν

)
(5.4)

where V µ ≡ (−i, v̂) is a lightlike vector, with v̂ a d-dimensional unit vector. The integration
measure is, (with zv ≡ k̂ · v̂):∫

v̂

≡ w(d)

2

∫ 1

−1

dzv(1− z2v)
d−3
2 , w(d) ≡

Γ(d
2
)

Γ(3
2
)Γ(d−1

2
)
, (5.5)

where w(d) is a weight factor, such that
∫
~v
1 ≡ 1. From this self-energy, Braaten and Pisarski

[2; 3] were able to find explicitly gauge invariant effective actions :

LHTL
YM =

m2
E

2
Tr

∫
v̂

Fαβ vβv
γ

(v ·Dadj.)2
Fγα,

LHTL
q =m2

q

∫
v̂

ψ̄
/v

(v ·DF)2
ψ.

(5.6)

The parameter mE and mq are the Debye screening mass for gluons and quarks. A derivation
of the specific case d = 3 for mE is given in appendix A.1.5. The general result in d dimension
is, (see for example [10]) :

m2
E =g2

(
(d− 1)2Nc

∑∫
K

1

K2
− 2(d− 1)Nf

∑∫
{P}

1

P 2

)
d=3
= g2

(
Nf

(
T 2

6
+

µ2

2π2

)
+
Nc T

2

3

)
.

m2
q =− 3CF g

2
∑∫
{P}

1

P 2

m2
q
d=3
=
g2

4

CF
2

(
T 2 +

µ2

π2

)
(5.7)

We have given LHTL
q for completeness, but we systematically neglect it in this thesis2 as we

consider massless quarks; or massive quarks but through the usual mass term m2ψ̄ψ. Taking
into account the quarks in the HTL framework will be part of a future work in the realm of
Hard Thermal Loop perturbation theory (HTLpt) (presented in chapter 6). In addition to the

2Because the calculations are not available yet.
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(a)

mg mg
mg

mg

mg

mg

mg

1

(b)

(c) (d)

Figure 5.3: Feynman diagrams for the pressure at NNLO

two resummed propagators in Eqn.(5.6), there are also resummed vertices for the three-gluon
and four-gluon self-interaction notably required for the evaluation of the two loop pure gauge
HTL diagram in fig.(5.4a). The relatively involved expressions for these vertices can be found
in [13; 18]. For our calculation in this chapter and the next one, they will not be necessary since
we only evaluate the quark sector whose vertex do not require a resummation (if we neglect the
quark HTL Lagrangian). There are two interesting limits of the HTL self-energy. First, The
static limit where K0 → 0 in (5.4) gives:

Πµν = m2
gδ
µ0δν0 (5.8)

From here, we see that the chromo-electric field (component 00) is screened by the Debye
mass while the spatial chromomagnetic field does not develop a thermal mass. This expresses
the blindness of HTL to the ultra-soft scale and the absence of genuine chromo-magnetic field
screening in the EFT. The second limit K0 6= 0, ~k → 0 leads to :

ΠT → mE

3

ΠL → mE

3

(5.9)

and it corresponds to plasma oscillations.
Importantly, the HTL self-energy develops an imaginary part when K0 < ‖~k‖ and it is

related to the physics of Landau damping: space-like gauge fields may lose energy to hard
particles in the plasma. More information about the HTL formalism can be read off from
appendix B. From now one, we will define an EFT for HTL and therefore replace mE → mg.
This must be now considered as a parameter of the EFT. Furthermore, the definition of the
complete HTL Lagrangian is :

LHTL ≡ LYM + LHTL
YM . (5.10)

Where LHTL
YM contributes to modify (non-locally) the gluon propagator.

56



CHAPTER 5. HARD THERMAL LOOP THEORY

5.3 Cold & Dense QCD
Now we turn our focus on the specific case of zero temperature and high chemical potential.
There are three main differences between perturbative computations carried out at high and low
temperatures. First, in many regards the latter resembles the strict T = 0 case, and it is possible
to dodge the finite temperature formalism. The second difference comes from the IR sector of
the theory. Whereas it is possible to isolate the Matsubara zero modes at finite temperature,
it is no longer possible now. Distance between the matsubara modes are proportional to the
temperature, therefore, when we lower the temperature, an infinity of modes collapses on the
zero mode and it becomes impossible to use a dimensionally reduced effective field theory for
them. And finally, the absence of the ultra-soft scale makes the weak-coupling expansion in
principle well-defined to arbitrary orders in the coupling g.

Lacking of dimensionally reduced EFT, the recent approach in zero temperature calculations
is to use HTL as an effective field theory following the principles detailed in sec.4.4.4. Since
the temperature has been removed, we also talk about Hard Dense Loop (HDL) instead [19].
Recently, the first higher order correction to the time-honored calculation of cold and dense
QCD pressure up to 3-loop order [20] was derived using this HTL framework [21; 22; 23].
Freshly this year, the latter authors also discussed further improvement in the mixed sector
(see below) of QED at NNNLO [15; 24].

The complete calculations up to and including α2
s lnαs for the resummed ring graph, of

the cold quark matter pressure by FreedMann and McLerran [20], later refined to include
temperature effects [25], is given by:

PC.Q.M
α2
s

= Pf
{
1− 2

π
αs −

Nf

π2
α2
s lnαs − 0.874355α2

s − 2dA
(11Nc − 2Nf )

3(4π)2
ln

(
Mh

µ

)
α2
s

}
,

(5.11)
with αs = g2/(4π), µq = µ = µB/3, Mh the arbitrary renormalization scale, and Pf =
NcNfµ

4/(12π2) is the free gas pressure of quarks of Eqn.(4.32). The first and second coef-
ficient correspond respectively to the leading and next-to-leading order depicted in fig.(5.3a).
The next term, α2

s lnαs, comes from the IR sector of the set of ring diagrams (5.3d) in pQCD.
The remnant coefficients originate from the set of perturbatively calculated three loop diagram
(5.3b and 5.3c). At zero temperature, only the quark loop gives a non zero contribution to
the gluon self-energy, and since the Vacuum-Vacuum diagram (VV) is a chemical potential
independent contribution, it is neglected3. It should be noted that recently, a more convenient
way to carry loop integration with a chemical potential has been developed, the so-called “cut-
ting rules” [26], however only valid for standard QCD propagators, in particular not for HTL
modified one, which were greatly valuable for the very involved calculation of the contribution
of quark masses to PC.Q.M at NNLO [27].

5.3.1 HTL Effective Field Theory (EFT)
Following the definition of the EFT presented earlier in section 4.4.4, one can formulate [28] an
EFT to consistently describes the soft modes. The precise Lagrangian will be discussed later, for
now, we will consider the different contributors. In this scheme, three kinematic regions emerge.
The soft region, defined by the HTL Lagrangian, incorporates resummed propagator/vertices
of the gluons and contains the physics of the collective modes in the plasma. On the opposite

3Actually, once the renormalization scale is identified to the chemical potential, it is no longer medium
independent. This contribution has been neglected in the literature and we stand on this ground for this
chapter. We will fully appreciate this contribution in the next chapter.
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(a) Soft contribution at N3LO

mg mg
mg

mg

mg

mg

mg

1

(b) Mixed contribution at
N3LO

Figure 5.4

side, the hard region contains unresummed quarks and gluons whose momenta are of the order
of the chemical potential. Up to order α2

s lnαs, these are the only two kinematic regions
appearing, but as we go to α3

s order, the two regions start to talk to each others. This mixed
region is recognizable by the presence of both resummed and unresummed propagators. For a
comprehensive overview of the different kinematic regions, see [22; 24].

In this reformulation, the IR behavior of the ring sum (soft gluons) becomes the one loop
HTL diagram (5.5) while the UV (hard gluons) can be re-expanded perturbatively. While
the full contribution is finite, this separation in terms of kinematic region introduces a UV
divergence in the resummed loop which should cancel against an IR divergence of the hard
kinematic region. This one loop HTL diagram reproduce the already known result for the

Figure 5.5: Ring in HTL formalism

α2
s lnαs coefficient, it was evaluated exactly for T → 0 in [29], while the next order O(ε)

coefficient, necessary for renormalization as we will see explicitly below, was evaluated first by
ourselves (to our knowledge) in [1], we obtained:

PSoft
Ring,α2

s
≡ PHTL

LO =
dA m

4
g

(8π)2

[
1

2ε
+ C11 − L+ ε

(
L2 + C21L+ C22

)]
≡m4

g

[
−a1,0

2ε
+ a1,0L+ a1,1 +O(ε)

] (5.12)

where C11 ∼ 1.17201, L = ln
(
mg

Ms

)
. In the second line we also introduced a convenient notation

that will become handy later. We obtain C21 = −2C11, C22 ' 2.16753. Next, the hard
contribution is given by the expression called pb3 in [25]; it was evaluated in another scheme than
dimensional regularization at that time. While determining its full contribution, in dimensional
regularization, at order O(ε) is not trivial, its divergence can be easily extracted. Assuming
quarks to have the same chemical potential:

PHard
Ring,α2

s
=

−dA α2
s N

2
f µ

4

32π4ε

(
eγEMh

4π

)3ε

+
dAN

2
fα

2
s

(192π4)

(
19− 2π2 − 16 ln 2 − 6 ln(Nf )

)
. (5.13)

As expected, the two contributions of Eqns.(5.12) and (5.13) sum to a finite result, providing
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that one identifies m2
g → m2

E ≡ 2
Nf

π
αsµ

2. The sum of the two kinematic regions in Eqns.(5.12)
and (5.13) reproduces the known coefficient at α2

s from Eqn.(5.11). On top of that, the soft
sector at N3LO, whose diagrammatic representation is given in fig.(5.4a) reads [21; 22; 23] :

Psoft
α3
s

=
αsNc dAm

4
g

(8π)2

(
mg

Ms

)−4ε (p−2

4ε2
+
p−1

2ε
+ p0

)
, (5.14)

where,
p−2 =

11

6π
, p−1 ' 1.50731(19), p0 ' 2.2125(9). (5.15)

The complete mixed sector appearing at α3
s has not been evaluated for QCD yet, but was

recently completed for QED [24], where it is a bit more simple since only abelian interaction
needs to be accounted. Therefore, we will not include the contribution of the diagram (5.4b)
in our analysis. The last piece, the hard sector at N3LO, remains entirely unknown at present.
Notice in Eqn.(5.14), besides Mh, the different scale Ms introduced in [23; 22]4. This scale
is not truly a renormalization scale of QCD (the only one being Mh) but was introduced as
a “factorization scale” that separates the kinematic region soft/hard. At α2

s it consistently
disappears. However, the situation is slightly more complicated at α3

s since there is still some
missing contributions involving this factorization scale.

5.4 Matching the cold and dense QCD pressure
Now that we have defined all the relevant pieces for a complete EFT based calculation, we
will collect them together so that it will, hopefully, become clear how one recovers the pressure
in Eqn.(5.11), originally calculated in standard QCD, long before HTL was developped. The
diagrammatic expansion of the pressure is shown explicitly in Eqn.(5.16).

PQCD = + + + + + VM +

M

M

M

(5.16)

The concrete question now is to understand what we should incorporate into our EFT
Lagrangian in order to perturbatively reproduce this pressure. The starting idea is that we
wish to describe to soft modes using an EFT since we wish to determine and resum these
logarithms. Therefore, the EFT must incorporate the Lagrangian written in Eqn.(5.10). One
cannot simply add the quarks in the picture since they are the carrier of the hard scale and
so we would end up with the exact same problem: having two scales in the same theory. One
way around, is to define an EFT just for the soft modes, and to add perturbatively the hard
contributions using the following identity:

PQCD = PEFT + (PQCD − PEFT) |exp. IR scale, (5.17)

where one simply add and subtract the EFT contribution and do the expansion in the IR scale
in the second quantity, as we have discussed in section 4.4.4. The EFT thus solely means the
one loop HTL diagram of fig.(5.5) while PQCD |exp. IR scale incorporates the LO, NLO and NNLO
pure hard contributions displayed in Eqn.(5.16) where the ring sum has to be redeveloped to

4Our Ms scale corresponds to Λh in [22]
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order α2
s.

This works perfectly fine at the leading order in the EFT (i.e α2
s) so we will focus on this

approach first. At higher orders, by construction it would also be correct, but it is unclear how
one should define the Wilson coefficients of the higher order operators. Another option, is to
add the quark kinematic term but without the covariant derivative. Thus to match the QCD
pressure would means to incorporate the NLO and NNLO hard contributions inside the Wilson
coefficient of this operator. This is easily generalized to any order and correctly dissociate
the hard and soft scales. Moreover it allows to define the right RG properties at NNNLO
to correctly determine the next-to-leading soft logarithms. Our first approach, slightly more
naive, will ensure we correctly resum the leading soft logarithms but only partially resum the
next-to-leading ones. For the mixed sector, to be hopefully evaluated soon, its contributions is
included in the EFT picture as higher order operators (for QED see [30]), but this is currently
beyond our scope.

In this picture, the contribution from the HTL EFT is simply Eqn.(5.12) where, in order to
recover the α2

s lnαs coefficient, it requires to match mg with the d-dimensional Debye mass :

m2
g =

2g2Nfµ
2

π2

(
eγE Ms

4πµ

)ε
, (5.18)

Moreover, it also requires to identify the two scale Mh = Ms to correctly match the QCD
pressure as was explained previously. The reason being that explicit dependence on Ms cancels,
as it should but intrinsic dependence inside the couplings remains and the matching has to be
done at the hard scale.

Now considering the next N3LO order (α3
s), we do not have the hard nor the mixed sectors

yet. Thus, neither the (UV) divergences of (5.14) nor its factorization scale cancel explicitly as
they should, to let only lnp αs terms (p = 1, 2). In absence of such explicit cancellations, since
the soft terms can be treated as a separate mE-dependent sector, to avoid large logarithms
it appears sensible to choose[24] Mh ∼ O(µ) and Ms ∼ O(mE), but keeping αs(Mh ∼ O(µ))
to remain reasonably perturbative. It has been argued in [21; 23] that the final factor for the
finite p−2 term should be 2p−2 → p−2 instead, due to the cancellation with presently unknown
hard contributions, and it is indeed the correct coefficient at α3

s ln(αs). In our renormalized
framework, this occurs consistently upon considering the consequence of the renormalization of
the gluon mass at this order. Moreover, it also implies modifications to p−1 and p0 as we shall
see below.

Thus, the state-of-the-art result (before our original work, to be presented next), for the
cold and dense QCD pressure reads:

PC.Q.M
α3
s

=Pf
{
1− 2

π
αs −

Nf

π2
α2
s lnαs − 0.874355α2

s − 2dA
(11Nc − 2Nf )

3(4π)2
ln

(
Mh

µ

)
α2
s

}
+
NcdAαsm

4
g

(8π)2

(
p−2 ln

2 mg

Ms

− 2p−1 ln
mg

Ms

+ p0

)
,

(5.19)

with m2
g = m2

E as in Eqn.(5.18).

5.4.1 The anomalous mass dimension of the gluons
Despite the non-local HTL Lagrangian, the NNLO perturbative HTL calculations give new
mg-dependent UV divergences and related counterterms having a seemingly standard renor-
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malizable form (5.12)(5.14). The gluon’s mass in the EFT has to be treated as a standard
Wilson coefficient which undergoes the renormalization procedure and develops an anomalous
dimension. The anomalous dimension of the HTL operator is what we call the anomalous mass
dimension of the gluon.

Within T 6= 0 HTL calculations, the divergences from mg 6= 0 occur in two-loop order
αs(m

2
g T

2,m3
g T

3) terms, and the corresponding (unique) one-loop counterterm ∆mg was ob-
tained first in [16]. Using this ∆mg and the standard relation between bare mass mB

g , Zmg

counterterm at leading order:

mB
g ≡ mg Zmg ' mg

(
1− g2

γg0
2ε

)
(5.20)

we easily identify
γg0 =

11Nc

3(4π)2
≡ bg0. (5.21)

Namely, the LO interactions from HTL that contribute to renormalize mg give a divergent
contribution identical to the one defining bg0, the pure gauge LO beta function coefficient.
Although striking, this equality of pure gauge bg0 and γg0 is merely a one-loop order accident.
Incidentally, it is worth noting that the same result (5.21) was obtained independently from
a localizable, renormalizable gauge-invariant setup for a (vacuum) gluon mass[31]. This is not
a coincidence since, recalling the discussion of chapter 2, these universal RG quantities are
vacuum quantities independent of T, µ. The two-loop order γg1 , has also been calculated from
the same T = µ = 0 formalism, with the result[32] (4π)4γg1 = 77N2

c /12. Furthermore, the
mass renormalization within Eqn.(5.12), PHTL

LO (mg → mgZmg), generates additional terms that
combine with genuine two-loop contributions in Eqn.(5.14), as it is standard in renormalizable
theory calculations.

Importantly, the unwanted nonlocal ln(mE/Ms)/ε divergence in Eqn.(5.14) exactly cancels
in those combinations. While (local) remnant divergences after mass renormalization are renor-
malized by vacuum energy E0 counterterms, always necessary in a massive theory. According
to Weinberg’s theorem, such local counterterms prove the renormalizability of the T = 0 HTL
pressure at NLO αsm

4
g, i.e. NNNLO α3

s. In other words, combining the results (5.14) from [23]
with our renormalized HTL-EFT framework, we could prove HTL renormalizability at N3LO
at least for the pressure.

Remark that renormalizing mg in Eq.(5.12) also modify the finite coefficients in Eq.(5.14),
as

2p−2 →p−2, p−1 → p−1 −
8πγg0
Nc

(C11 −
1

4
) ' p−1 − 0.5381,

p0 → p0 −
8πγg0
Nc

(C22 −
C11

2
) ' p0 − 0.9229.

(5.22)

For clarity, we will call these modified coefficients pren.−1 , p
ren.
0 .

5.4.2 Vacuum-energy induced subtraction terms in HTL-EFT
Earlier in chapter 2, we thoroughly explained how one must include an extra operator m41– the
vacuum energy contribution– in the Lagrangian when considering massive theories, in order to
define a RG invariant perturbation series. As we move in the massive gluon framework of HTL,
we should add this operator in the Lagrangian. Nevertheless, it is defined perturbatively with
an analytical power dependence in the mass. It seems reasonable to think that the re-expansion
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entering the matching contribution to the full QCD calculation, see (5.17), leaves it unchanged
and thus it would cancel out:

PHTL − PHTL

∣∣
m2

g�µ2
→ E0(mg,M)− E ′

0(mg,M) = 0. (5.23)

Where E0(mg,M) = −m4
g(M)/g(M)2

∑
i si g

2i. However, the matching procedure in Eqn.(5.23)
might be a strong assumption, since this operator’s contribution derives solely from RG prop-
erties, and we do not have a clear diagrammatic expansion for it. The matching procedure
requires the series solely to match perturbatively, order by order, with the full theory result.
One way to go around is to subtract perturbatively only the spurious contribution from this
vacuum energy.

The benefits are twofold. First, the vacuum energy genuinely operates the same way, by
construction from RG invariance, as the factorization scale cancellation would: it cancels the
spurious Ms scale dependence left. Since the calculations at α3

s are incomplete, we can use this
contribution to effectively cancel the soft scale dependence there, anticipating from relatively
cheap calculations, the expected cancellation in the full calculation at order α3

s not presently
available. This procedure, used in [1], shows sizeable improvement with respect to both hard
(Mh) and spurious factorization scale (Ms) dependence. Second, to introduce the implicit
resummation formula for the LL and NLL series that we will discuss later, it is necessary to
think of the pressure as including the subtraction terms (from the vacuum energy E0), implying
in particular to start at order 1/g2. Though the vacuum subtraction term are not needed to
obtain a resummation formula for the LL and NLL, since these two are not related. But it
allows a much more compact formula.

We should note carefully, however, that it is only because of the matching procedure to
the full theory that the operator in Eqn.(5.23) vanishes. Specifically, upon considering finite
temperature and HTLpt framework, the latter to be discussed in the next chapter, no such
matching procedure are required by construction, thus the operator E0 remains and plays an
important role.

For these reasons, we will introduce a somehow different matching procedure and relax the
constraint in Eqn.(5.23) and only insure that we fully reproduce the known perturbative order
(α2

s), but keeping higher order RG induced terms.
To begin with, instead of solving perturbatively the RG equation to determine E0, as we

did in section 2.3.1 , we integrate the differential equation (see Eqn.(2.34)) :

M
d E0
d lnM

≡ Γ̂g0(g)m
4
g, (5.24)

which leads to,

E0(g(M),mg(M)) = E0(g(M0,m(M0))+

∫ g2(M)

g2(M0)

dxm4
g(M0)

{
Γ̂g0(x)

β(x)
exp

(
−4

∫ x

g2(M0)

dy
γgm(y)

β(y)

)}
.

(5.25)
Here, M0 is an initial scale (different from M), that we identify as a boundary condition. This
equations reflects the fact that the vacuum energy also needs a renormalization condition, just
like we define ΛMS for the coupling. After expanding the gamma and beta functions and
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proceeding to some algebra, we find :

E0(g(Mh),mg(Mh)) = E0(g(M0),mg(M0))−

{
m4
g(M)

(
sg0

g2(M)
+ sg1

)
−m4

g(M0)

(
sg0

g2(M0)
+ sg1

)

+O(m4
g g

2)

}
.

(5.26)
To get there, we have identified the NLO running mass expansion :

mg(M) ' mg(M0)

(
g2(M)

g2(M0)

) γ
g
0

2b
g
0

(
1 +

2

(bg0)
2
(bg0 γ

g
1 − bg1γ

g
0)g

2(M0) +O(g4)

)
, (5.27)

and the perturbative solution to the RG equation in Eqn.(5.24):

Γg0 = −sg0(b
g
0 − 2γg0), Γ

g
1 = 4γg0s

g
1 − 2sg0(b

g
1 − 2γg1). (5.28)

Even though the gluon mass is matched to αs after the matching, in the EFT it remains an
arbitrary parameter at first the runs according to its anomalous dimension. Only after can it
be identified to αs. Next, we choose M0 (a fix boundary scale) to be equal to the central value
of the hard scale Mh, such that we calibrate correctly for higher orders to the massless QCD
pressure.

The spurious contribution at α2
s order that must be subtracted is:

−
sg0m

4
g(Mh)

g2(Mh)
+
sg0m

4
g(M0)

g2(M0)
' Pf

2Nf

π2
α2
s(M0)

b0
bg0

ln

(
M0

Mh

)
+O(α3

s).

Pmatch. ≡Pf
2Nf

π2
α2
s(M0)

b0
bg0

ln

(
M0

Mh

) (5.29)

The b0 ≡ 1
14π2 (

11
3
Nc − 2

3
Nf ) factor originates from the running of the full QCD coupling which

is taken at Nf 6= 0 consistently for the complete QCD pressure. The factor of (bg0)
−1 is, in

contrast, the pure gauge LO beta function coefficient, see Eqn.(5.33), due to sg0 that is driving
the soft sector including only pure glue diagrams.

Let us summarize the procedure for the sake of clarity :

1. The massive sector in isolation is not RG invariant already at LO, thus one needs to add
the vacuum energy contribution E0

g<<1
' −m4

g s
g
0/g

2 + . . . to restore the RG invariance ;
P → PR.G.I ≡ P + E0(Mh).

2. Matching the massive EFT theory (HTL here) to the full theory (QCD) seems to require
to remove this last contribution to correctly reproduce the full theory :
PR.G.I → PR.G.I − E ′

0(Mh) since the renormalization group invariance under Mh is acting
differently in the full theory.

3. An exact matching thus means:
E0(Mh) = E ′

0(Mh).

4. We relax this constraints so that we only perturbatively reproduces the full theory but
keeps higher order vacuum energy induced terms that anticipates the (still missing) soft
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scale cancellation at O(α3
s):

5. In the end, what is used in the numeric is :
P = Presum

pert. −mg(Mh)
4 sg0/g

2(Mh) +mg(M0)
4sg0/g

2(M0)− Pmatch.

Where Presum
pert. contains all other perturbatively determined contributions (possibly resummed).

5.5 Massive Leading and next-to-leading soft
logarithms in Cold and Dense QCD

The derivation of (5.14) in [22] required highly involved HTL computations. The coefficient of
the α3

s ln
2 αs term, among other things, required clever identification of the relevant kinematic

regions. From renormalization group properties, we could derive this same logarithm in a much
simpler way [1], as well as all coefficients of the leading logarithms at all orders. Moreover,
using the coefficient p−1 from Eqn.(5.14) as the first NLL, we carry the same procedure to
determine and resum all next-to-leading soft logarithms to all orders.

Note however that, while the coefficients of the leading logarithms originate solely from the
pure soft sector of HTL, the next-to-leading logarithm receive corrections at O(α3

s) already from
the mixed sector which is not accounted by HTL itself (see (5.1) and explanations around).
This is because such logarithms can only originate from resummed gluon lines and only one
resummed propagator appears in the mixed sector. Nevertheless, the soft contribution for the
NLL series is well-accounted by the resummation formula that we derived. This formula can
be easily generalized when the full p−1 coefficient, including mixed soft-hard contributions, will
be available in the future.

5.5.1 Schematic picture
Since we introduced a new operator (HTL) in the Lagrangian, the RG invariance requires to
consider its anomalous dimension within the RG operator. In our case, it means first considering
also an anomalous mass dimension for the gluons. To distinguish this anomalous dimension
from the one of the quark, we denote γgm such function.

In a massive theory, it is evident that the coefficients of the poles in dimensional regulariza-
tion are directly related to the coefficient of the logarithm involving the renormalization scale
M and the mass m. The pole of order n: 1/εn produces after renormalization a logarithm
Ln ≡ ln(M/m)n.

Pictorially, we can visualize the pressure in massive theory as having the following expansion:

PRGI

m4
g

=
a0,0
g2

+ a1,0 L + g2 a2,0 L2 + . . . LL

+ a′1,1 + g2 a2,1 L1 + . . . NLL

+ g2 a′2,2 L0 + . . .

(5.30)

Precise definitions of the coefficients appearing here will be discussed in the next sections.
Moreover, as the definitions will be scattered along the text, a summary is given in the very
last section. The first line is the Leading-Logarithm (LL) series, while the second is the next-to-
LL (NLL) and so on. Following section 2.4.1, the coefficient a1,0, proportional to the one-loop
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order simple pole, is related to all the leading divergence appearing at higher orders. These
coefficients determining the leading logarithm series, it is the generator of the LL series. As
we move to the next order radiative corrections, we only need to evaluate both the two-loop
(in HTL) order coefficients a2,1, generator of the NLL series, and the “finite”5 coefficient a2,2.
Note the subtraction coefficients in Eqn.(5.30), reflected in particular in the first term a0,0,
do not contribute to the recurrence relations between the logarithm series, but are necessary
to deduce the resummation formula. We shall first work out the recurrence relations for the
LL and NLL and then, take care of the matching to the full QCD pressure at α2

s order. The
prime on coefficients an,n, for n ≥ 1, in Eqn.(5.30) reminds us to include the subtraction term:
a′n,n = an,n − sgn. The first subtraction term sg0 defines the coefficient a0,0 = −sg0.

Defining formally the full series as,

PRGI =
m4
g

g2

∞∑
p=0

(g2)p
p∑
l=0

ap,l ln
(mg

M

)p−l
, (5.31)

and acting with the RG operator on it, we can work out, after some algebra, recursive relations
between logarithms of the same series. Explicitly, the RG operator reads in our convention:

M
d

dM
=M

∂

∂M
+ β(g)

∂

∂g2
−mg γ

g
m(g)

∂

∂mg

,

β(g) ≡ d g2

d lnM
= −2bg0 g

4 − 2bg1 g
6 + . . .

γgm(g) ≡ −d lnmg

d lnM
= γg0 g

2 + γg1 g
4 + . . .

(5.32)

With bg0, b
g
1, the pure gauge contributions reading:

(4π)2 bg0 =
11Nc

3
, (4π)4 bg1 =

34N2
c

3
. (5.33)

Considering g fixed, and identifying same order terms, one obtain :

LL : −p ap,0 = (4γg0 + 2bg0(p− 2)) ap−1,0, p ≥ 1 (5.34)

NLL : (1−p)ap,1 = (4γ0 + 2bg0(p− 2)) ap−1,1+(4γ1 + 2bg1(p− 3)) ap−2,0+γ
g
0(p−1)ap−1,0 (5.35)

The first series is rather straightforward as it only relates the logarithm at order k + 1 to the
coefficient of the logarithm of the same family at order k. The NLL series, however, is much
more involved as it has the same property but also includes two coefficients from the LL series
at order k and k − 1. Feeding this expressions with the input a1,0 and a2,1, we can obtain the
desired coefficients at any order p.

It would be fine, if we could somehow resum all these logarithms together, instead of working
them one by one, such as to obtain a compact formula which upon re-expansion would give the
right coefficients. This was done long ago [33] using a method that we shall review now.

5In opposition to the coefficients of the Logarithms which originates from the divergences.
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5.5.2 Resummation of the LL and NLL series
Consider the definition of the γgm function in Eqn.(5.32). It can be formally integrated using
the separation of variables method:

mg(M1) = mg(Mh) exp

{
−
∫ g2(M1)

g2(Mh)

dg2
γgm(g)

β(g)

}
. (5.36)

If we impose the specific boundary condition M ≡ mg(M) for M1 = M , we will define an
implicit formula encoding the RG resummation at all orders for this mass term. Note that
we avoid the notation M0 for the lower boundary term to avoid confusion with the one in
Eqn.(5.25). Specifically, this boundary condition is exactly the scale at which we want to
evaluate the pressure, so as a foreshadowing, we directly chose Mh.

LL series

After integration at leading order in g2 of Eqn.(5.36), using bg0, γ
g
0 in Eqn.(5.32), it reads:

mg(M1)

mg(Mh)
=

(
g2(M1)

g2(Mh)

) γ
g
0

2b
g
0
. (5.37)

Using the specific boundary conditions: M1 ≡ m(M1), and using the one-loop running of
αs = g2/4π (Eqn.(49) in appendix A), we come to the final result:

M1 =
mg(Mh)(

1 + bg0 g
2(Mh) ln

(
M1

Mh

))γg0/2b0 . (5.38)

Further defining:
f1 = 1 + bg0 g

2(Mh) ln

(
M1

Mh

)
≡ g2(Mh)

g2(M1)
. (5.39)

one can write compactly :

M1 ≡ mg(Mh)f
−

γ
g
0

2b
g
0

1 . (5.40)
In order to relate this result to the pressure, naturally we would think to take P ∼ M1 to
get the resummation of the LL since P ' m4

g. However, as we discussed at length in chapter
2, the renormalization group invariant (RGI) quantity is PRGI which starts at order 1

g2
for

RG consistency. Therefore, we write: PRGI ' M4
1

g2(M1)
, identifying M1 = mg, which after some

algebra leads to:
PRGI

LL = −s
g
0mg(Mh)

4

g2(Mh)
f
1−4

γ0
2b0

1 . (5.41)

In fact, one can alternatively recover the sole LL series without any RG subtraction contribution,
substituting: −sg0 → a1,0g

2 ln
(
mg

Mh

)
in Eqn.(5.41):

PRGI
LL = a1,0mg(Mh)

4 ln

(
mg

Mh

)
f
1−4

γ0
2b0

1 . (5.42)

However, without the the RG substraction contribution in the first place, one could not have
guessed (or difficultly) the extra −1 power in the previous equation. This last formula makes
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it clear that a1,0 is the actual generator of the LL formula. Nevertheless, it is interesting to
recast results as in Eqn.(5.41) with sg0 as the generator for this series since sg0 is actually also
determined by a1,0 via the RG equation, see previous derivation of chapter 2. Generalizing to
higher order, it turns out that the coefficient sn can be seen partially as a generator of the
NnLL. We will explain carefully below why it is not the full generator of the NnLL series (these
ones being an,1 the single logarithm coefficient at order (g2)n).

NLL series

While contributions from coefficient ap−1,0 and ap−2,0 to the NLL, see Eqn.(5.35), can be taken
into account formally upon expanding to higher orders Eqn.(5.38), the contribution from ap−1,1

requires to modify the Ansatz for the pressure. Denoting g2(Mi) → g2i as well as mg(Mi) ≡ mg,i

for simplicity, at next order we have:

mg,1 = mg,h exp

{∫ g21

g2h

dg2
γg0g

2 + γg1g
4

2bg0g
4 + 2bg1g

6

}
. (5.43)

After exact integration and some algebra:

mg,1 = mg,h

(
g21
g2h

) γ
g
0

2b
g
0

1 +
bg1
bg0
g21

1 +
bg1
bg0
g2h

−
γ
g
0

2b
g
0

1 +
bg1
bg0
g21

1 +
bg1
bg0
g2h


γ
g
1

2b
g
1

. (5.44)

Now, we can identify M2 ≡ mg(M2) =M1, f2 ≡ g2h
g21

, that leads to :

M2 = mg(Mh)f
−

γ
g
0

2b
g
0

2 (R)
γ
g
1

2b
g
1

−
γ
g
0

2b
g
0 , R =

1 +
bg1
bg0
g2hf

−1
2

1 +
bg1
bg0
g2h

. (5.45)

which generalizes Eqn.(5.38) to NLO and is an exact relation. In Eqn.(5.45), the exact two-loop
running of the coupling ratio f2 is an implicit function given by:

f2 = 1 + +2bg0 g
2
h ln

(
M2

g2h

)
+
bg1
bg0
g2h ln(f2) +

bg1
bg0
g2h ln

1 +
bg1
bg0
g2h f

−1
2

1 +
bg1
bg0

 (5.46)

whose first order terms after re-expansion reads:

f2 = 1 +
[
2bg0 g

2
h + 2(bg1 − γg0b

g
0)g

4
h

]
ln
mg(Mh)

Mh

+O(g6). (5.47)

Eq.(5.47) gives numerically good approximations as long as the coupling is not too large (αs ≡
g2

4π
. 0.5) as will be approximately the case in our practical application to cold and dense

pressure. Introducing new convenient notations,

A0 =
γg0

(2bg0)
, A1 =

γg1
(2bg1)

, B = 4(A1 − A0), (5.48)
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now we can define our Ansatz for the pressure, incorporating exactly the NLL series :

PNLL =
−sg0mg(Mh)

4

g2(Mh) f
4A0−1
2

[R(f2)]
B

(
1−

a′1,1 g
2(Mh)

sg0 f2
−
a′2,2 g

4(Mh)

sg0 f
2
2

+ . . .

)
. (5.49)

In this formula, using the exact relation Eqn.(5.46) the re-expansion reproduces the LL, NLL
series of Eqn.(5.35) to all orders as well as the first finite coefficient a1,1. From this formula it
is not immediately transparent what precisely is the generator of the NLL series. At first, it
looks like a′1,1 is the generator. But, by RG construction, sg1 is also proportional to a1,1 such
that the difference, a′1,1, is independent of a1,1. Moreover, sg1 is actually determined by a2,1, so
here we find back the actual NLL generator. In our case we obtain explicitly :

sg0 =− a1,0
2(bg0 − 2γg0)

sg1 =a1,1 +
a2,1
4γg0

+
a1,0
4

+
sg0
4γg0

(bg1 − 2γg1),
(5.50)

where we also added sg0 for completeness. The term −a′2,2g(Mh)
4

sg0 f
2
2

in Eqn.(5.49) incorporates the
finite term a2,2 and the next order RGI subtraction sg2 (yet unknown6). Upon integrating to
the next order the gamma function it would generate the NNLL series.

Alternatively, we can derive an exact and more compact formula in terms of explicitly RG
invariant quantities more convenient than the implicit formula (5.46). Defining the two-loop
RG invariant mass,

m̂g = 2Cmg(2b
g
0 g

2
h)

−A0(1 + bg1 g
2
h/b

g
0)
A0−A1 , (5.51)

F2 ≡
f2

2bg0 g
2
h

, (5.52)

and the exact two-loop running coupling, given as an implicit g2(M) solution of:

ΛMS =Mhe
−1/(2bg0g

2
h)(bg0 g

2
h/(1 + bg1 g

2
h/b

g
0))

−C , (5.53)

where C = bg1/(2(b
g
0)

2) one obtains after some algebra :

PNLL = −2bg0 s
g
0 2

−4Cm̂4
g F

1−4A1
2 (C + F2)

4(A1−A0)

(
1−

a′1,1
2sg0b

g
0F2

− a2,2
sg0 (2b

g
0F2)2

)
. (5.54)

F2 can be easily determined for given g2 = 4παs values, then plugged into Eqn.(5.54) for mg

values given from Eqn.(5.51).

5.6 Results
As a concrete outcome of this construction, the coefficient a2,0 for the LL at α3

s can be easily
extracted from Eqn.(5.34):

a2,0 = −2γg0 a1,0 =
Nc dA p−2

(4π)(8π)2
. (5.55)

6Determining sg2 require evaluation of the simple divergence of the three-loop HTL theory. Only last year
the two-loop order was completed involving impressive efforts to achieve the task thus three loops is completely
out of our scope for now.
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It reproduces independently and exactly the result from [23] in a straightforward manner. The
important feature required to obtain it from the above simple RG relations is having identified
the gluons anomalous mass γg0 . The LL series simplifies even more since γg0 = bg0, thus every
successive order can be obtained from :

ap,0 = (−2γg0)
p a1,0, (5.56)

which is now trivially recognized as a simple geometric series.
The resummed NLL and LL series in Eqn.(5.49) obviously incorporate the first LL a1,0α2

s lnαs
and the finite term a1,1. But this contributions are already accounted for by the pressure at α2

s

in Eqn.(5.19). To avoid double-counting, one must carefully subtract these two terms. The α2
s

order being complete, the matching to the pressure necessitates to also remove the contributions
from any spurious subtraction terms up to and including the α2

s order. However, as explained
around Eqn.(5.29), we can keep sg0 and sg1 contributions at αps, p ≥ 3 for they are anticipating
the soft-hard cancellation mechanism.

Collecting all the pieces from Eqns.(5.18)(5.19)(5.29)(5.47)(5.49), our final expression for
the pressure incorporating all order LL, NLL resummation is :

PC.Q.M
NLL =PC.Q.M − sg0mg(Mh)

4

g2(Mh) f
4A0−1
2

[R(f2)]
B

(
1−

a′1,1 g
2(Mh)

sg0 f2
− a2,2 g

4(Mh)

sg0 f
2
2

)
−m4

g

(
a1,1 + a1,0 ln

(
mE

Mh

))
− Pf

2Nf

π2
α2
s(M0)

b0
bg0

ln

(
M0

Mh

)
.

(5.57)

Note that if one wants to get the same results but restricted to the LL only, upon replacing the
NLL series in Eqn.(5.57) by the LL series in Eqn.(5.42), the coefficient −m4

ga1,1 of Eqn.(5.57)
must be removed too. Compact formula are given in Eqn.(5.66) in the last section, convenient
to reproduce more easily the results. We discussed previously that the ignorance of αps, p ≥ 3
hard contributions incites to take Ms ∼ O(mE) in order to avoid large logarithms. But the
resummation in Eqn.(5.57) relateMh andMs : if we had exact renormalization group invariance,
we could choose any Ms ∼ mE < M < Ms.

5.6.1 Numerical results and comparisons
In Fig.5.6a and 5.6b the RGI LL and NLL resummed pressures from Eqn.(5.57) are compared to
the present state-of-the-art Eqn.(5.19 as function of µB = 3µ. The central scale values Mh = 2µ
and the µ ≤ Mh ≤ 4µ remnant scale dependence are illustrated for the different quantities
(using in Eqns.(5.11),(5.57) the exact NLO QCD running coupling αs(Mh) in Eqn.(5.53) with
ΛMS). As a concrete value, we use αs(M = 1.5GeV) = g2/4π = 0.326. The equivalent in terms
of ΛMS can be found in appendix A.1.9. For sensible comparisons we also adopt the minimal
sensitivity [34] determined soft scale in [23], Ms ∼ 0.275mE.

Note first that the sole LL resummation with −sg0 → a1,0g
2 lnmg/Mh) gives a sizeably

reduced scale dependence, compared to the NNLO pressure Eq.(5.11) at O(α2
s), as resummed

LL induces positive αp≥3
s contributions partly cancelling the negative α2

s coefficient in Eq.(5.11).
However, this effect is approximately cancelled once including p−1, p0 α3

s-order terms from
Eqs.(5.15),(5.22). Next, for the LL and NLL RGI pressures, deviations from the state-of-the-
art (“NNLO + soft N3LO” in Fig.5.6b) are noticeable. The central scale (Mh = 2µ) RGI
pressure is slightly higher for fixed µ values, with very moderate differences between (RGI)
LL and NLL pressures. Importantly, the remnant scale dependencies of the RGI pressures are
reduced as compared to the NNLO + soft N3LO results: only slightly for the LL pressure, due
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to cancellations with p−1, p0 O(α3
s) terms, but significantly for the NLL pressure, both for Mh

and Ms variations, due to extra cancellations from αp≥3
s terms induced in (5.49). Concerning

possible M0 variations, for fixed Mh they give much smaller uncertainties than Mh variations
in Fig.5.6b, as can be seen from fig.(5.7a).

5.6.2 Conclusions
In conclusion, we have obtained compact explicit expressions for the all order resummation of
both leading logarithms and and soft next-to-leading logarithms series contributions to the cold
and dense QCD pressure, that goes well beyond previously established results in the literature.
The renormalization group resummation construction moreover gives clearly improved residual
scale dependence with both the hard scale and the spurious soft scale. This result is expected
to improve control towards lower µB values to match with the extrapolated equation of state
from the nuclear matter density region. The next step now, is to work in a realistic set up,
namely, including different chemical potential for the quarks a well as the strange quark current
mass in order to more realistically describe the equation of state for neutron star. Investigation
of neutron star equation of state will be part of chapter 7. Before that, we will discuss another
resummation scheme in the next chapter for the series as well as corrections from massive
quarks to the pressure.

5.6.3 Summary of all coefficients required for PC.Q.M
NLL .

γg0 =
1

(4π)2

(
11Nc

3

)
, γg1 =

1

(16π2)2

(
77

12
N2
c

)
. (5.58)

bg0 =
1

(4π)2

(
11Nc

3

)
, bg1 =

34N2
c

3(4pi)4
. (5.59)

C11 =
(1.17201 dA)

(8π)2
, C21 = 2C11, C22 = 2.16753. (5.60)

sg0 = − a1,0
2(bg0 − 2γg0)

=
−dA

2(8π)2bg0
, sg1 = a1,1 +

a2,1
4γg0

+
a1,0
4

+
sg0
2γg0

(bg1 − 2γg1) (5.61)

a0,0 = −sg0, a10 = − dA
(8π)2

, a11 =
dA c11
(8π)2

. (5.62)

a20 =
Nc dA

(4π)(8π)2
p−2, a21 =

Nc dA
(4π)(8π)2

(−2pren.−1 ), a22 =
dA Nc

(4π)(8π)2
pren.0 . (5.63)

a′2,1 = a2,1 − sg1.

A0 =
γg0
2bg0

, A1 =
γg1
2bg1

, B = 4(A1 − A0). (5.64)

Practical compact formula

For the LL series:

PLL

αp≥3
s

= PC.Q.M
α2
s

+Pf
(
2Nf

π2

)(
1

8πbg0

[
αs

1 + 8πbg0αs ln
mE

Ms

− αs(M0)

]
+ α2

s ln
mE

Ms

− α2
s(M0)

b0
bg0

ln
M0

Mh

)
,

(5.65)
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while for the NLL series :

PNLL

αp≥3
s

=PC.Q.M
α2
s

+ Pf
(
2Nf

π2

) 1

8πbg0

αs
f2

(
1 + 51

22π
αs

f2

1 + 51
22π
αs

)−59/68(
1 +

d1 αs
f2

+
d2 α

2
s

f 2
2

)
+ α2

s

(
ln
mE

Ms

+ d3

)
+ d4 α

2
s(M0)− α2

s(M0)
b0
bg0

ln
M0

Mh

)
,

(5.66)

where α ≡ αs(Mh) and,

d1 ' 3.29659 ≡ (
−4π

sg0
)a′1,1, d2 =' 6.77276 ≡ −(

(4π)2

sg0
)a2,2,

d3 ' −1.17201 ≡ C11, d4 ' −0.711003 ≡ 8π2sg1.

(5.67)

And the truncated f2 defined in Eqn.(5.46) reading explicitly :

f2 = 1 +

(
11

2π
αs −

19

8π2
α2
s

)
ln
mE

Ms

+O(α3
s). (5.68)

71



5.6. RESULTS

2 3 4 5 6 7 8 9
0.0

0.2

0.4

0.6

0.8

1.0

ΜB@GeVD

P
�P f

NNLO+soft N3LO +RGI N¥NLL

NNLO+soft N3LO

Mh=4Μ

Mh=Μ

(a)

2 3 4 5 6 7 8 9
0.0

0.2

0.4

0.6

0.8

1.0

ΜB@GeVD

P
�P f

NNLO+soft N3LO +RGI N¥NLL

NNLO+soft N3LO

NNLO+soft N3LO +RGI N¥LL

Mh=4Μ

Mh=Μ

(b)

Figure 5.6: NNLO+ soft N3LO in Eqn.(5.19) versus NNLO+soft N3LO+RGI LL, NLL re-
summed pressures, as functions of µB = 3µ, with µ ≤ Mh ≤ 4µ. We follow the prescription
in [23]: Ms ' 0.275mE. M0 = 2µ. For the RGI NLL resummed pressure, Ms variation within
[Ms/2, 2Ms] are shown in addition as darker bands.
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Figure 5.7: NNLO+ soft N3LO in Eqn.(5.19) versus NNLO+soft N3LO+RGI LL, NLL re-
summed pressures, as functions of µB = 3µ. We follow the prescription in [23]: Ms ' 0.275mE.
With Mh = 2µ and µ ≤M0 ≤ 4µ.
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6
Renormalization Group Optimized
Perturbation Theory

In this chapter, we will discuss other resummation schemes, first the optimized perturbation
theory (OPT), then we will introduce an extension incorporating renormalization group prop-
erties: renormalization group optimized perturbation theory (RGOPT), first in the λφ4 model
at finite temperature [1], then in cold and dense QCD [2]. Application of the OPT approach
to the specific case of Hard Thermal Loops goes by the name of Hard Thermal Loop pertur-
bation theory (HTLpt) and will be part of the last section of this chapter, including the first
developments of RGOPT on HTLpt.

6.1 The need to reorganize the perturbative series
We already discussed in depth how the naive weak expansion breaks down at finite temperature
and density. This is not the only issue of the perturbative series in a medium. It appears that the
series is also very poorly convergent, specifically at finite T , and that higher order contributions
are not so small with respect to lower orders, even when pushed to the highest perturbative order
available. Furthermore with increasingly sizeable remnant scale dependence, at least specially
at T 6= 0. Accordingly many efforts have been devoted in the past to overcome the generically
observed issues of poor perturbation theory convergence. Apart from the most important case
of QCD, the above mentioned behavior is generic for any thermal quantum field theory, thus,
it seems desirable to have if possible a framework which would incorporate the same physics,
namely quasi-particle degrees of freedom, in a more systematic way in order to improve the
convergence of the series. Various approximations attempting to more efficiently resum thermal
perturbative expansions have been developed and refined over the years, typically the optimized
perturbation theory (OPT) [3; 4], sometimes called linear delta-expansion (LDE) [5], or also
better known under the name of screened perturbation theory (SPT) [6; 7; 8; 9] in the thermal
community. But also the non-perturbative renormalization group (NPRG)[10] approach or the
two-particle irreducible (2PI) formalism [11; 12; 13]. The former one, OPT, being the subject
of our focus.
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6.1.1 Optimized perturbation theory
OPT is a reorganization of the weak-coupling expansion based on a variational approach. A
physical quantity, typically, the pressure P in our context, is then expressed as the variational
minimum of a thermodynamic potential P(T, µ, g;mi)

1 that depends on one or more variational
mass parameters that are collectively denoted by mi and a generic coupling g. Remark that
adding a Gaussian mass term does not change the polynomial structure of the theory so that
the process is compatible with the usual renormalization procedure. At least in theories where
mass terms do not spoil gauge invariance, so it is not so simple for QCD. In the thermal
field theory context, these variational mass parameters are the equivalent of the thermal mass
presented earlier in Eqn.(5.7). The idea is to “add and subtract” such variational parameters,
one being treated as an interaction term while the other modifies the free propagator. This can
be conveniently generalized as the following modification :

P(T, µ, g,mi) → P(T, µ, δ g,mi (1− δ)). (6.1)

upon identifying δ = 1, we recover the original massless interacting theory, while δ = 0 is
the non-interacting theory incorporating the massive quasi-particles degrees of freedom. The
trick now is to perform a re-expansion in δ, with respect to both the coupling and the mass,
at the same perturbative order than the original perturbative expression, and subsequently
taking the limit δ → 1. If we were able to calculate the perturbative series at all order, this
procedure would trivially remove the contribution from m to the perturbation series and leaves
no differences with the original calculation. But, due to the specific truncation at finite orders
of perturbative series, this leaves a remnant non-trivial dependence in m, that reshuffles the
perturbative expansion. Notably, at leading order the OPT has the welcome property of exactly
reproducing large-N results [14; 15] for simpler models with an O(N) symmetry. Since the full
results (at all order) does not depend on such variational parameters, the best approximation
at finite perturbative order is the one that minimizes the dependence on these non-physical
parameters, the one where it is the less rapidly varying [3; 16]:

∂P(T, µ, g,mi)

∂mi

∣∣∣
mi=m̂i

≡ 0, ∀mi. (6.2)

The application of this OPT procedure to the specific case of the HTL Lagrangian (HTLpt),
see [17] for a review, as compared to perturbation theory, the NNLO HTLpt predictions in
Refs.[18; 19; 20; 21] are very close to the lattice results for temperatures down to T ' 2Tc (the
critical temperature). Unfortunately, there is a serious issue, also plaguing standard thermal
perturbation theory but not sensibly reduced in OPT: namely the sensitivity to the arbitrary
renormalization scale is observed to substantially increase when higher orders are considered.
Even a moderate scale variation of a factor 2 dramatically affects the pressure and related
thermodynamical quantities by relative variations of order 1 or more. It appears that the lack
of renormalization group (RG) invariance is more basically rooted within the HTLpt approach
that definitely calls for further improvements.

1We will not distinguish these two functions in the following even though they are strictly speaking different.
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6.1.2 Renormalization group optimized perturbation theory
More recently, OPT at vanishing temperatures and densities was extended to the so-called
renormalization group optimized perturbation theory (RGOPT) [15; 22]. The basic novelty
is that it restores perturbative RG invariance at all stages of calculations, in particular when
fixing the variational mass parameter, by solving the (mass) optimization prescription as well as
the RG equation. An important feature of the approach is that it also incorporates consistently
the RG properties of the vacuum energy density defined in chapter 2 and reviewed for HTL
EFT in chapter 5. At vanishing temperatures and densities, it has given precise first principle
determinations [22] of the basic QCD scale (ΛMS) or related coupling αs, and of the quark
condensate [23; 24]. The RGOPT was extended at finite temperatures for the scalar λφ4 model
in [25; 26] and for the non-linear sigma model (NLSM) in [27], showing how it substantially
reduces the generic scale dependence and convergence problem of thermal perturbation theories
at increasing perturbative orders. More recently the RGOPT in the quark sector contribution
to the QCD pressure was investigated at NLO, for finite densities and vanishing temperatures
[28], and at finite temperature and density [29; 30], leading to drastic improvements with respect
to both perturbative QCD and HTLpt, specially at nonzero temperature.

The heart of the method relies on three main modifications to the standard OPT. The first
one is to incorporate consistently for a massive theory, the vacuum energy and its anomalous
dimensions, necessary both for renormalization as well as for restoration of the perturbative RG
invariance as explained in chapter 2. Secondly, one applies a modified delta expansion rather
than the original one in Eqn.(6.1):

g → δg , mi → mi(1− δ)ai . (6.3)

Where ai are at first arbitrary parameters, to be next determined by enforcing the delta-
expansion to be consistent with RG invariance. Since the underlying goal is to reproduce the
massless pressure, after the delta expansion δ → 1 is carried out, we impose the pressure to
satisfy the reduced (massless) RG equation :(

M
∂

∂M
+ β(g)

∂

∂g

)
P = 0. (6.4)

This equation determines at leading order once and for all the values of the ai coefficients with
ai = #

γ0,i
b0

2. Once the ai are fixed, the RG equation at higher order, is not satisfied anymore,
which gives alternative prescription, different from Eqn.(6.2), to determine variationally the
parameters mi of the theory, incorporating some higher order RG properties. If one considers
alternatively the full RG equation, incorporating the anomalous mass dimension, this leads to
three possible prescriptions (not all independent) that may be used to determine the parameters
:

∂P(T, µ, g,mi)

∂mi

∣∣∣
mi=m̂i

≡ 0(
M

∂

∂M
+ β(g)

∂

∂g

)
P = 0(

M
∂

∂M
+ β(g)

∂

∂g
+
∑
i

mi γm,i
∂

∂mi

)
P = 0.

(6.5)

2Since this determination depends of the specific convention for the beta and gamma function, we will
specify their precise values later
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We speculate that if one could calculate to all orders the solutions of those different prescrip-
tions, the solutions would presumably converge towards a unique, non-perturbatively dressed
mass m̂. As it happens [15] in the large-N limit of the O(N) Gross-Neveu model, where the
original perturbative series is known to all orders.

Inherently to many variational methods beyond the lowest order, solutions to this equation,
non-analytic in mi, are often complex valued. While physical quantities of interest, in our
context the pressure, are obviously real. This is admittedly a technical burden of such methods,
but the occurrence of complex variational solutions has no deeper physical meaning. Rather,
it may be viewed to some extent as an accident of the specific MS scheme in which the original
perturbative coefficients were calculated, given that nonreal solutions are often expected upon
exactly solving nonlinear equations. At the same time we wish to maintain these relations as
exact as possible in order to capture RG resummation properties beyond perturbation theory.
A crude escape could be simply to take the real part of the solutions, but that potentially loses
some of the sought RG properties.

Having multiple perturbatively equivalent prescriptions becomes handy in the search of real
valued solutions. Notably, since we are interested in thermodynamic quantities at different
energy scales, it may be possible that on a specific subregion (T, µ ∈ [a, b] for generic a, b)
of interest, one prescription gives real valued solutions that become complex elsewhere. One
solution to circumvent this issue is to simply take the Debye screening mass, instead of a
variationally determined parameter, as is indeed prescribed in HTLpt [19; 21] but by doing so,
we loose some of the benefits of the method namely, the RG consistent construction. Another
option is to proceed to a perturbative renormalization scheme change (RSC), provided that
non-real solutions are not far away from being real. The formalism of RSC introduce at the
end of chapter 2 will become particularly useful.

Having in mind that the all order perturbative expansion is renormalization scheme inde-
pendent, and that only the partial sum is scheme dependent, we will use the freedom to change
the unphysical scheme for another one whose slightly different coefficients might lead to recover
real solutions.

Importantly, keeping ai = γ0,i/b0 at higher orders further guarantees that the only accept-
able solutions are those matching [22] the perturbative asymptotic freedom (AF) behavior for
g → 0 at T = 0. This simple but compelling criterion often selects a unique solution, even at
five-loop order so far explored [24], in contrast with the related OPT/SPT approaches where
using solely Eqn.(6.2) generates an increasing number of possible solutions at increasing orders.
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6.1.3 Application at leading order in λφ4 model

As a concrete example, let us investigate the application of the method at leading order for
the specific case of the λφ4 model. At leading order, the free energy (equivalently minus the
pressure) including a mass term is :

F0 =
1

2

∑∫
P

ln
(
P2 +m2

0

)
= − 1

8(4π)2
m4

0

(
2

ε
+ 3 + 2 ln

M2

m2
0

)
− T 4

2(4π)2
J0

(m0

T

)
. (6.6)

To restore the RG invariance and renormalize the UV divergence of Eqn.(6.6), we add the
perturbatively determined vacuum energy:

E0(λ0,m) = −m
4
0

λ0

∑
k≥0

skλ
k = −s0m

4
0

λ0
− s1m

4
0 +O(λ0). (6.7)

Where,
s0 =

1

2(b0 − 4γ0)
= 8π2, s1 =

(b1 − 4γ1)

8γ0 (b0 − 4γ0)
= −1 (6.8)

Note that, the vacuum subtraction terms (sn) are calculated with respect to :

M
dE(λ,m)

dM
≡ −M d

dM

(
(4π)2F0(E ≡ 0)

)
, (6.9)

using the following definition for the beta and gamma functions:

β(λ) =
dλ

d lnM
= b0 λ

2 + b1λ
3 + . . .

γm(λ) =
d lnm

d lnM
= γ0 λ+ γ1 λ

2 + . . .

(6.10)

with relevant values at LO: (4π)2b0 = 3, (4π)2γ0 = 1/2. Hence, the RG reduced equation
defined in Eqn.(6.4) gives the universal RG coefficient :

a =
γ0
b0

=
1

6
. (6.11)

After performing the modified delta expansion F(m2 → m2 (1 − δ)2a ; λ → δλ), only the s0
term is non-trivially affected which yields, after taking the limit δ → 1 :

(4π)2F δ0

0 = m4

[
−s0
λ
(1− 4

γ0
b0
)−

(
3

8
+

1

4
ln
M2

m2

)]
− T 4

2
J0(

m

T
). (6.12)

The standard (dimensionless) thermal integrals appearing in Eq.(6.12) and below are given by

Jn(x) = 4
Γ[1/2]

Γ[5/2− n]

∫ ∞

0

dt
t4−2n

√
t2 + x2

1

e
√
t2+x2 − 1

, (6.13)

where t = p/T and x = m/T . The other relevant integrals can be easily related by employing
derivatives such as

Jn+1(x) = − 1

2x

∂

∂x
Jn(x) . (6.14)
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Also, a high-T expansion,

J0(x) '
16

45
π4 − 4

π2

3
x2 + 8

π

3
x3 + x4

[
ln
( x
4π

)
+ γE − 3

4

]
+O(x6) , (6.15)

is often useful as a rather good approximation as long as x . 1, i.e., m� T .

At this leading order, the reduced RG equation is satisfied exactly, while the mass optimiza-
tion Eq.(6.2) determines a nontrivial dressed thermal mass as follows. One can conveniently
express results in terms of the one-loop renormalized self-energy including all the relevant T -
dependence, ΣR, reading explicitly

ΣR = γ0λ

[
m2

(
ln
m2

M2
− 1

)
+ T 2J1

(m
T

)]
. (6.16)

Since
T

∂

∂m2

∑∫
ln
(
ω2
n + ω2

p

)
= 2

ΣR

λ
, (6.17)

the exact solution of the OPT Eq.(6.2) gives the mass-gap equation:

m̂2 = (4π)2 b0 ΣR(m̂
2), (6.18)

which at this leading nontrivial order is exactly (one-loop) RG-invariant, being only dependent
on b0. To illustrate more transparently the latter property, it is convenient to use the above
high-T expansion m/T ≡ x� 1 of Jn(x) 3. In this case the OPT Eq. (6.2) is a simple quadratic
equation for x, with the unique physical (x > 0) solution:

x̂ =
m̂(1)

T
= π

√
1 + 2

3

(
1
b0λ

+ LT

)
− 1

1
b0λ

+ LT
' π b0λ+O(λ2) (6.19)

with LT ≡ ln[M eγE/(4πT )]. The corresponding one-loop RGOPT pressure reads

P (1)

P0

= 1− 15

4π2
x̂2 +

15

2π3
x̂3 +

45

16π4

(
1

b0λ
+ LT

)
x̂4 +O(x̂6), (6.20)

where P0 = (π2/90)T 4 is the ideal gas pressure. Eqs. (6.18)-(6.20) involve clearly an all order
dependence in λ, and are exactly RG-invariant, upon using for λ ≡ λ(M) the “exact” (one-loop)
running:

1

λ(M)
=

1

λ(M0)
− b0 ln

M

M0

(6.21)

since 1/(b0λ(M)) + LT is M -independent. Accordingly Eqs. (6.19) and (6.20) only depend on
the single parameter b0λ(M0), where M0 is some reference scale, typically M0 = 2πT .

Eq. (6.20), perturbatively re-expanded, gives for the first few orders

P (1)/P0 ' 1− 5α/4 + 5
√
6α3/2/3 + 5(LT − 6)α2/4 +O(α5/2) (6.22)

where α ≡ b0λ. Note that Eq.(6.22) contains the nonanalytic term λ3/2, originating from the

3At one-loop order this approximation is actually valid at the 0.1% level even for x1, sufficient for our
purpose since the RGOPT one-loop solution æm/T happens to always lies in this range.
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bosonic zero mode resummation, here readily obtained from RG properties. Expanding at
higher orders Eq.(6.19) it is easily seen that it entails nonanalytic terms λ(2p+1)/2, p ≥ 1 at all
orders. It is worth stressing that Eqs. (6.18)-(6.20) correctly reproduce at all orders the O(N)
scalar model large N -results (e.g. Eq. (5.7) of [31]), as can be checked upon identifying the
correct large-N b0 = 1/(16π2) value [31]. Accordingly, at one-loop order, although RGOPT
essentially relies on the very first one-loop graph of Fig.2.29, augmented by the optimized RG
construction as above described, it happens to correctly resum the whole set of ’foam’ graphs
as illustrated in Fig.6.1.

Figure 6.1: The graphs being resummed at first nontrival RGOPT order.

6.2 Renormalization group optimized λφ4 pressure at
next-to-next-to-leading order

This part reports on the original work [1] pursued by the author. We refer to the article for
further details and only quote the results.

6.2.1 NNLO massive free energy
The contribution up to three-loop order to the free energy comes from the set of graphs in Fig
(6.2) and read

F3l
0 = −λ

2
0

48

[
3

(∑∫
p

1

p2 +m2
0

)2∑∫
q

1

(q2 +m2
0)

2

+
∑∫
pqr

1

(p2 +m2
0)(q

2 +m2
0)(r

2 +m2
0)((p+ q+ r)2 +m2

0)

]
+ F3l,ct

0 ,

(6.23)

Figure 6.2: Free energy diagrams up to NNLO in λφ4 model
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With the contribution at NLO being [8] (using L = M2

m2 ) :

(4π)2FNLO = E0 −
1

8
m4 (3 + 2L)− 1

2
T 4J0(

m

T
) +

1

8

λ

16π2

[
(L+ 1)m2 − T 2J1(

m

T
)
]2
. (6.24)

The NNLO contribution involves the additional genuine three-loop second integral in (6.23),
first calculated in [32]. After algebra, the complete three-loop contribution can be expressed
as[8].

F3l = − 1

48
(
λ

16π2
)2
[
m4
(
5L3 + 17L2 + 41/2− 23− 23/12π2 + 2ζ(3) + c0 + 3(L+ 1)2J2(

m

T
)
)

−m2T 2J1(
m

T
)
(
12L2 + 28L− 12− π2 − 4c1 + 6(L+ 1)J2(

m

T
)
)

+T 4
(
3(3L+ 4 + J2(

m

T
))J2

1 (
m

T
) + 6K2(

m

T
) + 4K3(

m

T
)
)]

(6.25)
where

c0 = 275/12 + 23/2ζ(2)− 2ζ(3); c1 = −59/8− 3/2ζ(2), (6.26)
and it involves two extra irreducible two-loop K2(m/T ) and three-loop K3(m/T ) integrals,
given explicitly in ref.[32], reproduced for self-containedness in Appendix D.

If not including the RG invariance restoring subtractions in Eq.(6.7), note that the lack of
RG invariance from unmatched leading m4 lnM terms remains largely screened at one- and
two-loop orders of the thermal expansion for sufficiently small coupling, since perturbatively
m4 ∼ λ2. This explains why the remnant scale dependence of SPT remains nevertheless quite
moderate at NLO. Conversely it partly explains why a very sizeable scale dependence plainly
resurfaces at three-loop λ2 order in SPT[8]. In contrast the RGOPT scale dependence is ex-
pected to further improve at higher orders: being built on perturbative RG invariance of the
free energy at order m4λk for arbitrary m, the mass gap exhibits its dominant remnant scale de-
pendence as m̂2 ∼ λT 2(1+ · · ·+O(λk+1 lnM)), thus the dominant scale dependence in the free
energy, coming from the leading term −s0m4/λ, is expected to appear first only at O(λk+1).
However, this formally expected trend may be partly spoiled, first by large perturbative coef-
ficients (generically growing at higher orders), or by the well-known thermal PT issues due to
infrared divergent bosonic zero modes. It is thus important to investigate more explicitly the
outcome of our construction at NNLO, where standard thermal PT starts to badly behave, to
delineate the RGOPT scale dependence improvement that can be actually obtained. Concern-

Figure 6.3: Relative scale dependence at successive orders of the running coupling in the φ4

model, with g ≡
√
λ/24 and πT ≤ µ ≤ 4πT at one, two- and three-loop orders.
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ing the φ4 model moreover, the peculiar sign alternating beta-function coefficients bi from one-
to three-loop orders imply that considering the running coupling alone, its three-loop order has
a comparatively worse scale dependence than the two-loop order, as is illustrated in Fig.6.3.
This feature tends to partly counteract the benefits of our RG-improved construction, when
comparing three-loop with two-loop order. 4

Applying the variational modification from Eq.(6.3)(6.11) to the complete thee-loop free
energy, sum of Eq.(6.24) and Eq.(6.25), expanded consistently now to order δ2, and taking
δ → 1, gives after algebra :

(4π)2F δ2

0 = Eδ20 − m4

8

(
3 + 2L+ 8(

γ0
b0
)2(L+ J2)

)
− T 4

2
J0

+
m2Σ2

R

γ0λ

γ0
b0

(
γ0
b0

− 3

2

)
+

m2

32π2b0
ΣR(L+ J2)

+
Σ2
R

128π2γ0λ
+ F3l

(6.27)

where we again conveniently expressed results in term of the one-loop ΣR defined in (6.16),
and with:

Eδ20 = −m4

(
14

81

s0
λ

+
2

9
s1 +

1

3
s2λ+ s3λ

2

)
, (6.28)

and the three-loop order contribution, designated by F3l in Eq.(6.27), is already given in the
original expression (6.25), this term being not affected at δ2 order.

The explicit expressions at NNLO for the RG and OPT Eqs.(6.2), (6.4) can be obtained
easily from (6.27) (we refrain to give their explicit form, being quite involved and not particu-
larly telling). At this stage without examining further constraints one may a priori use any of
the three possible (but not independent) prescriptions for the NNLO dressed optimized mass
m̄(λ, T ): the OPT Eq.(6.2), or the (massless) RG Eq.(6.4), or the full RG equation with the
anomalous mass dimension. One may also exploit the freedom to incorporate the highest order
subtraction term s3 or not, the latter being formally a three-loop contribution, but depending
on four-loop order RG coefficients, and not necessary for perturbative NNLO RG invariance.
The latter flexibility happens to give a relatively simple way to circumvent the annoyance of
possibly non-real NNLO solutions, that appear only at relatively large couplings in the λφ4

model. The outcome is that, in order to maximize the range of coupling g and scale M where
real solutions are obtained, it is appropriate to take simply s3 = 0 if using the OPT Eq.(6.2),
and s3 6= 0 when using the RG (6.4). On the other hand at NNLO the full RG gives no real
solutions for the relevant case of M = 4πT , for a large coupling range.

Fig. 6.4 illustrates our two different prescriptions thus retained at NNLO, namely the OPT
(with s3 = 0) and RG (with s3 6= 0). As seen, despite giving quite different functions of the
coupling, they have very similar and very moderate scale dependence. Similarly to NLO the
RG solution is generically giving a slightly better scale dependence than the OPT one, since
the former embeds more directly the perturbative RG properties.

Fig. 6.5 illustrates the corresponding pressures obtained from the two alternative OPT and
RG mass prescriptions 5. As one can see, despite the quite different m in Fig. 6.4 the resulting

4We mention that in QCD the analogous behavior is expected to be better, since the first three beta function
coefficients have the same sign.

5At NNLO we use the exact expressions of all thermal integrals: in particular the high-T approximations
of the two-loop K2(x) and three-loop K3(x) integrals are not a good approximation.
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Figure 6.4: NNLO (three-loops) m from the OPT Eq.(with s3 = 0) and RG Eq (with s3 6= 0)
as a function of rescaled reference coupling g, with scale dependence πT ≤ µ ≤ 4πT .

OPT and RG pressures are very close and similar in shape, and have very comparable and very
moderate scale dependence. The latter feature will be better appreciated when being compared
with NNLO PT or SPT below.

Figure 6.5: Comparison of NNLO pressure P/Pideal for the m OPT and RG prescriptions (with
s3 = 0 and s3 6= 0 respectively), as a function of g ≡

√
λ/24, with πT ≤ µ ≤ 4πT

Finally, we illustrate our main results at successive LO, NLO, and NNLO in Fig. 6.6, com-
pared with both PT and SPT. The NNLO PT, namely with successive terms up to O(λ2), has
a substantially larger remnant scale dependence than the O(λ3/2) PT in Fig. 6.5. Concerning
the SPT at NNLO we only show the results from using the same prescription as in [8] namely,

m2
SPT = ΣR. (6.29)

In contrast one can see that the RGOPT pressure is extremely stable from LO to NLO and
NNLO, and has a very moderate remnant scale dependence. Actually, the improvement from
NLO to NNLO is quite moderate, that we understand as the counter effect from the worsening
NLO running coupling as above explained. At any rate it appears drastically improved as
compared to PT and SPT.
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Overall, although φ4 model is much simpler than QCD, it has a simpler IR behavior, calling
for resummation. Our RGOPT results here give us some reasonable hint that RGOPT applied
to thermal QCD, within appropriate description of thermally dressed gluon mass, might give
similarly improved scale dependence at higher orders, in contrast with the HTLpt approach.

Figure 6.6: RGOPT pressure at successive LO,NLO,NNLO orders versus NLO,NNLO PT and
NLO,NNLO SPT pressures, with πT ≤ µ ≤ 4πT , (g ≡

√
λ/24).

6.3 Review of LO and NLO in RGOPT Cold & Dense
QCD

Let us now switch to the RGOPT construction applied to complete QCD, restricted here to
the cold and dense regime. The relevant Feynman diagrams at NNLO for cold and dense QCD
are:

PQCD = + + + + + VM

+

M

M

M

(6.30)

The convention for the renormalization group functions at hand are:

β(g) = −2b0g
2 − 2b1g

3 +O(g4) (6.31)

γm,q(g) = γ0,qg + γ1,qg
2 +O(g3) (6.32)

γmg ,g(g) = γ0,gg + γ1,gg
2 +O(g3) (6.33)

which gives, upon solving the RG reduced equation in (6.4), the value of the coefficient:

aq =
γ0
2b0

=
4

9
. (6.34)
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Before going to our work at NNLO, we first review the RGOPT results that were obtained[28]
considering three massless flavors of quarks, up to NLO order-g (defining for convenience in this
section g = 4παS), corresponding to the first two graph on Figure 6.30, in the limit of vanishing
temperatures and finite baryon densities. With the genuine mass of the quarks being zero, we
take µs = µu = µd, as we will review in the next chapter upon considering beta equilibrium in
neutron stars. At this order, there is still no gluons in the medium as they formally enter at
the NNLO through the Ring diagrams. This simplifies drastically the approach as we do not
have to use HTLpt yet to address a medium-dressed mass term for the gluons, i.e at NLO the
gluons can still be considered massless. The expression of the pressure for the quark sector is
given in appendix A up to NNLO. At leading order, the RG equation being already used for
fixing aq = γq0/(2b0), we solve m̃LO using equation 6.2 applied on 37, after the delta expansion
of Eqn.(6.3). For illustration, we give the LO mass gap that was obtained in [28]:

m̃2
LO = µ2

(√
1 + 4c (m̃LO, µ, g)− 1

2c (m̃LO, µ, g)

)
. (6.35)

With:

c (m̃LO, µ, g) =

(
1

2b0g
− 1

2
+ Lµ

)2

, Lµ = ln

(
µ+ pF
M

)
, pF =

√
µ2 −m2 (6.36)

Applying the procedure (6.3) to perturbative expression at NLO 39, the following expression
for the RGOPT pressure for a single flavor is obtained:

P δ
f (m,µ) =Nc

m4

(4π)2b0g
+

Nc

12π2

[
µpF

(
µ2 − 5

2
m2

)
+

3

2
m4

(
Lµ −

3

4

)]
−Nc

m4

(4π)2

(
γ0
b0

)(
1

b0g

)
+m4

(
2
γ0
b0

− 1

)
s1 +Nc

m2

8π2

(
γ0
b0

)2

(1− 2Lµ) + 2µ pF ]−
g dA
4(2π)4

[
m4

(
1

4
− 4Lµ + 3L2

µ

)
+ µ2(µ2 +m2) +m2µ pF (4− 6Lµ)

]
(6.37)

Where dA = N2
c − 1 and Nc = 3. Already at this order [28], it has been found that no

real solution existed on the full domain of interest so that a Renormalization Scheme Change
(RSC) was needed. Invoking the invariance under RSC of the observable, we are free to slightly
change the scheme, to a one close to MS, such that a comparison remains relevant but modifying
the coefficient of the RG equation to possibly recover real solutions. Practically, it consist of
applying the RSC before the delta modified expansion:

m→ m
(
1 +B2 g

2
)

(6.38)

Where B2 is at first an arbitrary variationnal parameter. Now we have to solve {m̃, B̃2} simul-
taneously. In order to fix B2, one needs, however, to use a definite prescription. Following[28],
one notes that the closest real solution arises when the two independent RG and OPT equa-
tions intersect first, namely hen their respective tangent vectors are collinear. The latter easily
translates into a vanishing determinant, the fRSC equation:

fRSC =
∂fRG
∂g

∂fOPT
∂m

− fRG
∂m

∂fOPT
∂g

≡ 0 (6.39)

87



6.4. RGOPT PRESSURE AT NEXT-TO-NEXT-TO-LEADING ORDER

Since the latter also depends non-trivially on B2, one solves it in conjunction with the RG
equation for (B̃2, m̃). It can be checked a posteriori that B̃2g

2, driving the RSC, represents a
reasonably perturbative deviation from the original MS scheme.

6.4 RGOPT pressure at next-to-next-to-leading order

6.4.1 RG resummed quarks and perturbative gluons
Now pursuing on at NNLO, we have to take into account the new three loop diagrams in
Eqn.(6.30). As already explained, we will first study the gluons only perturbatively, using the
result for the ring diagram Eqn.[33]. We apply the procedure in Eqn.(6.3) to the quark sector of
Eqn.(36) where the ring diagram, represented in Fig (6.30), takes the value in Eqn.(42). Upon
using the PMS prescription Eqn.(6.2) or the reduced RG equation in Eqn.(6.4) to determine
m̃ we found no real solutions in the full domain of interest for µ ∈ 0.5, 2.5 GeV but only in
a subregion µ ∈ 1.0, 2.5GeV for the RG equation. It is actually a double root at µ = 1 GeV
being complex for values of µ below one GeV, and two distinct real solutions for values above.
It then motivated us to introduce again a RSC in order to obtain real solutions on the full
domain. To be consistent at NNLO, we modify the scheme only at order δ2:

m→ m
(
1 +B3 g

3
)

(6.40)

Due to the g3 term, this modification enters solely through the term −m4s0/g, producing an
extra contribution to the pressure, ∼ −4m4s0B3g

2. By construction B3 is also a variationnal
parameter, and its solution will encode non-trivial coupling dependence: B3 → B̃3(g). Simi-
larly to NLO, we can recover a real solution by requiring the condition above, Eq.(6.39), to be
satisfied, now solved for (B̃3, m̃). We chose to use the three loop order running coupling recalled
in appendix A. Actually, another conceptually simpler way to recover a real m̃ solution is to
truncate the RG equation to lower orders, noting that the higher order RG terms are strictly
beyond the actual (NNLO) perturbative pressure expansion ∼ g2. In this way, one certainly
loses some effects from higher RG order content, but at the benefit of a much simpler prescrip-
tion as compared to Eq. (6.39). Moreover, it turns out that the two different prescriptions
actually give very similar m̃: this is illustrated in Fig. 6.7. Moreover, quite remarkably we
notice that both solutions tend asymptotically for sufficently large µ towards the standard (LO)
Debye screening mass:

m2
Debye =

g

6π2
µ2, (6.41)

as illustrated in Fig.(6.8). Next, in Fig.6.8 we illustrate the scale dependence of the RG solution
as compared to the one of the perturbative Debye mass, Eq.(6.41). Already at this stage, as
it was expected, the RG dependence seems to have significantly dropped going from a purely
perturbative Debye mass to the variational RG-determined mass. Accordingly, the pressure
is expected to exhibit reduced scale dependence upon using the RG determined mass. It is
precisely the case as can be observed in figure 6.9. However, the RGOPT pressure tends to be
lower than the NNLO pressure for a given µ, which is due to relatively large m̃RG, see Fig. 6.7.
Alternatively, since the RG variational mass tends asymptotically to mDebye, we could use the
latter as another possible prescription: this is illustrated in Fig.6.10, where one can see that
the resulting pressure is closer to the standard NNLO one, but at the price of not so much
improved scale dependence. Finally, it is worth to combine our RGOPT results in the quark
sector with the recently derived all order resummed HTL soft logarithmic dependence in the
pure glue sector[34], that are discussed in chapter 5. More explicitly, we add to the NNLO
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Figure 6.7: Solution to the RG equation at NNLO, for the central scale M = 2µ, from Eq.
(6.39) or from LO truncated RG (black, plain), compared to the standard LO Debye quark
mass (purple, dotted).
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Figure 6.8: Remnant scale dependence of the RG-determined mass m̃RG(M) for M ∈ {µ, 4µ}
as compared with the LO Debye mass.
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Figure 6.9: RGOPT pressure compared to NNLO pQCD pressure (massless and massive quarks
as indicated) for three different scales M = X 2µ with X ∈ {1

2
, 1, 2}
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Figure 6.10: RGOPT pressure using mDebye compared to NNLO pQCD pressure (massless and
massive quarks as indicated) for three different scales M = X 2µ with X ∈ {1

2
, 1, 2}

massive quark expression the expression for higher order LL, NLL given in Eqn.(5.66). This is
illustrated in Fig.6.11 and Fig.6.12 respectively, where a visible scale dependence improvement
is obtained in addition from the gluon resummed sector.
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Figure 6.11: RGOPT pressure using m̃RG and adding NLL-resummed HTL glue pressure, com-
pared to NNLO pQCD pressure (massless and massive quarks as indicated) for three different
scales M = X 2µ with X ∈ {1

2
, 1, 2}
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Figure 6.12: RGOPT pressure using mDebye and adding NLL-resummed HTL glue pressure,
compared to NNLO pQCD pressure (massless and massive quarks as indicated) for three dif-
ferent scales M = X 2µ with X ∈ {1

2
, 1, 2}
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This closes our analysis on the renormalization group improvement of the naive quark sector
(not HTL) with sound result displaying good improvement with respect to the NNLO state-of-
the-art. Notably, the result for the pressure obtained seems to drop towards zero slightly less
faster than NLL thus suggesting interesting results once the equation of state will be considered.
For that matter, see chapter 7.

6.5 HTLpt framework for gluons in cold and dense
QCD

Having explored the RGOPT approach to the quark sector, we will focus now on the gluon
sector and the applicability of the renormalization group improved HTLpt approach. Namely,
we will consider massless quarks in interactions with the HTL resummed gluon propagator. At
LO and NLO, the pressure is given by the set of diagrams given in Eqn.(6.42) :

PQCD = +

mg

+

mg mg

+

mg

mg

mg

+ mg + mg

(6.42)

We already calculated in chapter 5 the subtraction coefficient sg0 and sg1 for the gluon so
we can readily incorporate them in the picture. Now, what differs from the HTL effective
field theory picture of the last chapter, is that we do not need a matching procedure anymore.
The delta expansion will ensure that we will consistently address the degrees of freedom of the
massless pressure and so the vacuum energy is not spurious anymore. Consequently, that means
that we have to consider its renormalization, a point that we omitted in the last chapter since
it essentially cancelled in the matching procedure. Following the general steps we introduce
in section 6.1.1 and 6.1.2, we start with the mass renormalization for the gluons, the coupling
renormalization, which enters only at NNLO so not needed here, then after this multiplicative
renormalization we proceed to the additive multiplication of the vacuum energy. Details on the
notations and the renormalization of the vacuum energy operator can be found in chapter 6
and in [34].

Following previous definitions of the gluon gamma function and beta function, we can
determine via the RG reduced equation the coefficient ag for the gluons which reads:

ag =
γg0
2b0

. (6.43)

Here, b0 stands for the complete LO beta function coefficient while γg0 is no longer equals to
bg0 since we have now introduced the quarks in the picture, but rather γg0 = b0. Therefore, we
have the trivial result for the gluon sector:

ag =
1

2
. (6.44)

Meaning that the naive “add and subtract” tricks as was used in HTLpt for simplicity, appears
in retrospect to be RG-consistent for the gluon sector. Now, it is important to remember that
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the gluon mass parameter undergo the modified delta expansion, thus it has be treated as a
variational parameter, blind to its precise physical origin (at first) as a dynamically generated
thermal mass. Since the gluons do not possess a chemical potential, at T = 0, µ 6= 0, their
contributions (in HTL) is proportional to m4

g and thus, a priori, medium independent. In order
to obtain a solution to the mass gap equation (6.2) which depends on the thermodynamical
variable µ, like it is the case for the Debye mass, one needs to go one order higher than
the leading order, to get a mixing in the Feynman diagrams between the quark and the gluon
sector. Then, a term #αsm

2
gµ

2 will arise naturally from the calculations, and lead to a nontrivial
solution to the mass gap equation which effectively dependent on the parameter of the medium.
Such term naturally arise from the mixed sector, namely the last diagram in Eqn.(6.42).

This diagram has already been evaluated at finite temperature [35] as well as in the limit
of high temperature and small chemical potential [21] in a naive mass expansion m2

g. However,
no such calculation has been pursued at strictly zero temperature and finite chemical potential.
This lead to us to investigate this calculation such as to apply the RGOPT method to the gluon
sector.

Naively, one would think that the calculation at zero temperature is simpler than the one at
finite temperature since at zero temperature, the Bose-Einstein distribution vanishes and the
Fermi-Dirac distribution of the quarks either vanished or goes to a theta function cutting the
momentum integration up to the Fermi sphere. Unfortunately, it appears that it is still very
involved. By-passing this issue required the use of Mellin-Barnes transformation and contour
integration over generalized Hypergeometric functions. The calculation is very closed to be
completed now, only one last piece of an integral needs further crosschecking as we are not
confident on this specific contribution. The detailed derivation of this diagrams is given in
appendix B, while useful mathematical reminder and relations over the Mellin-Barnes method
and the generalized Hypergeometric function are given in appendix C.

The formal expression for this diagram, expanded in m2
g reads[35]:

P(hh)
3qg =− dANf

2
m2
Eg

2
∑∫
{PQ}

[
d+ 1

d− 1

1

P 2Q2r2
− 4d

d− 1

q2

P 2Q2r4
− 2d

d− 1

P ·Q
P 2Q2r4

]
IR

− dANf

2
m2
Eg

2
∑∫
{PQ}

[
3− d

d− 1

1

P 2Q2R2
+

2d

d− 1

P ·Q
P 2Q2r4

− d+ 2

d− 1

1

P 2Q2r2

+
4d

d− 1

q2

P 2Q2r4
− 4

d− 1

q2

P 2Q2r2R2

]
.

(6.45)

Where

IR =
w(ε)

2

∫ −1

−1

dc(1− c2)−ε
iR0

iR0 − ‖~r‖ c
=
w(ε)

2

〈
iP0

iP0 − p c

〉
c

, w(ε) = 22ε
Γ(2− 2ε)

Γ(1− ε2)
(6.46)

While our current results for it is given by :

−
dAm

4
gg

2Nfµ
2

256π4ε
−
dAm

4
gg

2Nfµ
2

64π4
ln

(
M

µ

)
−
dAm

4
gg

2Nfµ
2

512π2
−
3 dAg

2m2
gµ

2 ln(2)

128π4
+
89 dA g

2m2
gNfµ

2

28800π4
.

(6.47)
This diagrams seems to possess, at first, a spurious double pole 1/ε2. We obtained, with
certainty, that the coefficient of this double pole is zero. This is a very nice crosscheck since we
know it must not have a double pole otherwise this diagram would possess a double logarithm
which can only arise from the pure soft sector [36]. We also have crosschecked in multiple
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different ways the simple pole complete structure and the associated logarithm arising. Only
the finite coefficient O(ε0), of interest, remains unknown at present. Notably, the unnatural
coefficient appearing in the last term suggest that, indeed, the last piece is probably incorrect.
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7
Neutron Stars

Having now spent a lot of time and ink on the formalism of perturbation theory, we will turn
to a topic a bit more down to earth. Or let’s say down the stars. This chapter is merely an
introduction to neutron stars and certainly not exhaustive, it presents first application of the
RGOPT approach to the neutron stars [1]. It is perhaps not so surprising that a special interest
has been progressively given in this thesis to the case of cold and dense QCD regarding the ever
growing interest of the community in the physics of neutron stars (NS). It appears that we are
at the dawn of multi-messenger astronomy which will teach us a lot about celestial corpses in
extreme conditions. Since 2016, and the discovery of gravitational waves (GW), the study of
NS has taken another leap forward. Combining information from GW, electromagnetism and
neutrino physics, it provides a deeper insight in the physics of compact stellar objects. Notably,
the special event of GW170817 [2; 3], first merger of two neutron stars, opens a new path to
determining neutron stars properties.

Considering that we cannot reproduce, yet, such conditions in heavy ion collisions, it is even
more thrilling since it is completely new physics. Especially, NS resides partially (conjecture)
in the region of interest, namely, near the theoretical first order phase transition at finite
chemical potential between a chirally broken phase and a restored one, see Fig.(4.2). Although
at zero temperature and finite chemical potential, the picture is slightly different since it might
be possible that formation of diquark pairs still breaks the chiral symmetry. Such pairs arise
from QCD color-magnetic interactions and are very similar to Bardeen-Cooper-Schrieffer (BCS)
condensate of electron pairs in superconductor [4].

7.1 Neutron stars, from the core to the crust
In the very core of the neutron stars, it might be possible that deconfined matter exists [5]
(see [6] for recent developments), while the outer crust is composed of a dilute gas of nucleons.
In the core, a stiff equation of state (EoS) is required for stability of the NS, i.e, preventing
the gravitational collapse. A stiff EoS means that the pressure (P) versus energy density (ε)
ratio is high and it is particularly hard to compress the quark matter. This reflects in a high
value of the speed of sound c2s = P/ε. Intuitively, this is just like in seismology where we know
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Figure 7.1: Schematic picture of the transition from nuclear to deconfined quark matter with
increasing density. n0 is the nuclear saturation density, the typical density of heavy atoms.
While nB is the baryon density related to the baryon chemical potential µB = 3µq, µq the
chemical potential, used in last chapter, for a single quark. See text below for further description
of the different states of matter. Source [10]

that seismic waves travel faster where the rigidity of the material is greater. Such stiffness
of the EoS is required in order to support the NS and prevent gravitational collapse. On the
contrary, the outer crust, of dilute gas, can be “easily” compressed and is thus described by
a soft equation of state. Recombining the two equation of states, soft to stiff, is theoretically
very challenging, but it seems to be what nature prefers in view of the latest observations of NS
masses. Specifically, the existence of neutron stars of mass greater than two solar masses[7; 8; 9]
is not very compatible with soft equations of states that incorporate hyperons in nuclear models.
The apparition of strange hadrons around twice nuclear saturation density softens the EoS and
puts an upper constraint on the maximum stable star mass. Additionally, pQCD tends to
soften the EoS in the core of NS and suggests that at intermediate baryon density regime a
phase transition involving a stiff EoS.

Describing hadrons and quarks degrees of freedoms within the same framework is a partic-
ularly difficult task. The conventional approach is to regard the nuclear and quark matter as
distinct phases and evaluate both energy density to determine which state is preferred. Recom-
bination of the two phases using bitangent Maxwell construction leads to a first order phase
transition from nuclear to quark matter [10].

A schematic picture of the different states of matter in function of the baryon density
inside the star is depicted in 7.1. The relevant scale is the nuclear saturation density n0 =
0.16 nucleons by fm3, the typical density inside atoms. Below 2 n0, the relevant degrees of
freedom for QCD are hadrons whose exchange are well described by mesons. At such low
densities, the equation of state is well described by low energy effective QCD, such as chiral
effective field theory [11] or pNJL model [12; 13; 14] . Going to higher densities, quarks from
different hadrons start to interact with each others. There is no successful model at the moment
describing such state of matter since it is very difficult just to identify the relevant degrees of
freedom. Many bodies interactions might be the answer but it seems that higher number of
bodies interaction non perturbatively correct the picture. For even higher n0, the relevant
degrees of freedom would be a quasi particle model of quark pairing since hadrons starts to
overlap and loose their meaning at that scale. Finally, for 40 ∼ 100n0, perturbative QCD is
relevant to address the free quarks degrees of freedom. This is mainly the range of our focus
here. Although, the density in NS in believed to be less than the domain of applicability of
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pQCD, the density being of order 1 n0 to ∼ 10n0 in the core. Upon using better resummation
techniques, the domain of applicability of pQCD will be extended towards lower values of
the baryon density and puts additional constraints on the equation of state [15]. Moreover,
theoretical pure quark stars may exist and pQCD would be relevant for this deconfined state
of matter.

7.1.1 Constraints on NS
Astrophysical observations taught us a lot about neutron stars. First, the existence of pulsars
with pulse period smaller than one second implied that the star in question possesses a radius of
order 10−100kms. The reason why such stars are rotating so fast is that the angular momentum
of the original massive star is conserved during the supernovae. Just like ice-skaters retract
their arms to gain speed, the reduced radius of the star means an higher rotation speed. Since
the star is stable, mechanical balance means :

GM m

R2
= mRω2 → ω =

(
GM

R3

)1/2

(7.1)

where m is a mass test at the surface of the star, R the radius of the star, M the mass of
the star and G is Newton’s gravitational constant. Therefore, a rapidly pulsating star must be
very massive to conserve its mechanical balance. The maximal mass versus radius is an open
question and directly related to the determination of a precise EoS. In a more refined approach
of general relativity and gravitational waves, the first observed event of two merging neutron
stars was GW170817 [2; 3], observed conjointly with EM waves [16]. From GW, it is possible
to recover the tidal deformability of the star which reflects how easily a, more or less, compact
star is deformed under an external gravitational field. It can be related to the radius of the
star itself and gravitational Love number k2 [17]:

Λ =
2

3
k2
R5

m5
. (7.2)

The Love number is of order k2 ∼ 0.2 − 0.3 and depends on the stiffness of the EoS. Hence,
measurement on the tidal deformability gives an upper bound for the maximum radius of the
star [6]. Lastly, an important constraint concerns the speed of sound inside NS. Obviously, it
must be less than one (in natural units) according to special relativity, but we also know that
at asymptotically high baryon densities, the relevant degrees of freedom are free quarks, whose
pressure is well-known to be Pf =

NcNfµ
4
f

12π2 , the pressure of an ideal Fermi gas. Relating this
pressure to the energy density:

ε = −P + µf nf , nf =
∂P
∂µf

, (7.3)

this gives:
ε = 3P . (7.4)

In this limit, since for free quarks the QCD beta function is zero and the Fermi gas is confor-
mally invariant. This conformal limit of c2s = 1/3 is well accepted and since first perturbative
corrections to the free pressure are negative, this conformal limit is believed to be reached from
below. It remains an open question whether this conformal limit is an absolute limit in QCD, or
if at some intermediate baryon densities, during a possible phase transition, it may be exceeded
before going down again to approach the conformal limit from below. The second one being
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preferred recently in order to have a sufficiently stiff EoS at intermediate baryon density to
support the neutron star.

Following recent observations [18], it seems that the maximum radius for a NS is roughly
∼ 13kms while its maximum mass is ∼ 2.2 solar mass.

7.2 Equation of state for neutron stars

As a very good approximation, one often describes neutron stars as being completely cold,
since only 10− 100s after the birth of the star (after the supernovae), the temperature at the
surface drops to few∼ keV and it is three to six orders of magnitude below the typical chemical
potential scale in low energy effective model of QCD or with respect to pQCD.

Neutrons stars are not made entirely of neutrons, a small fraction of protons and electrons
are present. The reason for this is that a free neutron will undergo a weak decay, the so-called
direct URCA process,

n→ p+ e− + ν̄e. (7.5)
The decay products have low energies (mn −mp −me = 0.778MeV ) with most of that energy
being carried away by the light electron and (nearly massless) neutrino. Because it is almost
non-interacting with nuclear matter, a neutrino tends to escape from the neutron star and this
is the major cooling mechanism as the neutron star is being formed in a supernova explosion.
Since neutrons has a typical lifetime of about 15 minutes, there must be something that prevents
this decay in the case of the star, and that is the presence of the protons and the electrons. If all
the available low-energy levels for the decaying proton are already filled by the protons present
in the star, then the Pauli exclusion principle takes over and prevents the decay from taking
place. But, the reverse process, the electron capture, is also authorized by weak interactions,

p+ e− → n+ νe. (7.6)

To reach stability, the star must be at equilibrium with respect to these weak interactions. This
equilibrium can be expressed in terms of the chemical potentials for the three particle species
(four if including the neutrino, but since it barely interacts, it is negligible)

µn = µp + µe. (7.7)

Since we are interested in perturbative QCD approach, the relevant degrees of freedom for our
approach are the quarks and not the nucleons that may be found in the core of the NS. In this
approach, the previous URCA process now reads

d→ n+ e− + ν̄e

u+ e− → d+ νe
(7.8)

which reflects in terms of chemical potential :

µd = µs = µu + µe. (7.9)

Moreover, the NS must be electrically neutral, therefore we have one additional constraint on
the density of quarks and electrons. Since the electric charges are qu = 2/3, qd = qs = −1/3,
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qe = −1 (for quark u,d,s and e−) then neutrality implies:

2

3
nu −

1

3
ns −

1

3
nd − ne = 0 (7.10)

At leading order, if we assume the masses to be negligible, since Pf =
NcNfµ

4
f

12π2 and Pe = µ4e
12π2 ,

using the second equality in Eqn.(7.3) leads to:

nu = nd = ns, ne = 0 (7.11)

and electrical neutrality is realized without electrons. This does not describe a realistic NS, so
one must abandon the assumption that every particle are massless. Introducing the strange
mass, ms ∼ 93MeV, as a first correction will allow electrons to be present in the star. Using
Eqn.(7.10), µe can be expressed in terms of µB so one is left with only one parameter for the
pQCD pressure: the baryon density µB.

Going to higher orders in perturbative calculations, one can evaluate corrections to the
pressure and the energy density such as to evaluate the ratio :

P
ε
=

1

3
−#1 αs + . . . (7.12)

which is the equation of state, necessary for determination of the mass versus radius constraints
of neutron stars. Hence, upon knowing exactly the equation of state, we characterize uniquely
the structure of the neutron (or dwarf) stars. Alternatively, knowing the structure of the star
(from astrophysical observations) means that, using reverse engineering, one can constrains the
value of the equation of state.

7.2.1 Integration of the EoS
Assuming a static and spherically symmetric perfect fluid, then the general relativistic Tolman-
Volkoff-Oppenheimer equation, that characterizes neutron stars, is :

dP
dr

= −Gε(r)M(r)

c2r2

[
1 +

p(r)

ε(r)

] [
1 +

4πr3p(r)

M(r)c2

] [
1− 2GM(r)

c2r

]−1

(7.13)

Where G is Newton’s gravitational constant, M(r) is the mass inside radius r, therefore
M(R) = M is equal to the mass of the star M for a radius R of the star. The first two
factors are corrections from special relativity – boost factor for the momentum and the space-
time volume, respectively, while the third factor comes from General Relativity. The mass
inside radius r is determined via :

dM
dr

= 4πr2ρ(r) =
4πr2ε(r)

c2

M(r) = 4π

∫ r

0

dr′r′2ρ(r′) = 4π

∫ r

0

dr′r′2
ε(r′)

c2
.

(7.14)

Since the neutron star is a bounded sphere in vacuum, it satisfies the boundary condition:
P(R) = 0. Now, these equations can be integrated for a certain equation of state P(µB)/ε(µB),
for different µB, that will give different configurations (Mass versus Radius) for the star.

As a concrete example, we can use our previous result at leading order. Including the
strange quark current mass:
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PRGOPT
LO (m,ms, µ, µs, µe) =−Nc

(m+ms)
4

8π2

(
3

4
− L(m+ms)

)
+Nc

(m+ms)
4

(4π)2g(b0 − 2γ0)

− 2Nc
m(m+ms)

3 γ0
(4π)2g b0(b0 − 2γ0)

− (m+ms)
4s1

−Nc(Nf − 1)
m4

8π2

(
3

4
− L(m)

)
+Nc (Nf − 1)

m4

(8π)2g b0
− (Nf − 1)m4 s1

+ Ps(m+ms, µ) + Pd(m,µ) + Pu(m,µu) + Pe(0, µe).
(7.15)

Where,

Pf (m,µ) ≡Θ(µ2 −m2)
Nc

12π2

{
µ pF [m,µ]

(
µ2 − 5

2
m2

)
+

3

2
m4 ln

(
µ+ pF [m,µ]

m

)

+
3

2
m4 ln

(
µ+ pF [m,µ]

m

)}
,

(7.16)

and
pF [m,µ] ≡

√
µ2 −m2. (7.17)

Comparison of the result with the easier ms = 0 case is displayed in fig(7.2). Using an equation
of state coming from pQCD, is a crude approximation, for first application, giving an incomplete
picture explaining why the tail of graph is off the charts with respect to [19]. A better approach
would be to recombine with low energy effective model but this is currently outside our scope.
We see quite clearly that ignoring the strange quark mass leads to non-physical description of
the neutron star since the maximum mass/radius is well above the observed neutron star so far
(see section 7.1.2). However, at leading order, for non zero strange current mass, the result is
roughly in agreement with observations. This result has been crosschecked by the author as well
as his coauthors [1]. This is part of an on-going project to be pursued to NLO and NNLO using
the RGOPT approach. This sound result at LO is encouraging and motivates applications at
higher orders that may lead to more precise determination of the EoS for neutron stars from
the resummed perturbative side.
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Figure 7.2: Mass versus radius curve for RGOPT improved QCD at leading order with Nf =
2 + 1. The red curve corresponds to ms 6= 0 while the black one corresponds to ms = 0.
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8
Summary

In this Thesis, we have discussed various aspects of the renormalization group properties applied
in the context of thermal field theory. A review of the core concepts of renormalization was
discussed in chapter 2, notably the concept of anomalous dimensions which is important for
effective field theories, but also introducing the concept of vacuum energy, a mandatory piece
of any massive quantum field theory in order to achieve renormalization group invariance. A
brief introduction to the theory called Quantum Chromodynamics was discussed in chapter
4, introducing the core concepts and some technicals aspects required for calculation at finite
temperature and density. Notably, the state-of-the art perturbative calculations for QCD in
a medium and its current limitations has been over-viewed. Chapter 5 was dedicated to the
theory of Hard Thermal Loops (HTL), which incorporates the long-distance physics that arises
for QCD in a medium. We saw an EFT construction out of the HTL Lagrangian, at least for
the leading order, while discussing the concepts for its generalization at next order. Defining
such EFT permitted to resum exactly the so-called soft leading logarithm in QCD that involves
α2
s lnαs. The procedure also resummed partially the next-to-leading logarithms and we paved

the way for a full resummation of this last one once the mixed sector, appearing at α3
s, will be

determined. This result, published in Physical Review Letters, now replaced the previous ones
as the new state-of-the-art calculation in Cold and Dense QCD, until the completion of the
mixed sector, that is presumed to go even well beyond through other resummation of logarithm
families, is achieved.

We have also explored applications of renormalization group properties in the context of a
variational approach named Optimized Perturbation Theory (OPT). Specifically, application
of the renormalization group optimized perturbation theory (RGOPT) in λφ4 at finite tem-
perature and zero chemical potential up to next-to-next-to-leading order was discussed and
displayed great improvement in matter both of convergence, and remnant dependence in the
renormalization scale, with respect to the naive perturbation series. This work was subject
to a publication in Physical Review D. The RGOPT approach has also been applied to the
specific case of Cold and Dense matter on the current quark mass contribution also displaying
impressive improvements with respect to the naive expansion. This work shall be peer-reviewed
soon.

The specific case of RGOPT resummation in the Hard Thermal Loop perturbation theory
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framework for the gluons and its complications was considered, paving the way for, hopefully
soon, application of the method once the mixed hard/soft sector will be completed. Finally,
early results for the determination of an equation of state, relevant for neutron stars, using
the RGOPT procedure at leading order for massive quarks was presented after a very brief
overview of the main characteristics of Neutron Stars.

Next future work
The first work in line would be now to complete the evaluation of the two loop HTL diagram at
zero temperature and finite chemical potential, introduced in chapter 7 and (almost) complete
derivation in appendix B.2.2, to address a renormalization group improved version of Hard
Thermal perturbation theory. In view of the result of RGOPT applied to the quark sector
using the naive mass operator mψ̄ψ, it motivates us to consider instead the HTL resummed
quark propagator to address carefully the degrees of freedom for quarks at high baryon densities
and zero temperature. Once these results for the pressure obtained, the goal would be to obtain
a realistic equation of state for perturbative QCD that would add constraints on the presently
unknown range of 1 to 10 nuclear saturation density in the QCD phase diagram.

The second work in line, would be to address the case of finite temperature QCD using
the RGOPT procedure at next-to-next-to-leading order using already known results in the
literature for the gluon sector in order to (hopefully) decrease the large residual dependence in
the renormalization scale observed in the literature.

Finally, the resummation techniques applied in the context of cold and dense QCD to the
soft logarithms, call for even more resummation. Indeed, upon consideration of a more complete
framework for HTL EFT up to and including α3

s order will allow to determine and resum the
LL and NLL hard logarithms while also fully determining the so (newly-)called hybrid sector
that involves ∼ ln(Λ/2µ) ln(mE/µ). This sector amounts to a double resummation both in the
hard and soft logarithm which is believed to greatly decrease the residual scale dependence of
the pressure.
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Appendices

A.1 QCD basics

A.1.1 Notations

Natural units are always assumed : c = ~ = kB = 1. Sum over repeated indices is implicit. In
dimensional regularization, our notations for the sum integrals read:

D = d+ 1 = 4− 2ε, H(d) =
2πd/2

Γ(d/2)(2π)d
,

∑∫
P/{P}

=

(
eγEΛ2

4π

)ε
T
∑
ωP /ω̃P

∫
ddP

(2π)d
,

with ωP/ω̃P the bosonic/fermionic Matsubara frequencies respectively.

A.1.2 Gell-Mann matrices

Gell-Mann matrices:

λ1 =

0 1 0
1 0 0
0 0 0

 λ2 =

0 −i 0
i 0 0
0 0 0

 λ3 =

1 0 0
0 −1 0
0 0 0

 λ4 =

0 0 1
0 0 0
1 0 0


λ5 =

0 0 −i
0 0 0
i 0 0

 λ6 =

0 0 0
0 0 1
0 1 0

 λ7 =

0 0 0
0 0 −i
0 i 0

 λ8 =
1√
3

1 0 0
0 1 0
0 0 −2

 (1)
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A.1.3 Euclidean Feynman rules (Standard QCD)

δAB
−i /P+m
P 2+m2

δab
P 2

(
δµν − (1− ξ)P

µP ν

P 2

)
δab
P 2 i j

µ, a

−igγµT aij

a
P

c

µ, b

−igfabcPµ

P, a, µ R, c, ρ

Q, b, ν
1

3!
igfabc[δµρ(P −R)ν

+δρν(R−Q)µ

+δνµ(Q− P )ρ]

P, a, µ

Q, b, ν R, c, ρ

S, d, σ

1

4!
g2[feabfecd(δµρδνσ − δµσδνρ)

+fabefedc(δµνδρσ − δµσδνρ)

+facefedb(δµνδρσ − δµρδνσ)]

p

k

k

Every gluon impulsion face towards the vertices.

A.1.4 Sum integral basics
Consider the generic one loop sum integral over bosonic Matsubara frequencies:

IB ≡ T
∑
n

f(iωn, ~p)

ω2
n + p2

. (2)

Assuming f to be regular in ωn after analytic continuation, we identify T
∑

n with the residue
of the following weighting function (Bose-Einstein distribution):

nB(ip) =
1

eiβp − 1
. (3)

Using the residue theorem, this can be expressed as a contour integral represented on the left
diagram in fig.(A.1). This same contour can be continuously transformed to the one on the
right hand side using Cauchy theorem. To avoid the poles, the integration contours are shifted
by ±i0+. Making a change of variable p→ −p and using: nB(−ip) = −1− nB(ip), after some
algebra we find:

IB =

∮
C

dp0
2πi

f(ip0, ~p)

p20 + p2
inB(ip0) =

+∞−i0+∫
−∞−i0+

dp0
2π

f(ip0, ~p)

p20 + p2
+

∞−i0+∫
−∞−i0+

dp0
2π

[f(ip0, ~p) + f(−ip0, ~p)]
nB(ip0)

p20 + p2
. (4)

The first term is medium independent and is identified with the vacuum contribution, which
goes through the renormalization procedure, while the second term is purely medium induced.
For the second contribution, we close the contour in the lower half plane, where the Bose-
Einstein distribution exponentially falls off, and encle the pole at p0 = −ip. For the first one,
however, one need to have more information on the convergence of the f function. Generally,
f is just a propagator which thus satisfies Jordan’s criteria. Usually, one prefers to recombine
the p0 integral with the ddp integral such as to identify the generally well-known vacuum
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C

=

C

Figure A.1: Contour integration over bosonic Matsubara frequencies. Black dots are the pole
of the Bose-Einstein distributions at p0 = ωB. Red dots on the imaginary axis are the pole of
the propagator in p0 = ±ip.

contributions. Here we will proceed to the p0 integral instead. The residue theorem leads to:

IB =
1

2p
(f(p0, ~p) + nB(p) (f(p0, ~p) + f(−p0, ~p))) . (5)

For the fermionic Matsubara frequencies, the method is very similar. Starting from:

IF = T
∑
{n}

f(iω̃n, ~p)

(ω̃n)2 + ~p2 +m2
= T

∑
{n}

−f(iω̃n, ~p)
(iω̃n)2 − ~p2 −m2

, (6)

and using the Fermi-Dirac distribution:

nF (p) =
1

eβp + 1
, (7)

as the weighting function (E2 = ~p2 +m2):

IF = −
∫ i∞

−i∞

dp0
2πi

f(p0, ~p)

p20 − E2
−
∮
B

dp0
2πi

f(p0, ~p)

p20 − E2
+

∫ i∞+0++µ

−i∞+0++µ

dp0
2πi

f(p0, ~p)

p20 − E2
nF (p0 − µ)

+

∫ i∞−0++µ

−i∞−0++µ

dp0
2πi

f(p0, ~p)

p20 − E2
nF (µ− p0)

(8)

C

µ
=

B
V

Figure A.2: Integral contour for fermionic Matsubara sum. While the gray contour, that run
on both sides of the vertical axis at µ, are shifted from the pole by ±i0+, the red closed contour
goes exactly through the poles and along the imaginary axis at Re(P0) = 0.

The first term in Eqn.(8) corresponds to the vacuum term, and can be evaluated rather
simply from standard integration. In the present example, this vacuum contribution contains
a divergence ∼ 1/ε which should be treated by renormalization. The second term is a pure
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chemical potential contribution (zero temperature) whose contour is named B and is the red
one. Finally, the last two are the mixed temperature/chemical-potential contributions that run
both side of the imaginary axis at Re(P0) = µ and depicted in fig.(A.2) as the gray contours.
Finally,

IF =
1

2E
(f(E, ~p)− f(E, ~p)nF (E − µ)− f(−E, ~p)nF (E + µ)) (9)

It then remains to integrate over dd~p (in dimenisonal regularization) which in general cannot
be done analytically.

A.1.5 One loop gluon self-energy
We will review the calculation of the quark loop contribution to the gluon self-energy at finite
temperature and density from which the expression of the Hard Thermal loop originates. Once
having calculated the expression for this diagram, it can be easily generalized to the three
others since most calculation steps are the same.

Figure A.3: Gluon self energy at leading order

a, µ b, ν

k

p+ k

p

k

= Πµν
q =g2T

∑
n

∫
d3~p

(2π)3
Nf Tr

(
γµ

−i /P +m

P 2 +m
γν

−i /P − i /K +m

(P +K)2 +m2

)

×
∑
a,b,j

1

4
(Ta

ji)(T
b
ij)

(10)
Note that one can evaluate the 00 component of this tensor only and the Ward identity will
give the spatial components instead of proceeding to the full evaluation. The first step is to
use Eqn.(9) and to drop the temperature independent term. This will leave only the matter
part of interest. Without loss of generality, we will assume that there is no pole in the contour
integral over B define in figure A.2 so that the calculation reduce to:

Π00
q = g2

Nf

2
δab

∫
d3~p

(2π)3

{
−1

2πi

∫ i∞+0++µ

−i∞+0++µ

dp0
1

p20 − E2
p

4 [p20 + p0k0 + E2 + ~p · ~k]
(p0 + k0)2 − (~p+ ~k)2 −m2

1

eβ(p0−µ) + 1

+
−1

2πi

∫ i∞−0++µ

−i∞−0++µ

dp0
1

p20 − E2
p

4 [p20 + p0k0 + E2 + ~p · ~k]
(p0 + k0)2 − (~p+ ~k)2 −m2

1

eβ(µ−p0) + 1

}
(11)

The next step is to evaluate the p0 integral using the residue theorem, then for the two residues
which contain ~p + ~k, proceed to a shift ~p → ~p− ~k. The four residues have the same structure
where the only differences are k0 → −k0 , nF (E + µ) → nF (E − µ). Thus we can calculate
one residue and in the end take nF (E ± µ) → NF (E) = nF (E + µ) + nF (E − µ) , f(k0) →
2Re(f(k0)) = [f(k0) + f(−k0)].
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The first contribution is:

g2
Nf

2
δab

∫
d3~p

(2π)3
1

2E

4[2E2 + E k0 + ~p · ~k]
(E + k0)2 − (~p+ ~k)2 −m2

(
1

eβ(E−µ) + 1

)
, E2 = ~p 2 +m2 (12)

Integration over the solid angle
(
~p · ~k = |p||ω| z

)
can be carried out, using the fact that

∫ 1

−1
dz 1

a+bz
=

1
b
ln
(
a+b
a−b

)
and

∫ 1

−1
dz z

a+bz
= 2

b
− a

b2
ln
(
a+b
a−b

)
such that one finds (k2 = k20 − ~k 2):

Π00
q = − g2

π2

Nf

2
δad

∫
dp p2

E
nF (E−µ)

{
1

2
+

1

2
ln

(
R+

R−

)
4Ek0 − 4E2 − k2

4p ω

}
, R± = ~k 2−2k0E±2p ω,

(13)
Thus combining all the residues, the result for this graph is:

Π00
q = − g2

π2

Nf

2
δad Re

∫
dp p2

E
NF (p)

{
1 +

4Ek0 − 4E2 − k2

4p ω
ln

(
R+

R−

)}
(14)

This integral is not solvable analytically in general but can be integrated numerically. Without
demonstration (calculations are very similar but simpler than the previous one) the result for
each graph reads:

a, µ b, ν

k

p+ k

p

k

= Π00
gh. = −g2Ncδab

(2π)2
Re

∫
dp

ω

1

eβ p − 1

{
(p2 − k0p) ln

(
K+

K−

)}

K± = k2 − 2k0p± 2p ω

a, µ b, ν

k

p+ k

p

k

= g2
Ncδab
(2π)2

Re

∫
dp 2p

eβp − 1

{
1 +

(10p2 + 3k0
2 − 10k0p− 6ω2)

4pω
ln

(
K+

K−

)}

= Π00
3gl.

a, µ b, ν = Π00
4gl. = −g23Ncδab

∫
dp

(2π)2
2 p

eβp − 1
(15)

Neglecting the quark masses and regarding the static infrared regime, namely, taking k0 = 0
first then ‖~k‖ = ω → 0) :
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Π00
q. →− g2

π2

Nf

2
δad Re

∫
dp p2

p
NF (p)

{
1 +

−4p2 + ω2

4p ω

(
±iπ − ω

p
+O(

ω2

p2
)

)}
Π00
gh. →− g2

Ncδab
(2π)2

Re

∫
dp

ω

1

eβ p − 1

{
(p2)

(
±iπ − ω

p
+O(

ω2

p2
)

)}
Π00

3gl. →g2
Ncδab
(2π)2

Re

∫
dp 2p

eβp − 1

{
1 +

(10p2 − 6ω2)

4pω

(
±iπ − ω

p
+O(

ω2

p2
)

)}
Π00

4gl. →− g23Ncδab

∫
dp

(2π)2
2p

eβp − 1

(16)

where the sign of ±iπ depends on the relative magnitude of ω and p. Since the function Re
kills this divergent contribution, in this limit the result is :

Π00
matter =

g2T 2

2π2

{
−2Nf

∫ ∞

0

dp

(
p

eβ (p−µ) + 1
+

p

eβ (p+µ) + 1

)
+Nc

(
1

2
− 3

2
− 3

)∫
dp

p

eβ p − 1

}
(17)

therefore, we can identify the Debye mass for the gluon after the last integration :

m2
E = −Π00

matter = g2
{(

Nc

3
+
Nf

6

)
T 2 +

1

2π2
Nfµ

2

}
. (18)

A.1.6 Massive pressure at NNLO for Cold and Dense

A.1.7 Evaluation of the NLO correction
Here we will outline the calculation of the massive quarks contribution to the pressure at next-
to-leading order [1] for arbitrary temperature and chemical potential. Then, we will take the
limit T → 0. Since at T = 0 only the quark loop is non zero, we will not discuss the other
diagrams but the derivation is very similar (just like in the previous section) after scalarization.
This contribution reads, for one flavor of quark:

PC.Q.M
NLO (m,T, µ) =

= g2dA
∑∫
{P},{Q},K

(2π)dδd(~p− ~q − ~k)δnp,nk+nqTr

{
γν(−i /P +m)γν(−i /Q+m))

K2(P 2 +m2)(Q2 +m2)

} (19)

Evaluating the trace gives (d− 1)P ·Q+m2(d+ 1). Using,

P ·Q =
−1

2

 =K2︷ ︸︸ ︷
(P −Q)2−(P 2 +m2)− (Q2 +m2) + 2m2

 , (20)

then,

PC.Q.M
LO (m,T, µ) =

g2dA
∑∫
{P},{Q},K
(2π)dδd(· · · )δnp,nk+nq

{
d− 1

2

(
1

K2
(

1

Q2 +m2
+

1

P 2 +m2
)− 1

Q2 +m2

1

P 2 +m2

)

+ 2m2 1

K2

1

Q2 +m2

1

P 2 +m2

}
.

(21)
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Introducing useful notations:

PC.Q.M
LO (m,T, µ) = g2dA

{
d− 1

2
(2Ib(T )− If (m,T, µ)) If + 2m2Hf (m,T, µ)

}
, (22)

with
Ib(T ) =

∑∫
K

1

K2
, If (m,T, µ) =

∑∫
{P} 1

P2+m2

(23)

are one loop integrals while Hf (m,T, µ) = (2π)dδd(~p− ~q − ~k)δnp,nk+nq

1
K2

1
P 2+m2

1
Q2+m2 is a pure

two loops integral. At this point an important comment is crucial. The order of evaluation of the
multiple sums appearing in Hf leads to potentially different results. The root of the problem
is that there is no unique analytic continuation of a function defined only on integers. The
resolution of this ambiguity was given by Norton and Cornwall [2]. The idea is to transforms
the Kronecker delta in Hf into a contour integral which leads to a factorization of the sum
integrals. Reintroducing the factor β = 1

T
:

β δnP ,nQ+nK
=

∫ β

0

du ei u(P
0−Q0−K0) =

ei β(P
0−Q0−K0)−1

i(P 0 −Q0 −K0)
. (24)

Where P 0/Q0 = ω̃Fp/q = (2nP/Q + 1)πT − iµ and K0 = 2nKßT . Since Q0 andK0 enters with a
minus sign inside the exponential, to ensure that integrand in the contour integral over u falls
off exponentially, we multiply by −exp iβ(Q0 + iµ + K0) which is equal to one when Q0 and
K0 take value on the bosonic/fermionic Matsubara frequencies respectively. This is a unique
prescription that also ensures that the normal vacuum is recovered upon taking T, µ → 0.
Defining,

I(P 0, Q0, K0) =
eiβ(Q

0+K0)−βµ − eiβ P
0−µβ

i(P 0 −Q0 −K0)
, (25)

which has no poles in P 0, Q0 and K0, then the sum in Hf factorizes. Using same contour tricks
as in the first section of appendix A, one finds:

T
∑
{P}

1

P 2 +m2
I(P 0, Q0, K0) =

1

2Ep

(
I(iEp, Q

0, K0)− n−
p I(−iEp, Q0, K0)− n+

p (iEp, Q
0, K0)

)
.

T
∑
K

1

K2
I(P 0, Q0, K0) =

1

2ω
(I(P 0, Q0, iω) + nB I(P

0, Q0, iω)− nB I(P
0, Q0,−iω))

(26)
Where,

n±
p ≡n±

F (Ep) =
1

eβ(Ep±µ) + 1
, Ep =

√
~p 2 +m2,

nB ≡nB(ω) =
1

eβω − 1
, ω = ‖~k 2‖.

(27)

Proceeding to the evaluation of the three sums, then rewriting I(P 0, Q0, K0) as

I(P 0, Q0, K0) =
1

i(P 0 −Q0 −K0)

((
1

nB(K0)
+ 1

)(
1

n−
F (Q

0)
− 1

)
−
(

1

n−
F (P

0)
− 1

))
, (28)
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after lengthy algebra, most conveniently carried out by mathematica, one finds (with Np =
n+
p + n−

p ):

Hf (m,T, µ) =

∫
~p,~q,~k

(2π)dδd(~p− ~q − ~k)

{
1

4EpEqω(Ep + Eq + ω)
+ nB

Ep + Eq
2EpEqω(((Ep + Eq)2 − ω2))

+ nB

(
Np

E2
p + ω2 − E2

q

2Epω ((Ep + Eq)2 − ω2) ((Ep − Eq)2 − ω2)
+ (p↔ q)

)
−
(
Np

Eq + ω

4EpEqω((Eq + ω)2 − E2
p)

+ (p↔ q)

)
−

n−
p n

+
q + n−

q n
+
p

4EpEq ((Ep + Eq)2 − ω2)
−

n+
q n

+
p + n−

q n
−
p

4EpEq ((Ep − Eq)2 − ω2)

}
.

(29)
The two terms on the second line actually vanishes in dimensional regularization. This can
be seen by expanding the numerator and denominator and realizing that it leads to a factor
P ·Q in the numerator which vanishes in the integration from −∞ to ∞. The first term is the
vacuum contribution, since no distribution multiplies it. This contribution is well known from
QCD at T = µ = 0 therefore we can reverse the machinery on P 0, Q0, K0 integral using,

I03 ≡
∫ +∞

−∞

dP 0

2π

∫ +∞

−∞

dQ0

2π

1

((Q0)2 + a2)((P 0 ±Q0)2 + b2)((Q0)2 + c2)
=

1

4(a b c)(a+ b+ c)
.

(30)
Such the vacuum contribution reads:

Hvac.
f ≡ Hf (m, 0, 0) =

∫
dd+1P

(2π)d+1

∫
dd+1Q

(2π)d+1

1

(P 2 +m2)(Q2 +m2)(Q− P )2
. (31)

Terms on the third line can also be expressed in a simpler way using :

I01 ≡
∫ ∞

−∞

dP 0

2π

1

(P 0)2 + a2
=

1

2a
,

I02 ≡
∫ ∞

−∞

dP 0

2π

1

((P 0)2 + a2)((P 0 ±Q0)2 + b2)
=
a+ b

2a b

1

((Q0)2 + (a+ b)2
,

Π(Q2,m2
1,m

2
2) ≡

∫
dd+1P

(2π)d+1

1

(P 2 +m2
1)((P −Q)2 +m2

2)
.

(32)

In the end, terms on the third line simplify to 2If (T, µ)Π(−m2,m2, 0). Similarly, the second
term on the first line identify to IbΠ(0,m

2,m2). The last two terms on the fourth line are
pure two loops in medium contributions that are hardly possible to simplify. Only angular
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integration can be readily carried out and leads to:∫
ddPddQ

(2π)2d

{
(n+

p n
+
q + n−

p n
−
q )

1

8EpEq(m2 + ~p · ~q − EpEq)
+ (n+

p n
−
q + n−

p n
+
q )

1

8EpEq(m2 + ~p · ~q + EpEq)

}
=

1

(2π)4

∫ ∞

0

dp p

∫ ∞

0

dq q
1

4EpEq

{
(n+

p n
+
q + n−

p n
−
q ) ln

(
EpEq − p q −m2

EpEq + p q −m2

)

+ (n+
p n

−
q + n−

p n
+
q ) ln

(
EpEq + p q +m2

EpEq − p q +m2

)}
,

≡ 1

4
J3(m,T, µ).

(33)
Collecting all the pieces, the final expression for the massive fermion loop contribution to the
pressure is:

PC.Q.M
NLO =g2dA

{
d− 1

2
(2Ib − If )If + 2m2

(
Hvac.
f + Ib(T )Π(0,m

2,m2) + 2If (T, µ)Π(−m2,m2, 0)

− 1

4
J3(m,T, µ)

)}
.

(34)
From this expression, the complete vacuum contribution can be readily extracted since we
saw in the last section how vacuum contribution splits from in medium contributions: Ib =
IT=0
b +IT 6=0

b = 0+ITb and If (m,T, µ) = IT=µ=0
f +I ′f (m,T, µ). Since we are ultimately interested

in the cold and dense case, that means taking the limit T → 0 where:

nB −−−→
T→0

0, n−
p −−−→

T→0
θ(µ− Ep), n+

p −−−→
T→0

0. (35)

The theta function, or Heaviside/step function, then cuts the momentum integration at the
Fermi impulsion pF =

√
µ2 −m2 which becomes simpler to evaluate. The final result is given

below in Eqn.(39).

Quark pressure

The expression for the NNLO pressure for one massive flavor of quark is:

P PT
2,f (m,µ) = P PT

LO,f (m,µ) + P PT
NLO,f (m,µ) + P PT

NNLO,f (m,µ) (36)

With:
P PT
LO,f (m,µ) = −Nc

m4

8π2
(
3

4
− Lm) + Θ(µ2 −m2)

Nc

12π2

[
µ pF

(
µ2 − 5

2
m2

)
+
3

2
m4 ln

(
µ+ pF
m

)] (37)

pF ≡
√
µ2 −m2, Lm = ln

(m
Λ

)
(38)
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P PT
NLO,f (m,µ) =− dA g

2

4(2π)4
m4

(
3L2

m − 4Lm +
9

4

)
−Θ(µ2 −m2)

dA g
2

4(2π)4

{
3

[
m2 ln

(
µ+ pF
m

)
− µ pF

]2
− 2p4F

}

−Θ(µ2 −m2)
dA g

2

4(2π)4)
m2(4− 6Lm)

[
µ pF −m2 ln

(
µ+ pF
m

)] (39)

P PT
NNLO,f (m,µ) = +

g4m4

135(4π)6
(
α0,2 + α1,2 Lm + α2,2 L

2
m + α3,2 L

3
m

)
+

g4dAµ
4

(4π)42π2
Θ(µ2 −m2)

{
− m̂2[(11CA − 2Nf )z + 18CF (2z − û)](Lm)

2

− 1

3

[
CA
(
22û4 − 185

2
zm̂2 − 33z2

)
+

9CF
2

(16m̂2û(1− û)

− 3(7m̂2 − 8û)z − 24z2)−Nf (4û
4 − 13zm̂2 − 6z2)

]
Lm

+ CA

(
−11

3
ln
m̂

2
− 71

9
+G1(m̂)

)
+ CF

(
17

4
+G2(m̂)

)
+Nf

(
2

3
ln
m̂

2
+

11

9
+G3(m̂)

)
+G4(m̂)

}
,

(40)

α0,2 = (357315 + 176π4 + 960π2(log 2)2 − 960(log 2)4 − 23040 Li4(1/2) + 12960 ζ(3)

+ 90Nf (−393 + 224 ζ(3)))

α1,2 = 180(−3817 + 286Nf + 48 ζ(3))

α2,2 =− 720(−807 + 26Nf )

α3,2 = 2880(−81 + 2Nf )

m̂ =
m

µ
, Lm = ln

m

Λ
, û =

u

µ
=

√
µ2 −m2

µ
, z = û− m̂2 ln

1 + û

m̂
, L = ln m̂

G1(m̂) = 32π4m̂2(−0.01863 + 0.02038m̂2 − 0.039m̂2L+ 0.02581m̂2L2 − 0.03153m̂2L3

+ 0.01151m̂2L4)

G2(m̂) = 32π4m̂2(−0.1998− 0.04797L+ 0.1988m̂2 − 0.3569m̂2L+ 0.3043m̂2L2

− 0.1611m̂2L3 + 0.09791m̂2L4)

G3(m̂) = 32π4m̂2(−0.05741− 0.02679L− 0.002828L2 + 0.05716m̂2 − 0.08777m̂2L

+ 0.0666m̂2L2 − 0.02381m̂2L3 + 0.01384m̂2L4)

G4(m̂) = 32π4m̂2(0.07823 + 0.0388L+ 0.004873L2 − 0.07822m̂2

+ 0.1183m̂2L− 0.08755m̂2L2 + 0.03293m̂2L3 − 0.01644m̂2L4)

(41)

Ring graph resummation in standard weak coupling expansion

The ring diagram with massive quarks was first evaluated in [3]. There, they used two mass-
less flavours (up and down) and considered the strange quark to be massive. Introducing a
global symmetry factor of nine to incorporate the physics of three massive quarks instead, the
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contribution reads :

ΩRING =
9 dA g

4 µ4

512π6

(
I13

(
2 ln

(
g

(4π)

)
− 1

2

)
+

1

2

(
I20 +

16

3
(1− ln 2) ln(2)I21 + I22

))
(42)

We checked that upon taking the massless limit, this correctly reproduce the expected coefficient
at g4 order in Eqn.(5.11). The integrals appearing here are :

I13(m,µ) =
8

3
(1− ln 2)p̂F

3 + 0.318p̂F
6 − 0.137p̂F

7

I20(m,µ) =3.84v̂ − 7.94v̂2 + 8.06p̂F
2 + ln(v̂)(3.81v̂ + 9.7v̂2 − 7.42v̂2 ln(v̂))

I21(m,µ) =− 0.11v̂ + 1.11v̂2 + ln(v̂)(−0.059v̂ − 2.07v̂2 + 0.4v̂2 ln(v̂))

I22(m,µ) =− 0.8255p̂F
2 − 0.03084p̂F

7 + 0.00161v̂ ln(v̂)

+ I13(m,µ)

(
2 ln ~̂µ2 + 2 ln

(
˜̂µ4 + ˜̂µ2I22h2 + I22h3(m,µ)
˜̂µ4 + 0.5˜̂µ2I22h2(m, µ)

))
I22h2(m,µ) = 1.313p̂F + 0.434p̂F

2 + 0.253p̂F
5

I22h3(m,µ) = 1.844v̂ − 0.844v̂2 + ln(v̂)(0.194v̂ − 0.392v̂2 − 0.704v̂2 ln(v̂))

(43)

Where v̂ = 1 − m
µ

, p̂F = pF
µ

and ~̂µ = ~µ/µ. The vector ~µ = (µ1, µ2, ..., µNl
) in Eqn.(43), is

the chemical potential vector for Nl massless flavors of quarks in their analysis. Additionally,
~̂µ = ~µ/µ = 2. For quarks with the same chemical potential, it reduces to ~̂µ2 = 2.

A.1.8 Anomalous dimensions

We give here the expression for the first coefficient of the beta, gamma functions as well as the
subtraction coefficients related to the vacuum energy density anomalous dimension. Note that
we do not need the 4-loop b3 and γ3 coefficients for our analysis but since they are known in
the literature, we can use them to derive s3, the O(g4) subtraction coefficient. For the gamma
function :

γ =
d lnm

d ln Λ
(44)

γ0(Nf ) =
1

2π2

γ1(Nf ) =
1

(2π)4
1

8

(
202

3
− 20

9
Nf

)
γ2(Nf ) =

1

32(2π)6

(
1249 +Nf

(
−2 216

27
− 160

3
ζ(3)

)
− 140

81
N2
f

)
γ3(Nf ) =

1

128(2π)8

(4 603 055
162

+
135 680

27
ζ(3)− 8 800ζ(5)

+
(
− 91 723

27
− 34 192

9
ζ(3) + 880ζ(4) +

18 400

9
ζ(5)

)
Nf

+
(5 242

243
+

800

9
ζ(3)− 160

3
ζ(4)

)
N2
f +

(
− 332

243
+

64

27
ζ(3)

)
N3
f

)

(45)

For the beta function :
β(g) =

dg

d ln Λ
(46)
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b0(Nf ) =
1

(4π)2

(
11− 2

3
Nf

)
b1(Nf ) =

1

(4π)4

(
102− 38

3
Nf

)
b2(Nf ) =

1

(4π)6

(
2 857

2
− 5 033

18
Nf +

325

54
N2
f

)
b3(Nf ) =

1

(4π)8

(
149 753

6
+ 3 564ζ(3)−

(1 078 361
162

+
6 508

27
ζ(3)

)
Nf

+
(50 065

162
+

64 72

81
ζ(3)

)
N2
f +

1093

729
N3
f

)
(47)

Finally, the subtraction coefficients associated with the naive mass operator mψ̄ψ for quarks:

s0 =
−Nc

(4π)2(b0 − 2γ0)

s1 =− Nc

4

(
b1 − 2γ1

4(b0 − 2γ0)
− 1

12π2

)
s2 =Nc

112 077 + 24 519Nf + 2101N2
f + 576(15− 58Nf )ζ(3)

4 ∗ 1 152π4(−81 + 2Nf )(15 + 2Nf )

s3 =
−32Nc

128π6

(
2 485.78 + 1 045.17Nf + 351.286N2

f − 8.6872N3
f + 0.0282158N4

f

)
(−81 + 2Nf )(−57 + 2Nf )(15 + 2Nf )

(48)

A.1.9 Running of αs = g/4π

At leading order, upon solving the beta function, the running of αs reads (gi = g(Mi)):

ln

(
Mh

M0

)
=

1

2b0

(
1

g2h
− 1

g20

)
. (49)

Which, upon introducing the one-loop MS QCD scale,

ΛLO
MS

=M0 e
− 1

2b0 g2 , (50)

one can express the coupling solely in function of this parameter and the renormalization scale
Mh:

g2h =
1

2b0 ln Mh

ΛLO
MS

. (51)

At leading order, we use ΛLO
MS

= 176MeV which corresponds to αs(M = 1.5GeV) = g/4π =
0.326. At next-to-leading order:

ΛNLO
MS

=Mhe
−1/(2b0g2h)(b0 g

2
h/(1 + b1 g

2
h/b0))

− b1
2(b0)

g . (52)

We used ΛNLO
MS

= 320 MeV. And finally, at NNLO:

ΛNNLO
MS

=Mhe
− 1

2b0g (b0g)
− b1

2b2
0 e

− g
2b0

((
b2
b0

− b21
b2
0

)
+

(
b31
2b3

0

− b1b2
b2
0

)
g

)
. (53)

With ΛNNLO
MS

= 334 MeV.
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B.2 Hard Thermal Loop framework

We detail the HTL formalism introduced first in chapter 5. Note that the two following sub-
sections B.2.1 and B.2.2 has different conventions that should not be mixed. Each sections
are self-consistent. The first one, following [4], is used in our work on the determination and
resummation of the LL and NLL series seen in chapter 5, while the second is important for the
evaluation of the HTL two loop diagram discussed in chapter 6 and follows the notation of [5].
We only detail the convention we used for our work on the LL and NLL series in section B.2.1.

B.2.1 One-loop T = 0 HTL pressure calculation

The one-loop HTL graph of Fig.(5.5) gives for the free energy :

FHTL
LO =

−dA
2

∫
K

((d− 1) ln[∆T (K)] + ln[∆L(K)]) , (54)

where Kµ = (K0, ~k) is an Euclidean vector in d+1 dimensions. The propagator ∆T,L depends
on the gluon self-energy:

∆T,L(K) ≡ 1

K2 +ΠT,L

, (55)

The scalar functions ΠT and ΠL being the transverse and longitudinal components of the one-
loop HTL self-energy tensor :

Πµν(K) = T µν(K̂)ΠT (K) + Lµν(K̂)ΠL(K), (56)

where the T, L projection operators are :

T µν(K̂) ≡ δµiδνj
(
δij − k̂ik̂j

)
Lµν(K̂) ≡ δµν − K̂µK̂ν − T µν(K̂).

(57)

The HTL gluon self-energy is :

Πµν(K) = m2
g

∫
v̂

(
δµ0δν0 − iK0

K · V
V µV ν

)
. (58)

Where V µ ≡ (−i, v̂) is a light-like vector, with v̂ a d-dimensional unit vector. The integration
measure in d dimensions is defined as∫

v̂

≡ h(d)

2

∫ π

0

dθvsin
d−2(θv) =

h(d)

2

∫ 1

−1

dzv(1− z2v)
d−3
2 , h(d) ≡

Γ(d
2
)

Γ(3
2
)Γ(d−1

2
)

(59)
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where zv ≡ k̂ · v̂. Taking the trace and 00 components of Eqn.(56), and Eqn.(58) with appro-
priate d-dimensional measures, leads to

Πµµ(K) = m2
g

∫
v̂

δ00 = m2
E

Π00(K) = m2
g

[
1 +

∫
v̂

iK0

−iK0 + |k̂|zv

]

= m2
g

[
1− 2F 1

(
1

2
, 1,

d

2
;−|k̂|2

K2
0

)]
,

(60)

where 2F 1 is the Hypergeometric function, and where the final equality assumes |k̂|/K0 ∈ R
and Re(d) > 1. Following notations of [4], we define

ηa(x) ≡
∂

∂z 2F 1

(
1

2
, 1, z;x

) ∣∣∣∣∣
z=a

κa(x) ≡
∂2

∂2z 2F 1

(
1

2
, 1, z;x

) ∣∣∣∣∣
z=a

(61)

which gives a compact expression for the ε expansion for the Π00 integral:

Π00(K) = m2
g

[
1 + iK0L(K) + η3/2

(
−|k̂|2

K2
0

)
ε− 1

2
κ3/2

(
−|k̂|2

K2
0

)
ε2 +O(ε)

]
(62)

with the notation

L(K) ≡ − 1

2|k̂|
ln

(
iK0 + |k̂|
iK0 − |k̂|

)
. (63)

The scalar functions ΠT and ΠL, expanded up to O(ε2), can be expressed as

ΠI(K) = ΠI,0(K) + ε ΠI,1(K) + ε2 ΠI,2(K) +O(ε3), I ∈ {T, L} (64)

where the coefficients above are given by

ΠL,0(K) = m2
E

K2

|k̂|2
[1 + iK0L(K)] ,

ΠL,1(K) = m2
E

K2

|k̂|2
η3/2

(
−|k̂|2

K2
0

)
,

ΠL,2(K) = −m2
E

K2

2|k̂|2
κ3/2

(
−|k̂|2

K2
0

)
,

ΠT,n(K) =
1

2

[
m2
E −

n∑
i=0

ΠL,i(K)

]
(65)
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For computation, it turns out to be convenient to express these expressions in terms of the
polar angle φK ≡ ‖k‖/K0.

ΠT (φK) =
m2
g

2
cot(φK)

[
arctan[tan(φK)]csc

2(φK)− cot(φK)
]
+O(ε),

ΠL(φK) = m2
g csc

2(φk) [1− arctan[tan(φK)]cot(φK)] +O(ε).

(66)

Note that arctan[tan(φK)] = φK −π · θ(φK −π/2) where θ denotes the Heaviside step function.

B.2.2 HTL two loop diagram
Fermion diagram at zero temperature and finite chemical potential.

Following Andersen et al. [5], the fermion diagram in fig5.4b reads in the mass expansion mg

(after using simplifications notably through Ward identities) :

P(hh)
3qg =− dANf

2
m2
gg

2
∑∫
{PQ}

[
d+ 1

d− 1

1

P 2Q2r2
− 4d

d− 1

q2

P 2Q2r4
− 2d

d− 1

P ·Q
P 2Q2r4

]
IR

− dANf

2
m2
gg

2
∑∫
{PQ}

[
3− d

d− 1

1

P 2Q2R2
+

2d

d− 1

P ·Q
P 2Q2r4

− d+ 2

d− 1

1

P 2Q2r2

+
4d

d− 1

q2

P 2Q2r4
− 4

d− 1

q2

P 2Q2r2R2

]
+O(g2m4

g).

(67)

where we only selected the g2m2
g term relevant for the discussion. The factor IP reads:

IP =
w(ε)

2

∫ −1

−1

dc(1− c2)−ε
iP0

iP0 − p c
=
w(ε)

2

〈
iP0

iP0 − p c

〉
c

, w(ε) = 22ε
Γ(2− 2ε)

Γ(1− ε2)
. (68)

Every integrals appearing here were evaluated in [5] at finite temperature and zero chemical
potential, then, in the limit T � µ using an expansion in µ/T in [6]. Here, however, we need
these integrals in the strict T → 0 and µ 6= 0 limit. This means reevaluating the master integrals
for strictly zero temperature and finite chemical potential. The major difference with the non-
zero temperature evaluation lies in the fact that the previous change of variable (p, q) → (s, β)

(see below), leads now to a non-trivial new integration boundary on the variable s :
∫ 1

1+
√

1−β

0 .
At non zero temperature, the boundary is ∞. The dependence on the s variable factorize
trivially in calculations and thus we are left with basically the same master integrals but with
an additional term ( 1

1+
√
1−β )

α that we treat using Mellin-Barnes (MB) transformations. More
information on MB and the vocabulary that we will use can be found in appendix C. Using
the two identities

〈IR
r2

〉
=
〈

1
r2

〉
−
〈
c2

R2
c

〉
,
〈IR
r4

〉
=
〈

1
r4

〉
−
〈

c2

R2
cr

2

〉
, where R2

c = r20 + c2r2, Eqn.(67)
simplifies to:

P(hh)
3qg = −dANf

2
m2
Eg

2
∑∫
{PQ}

[
d+ 1

d− 1

1

P 2Q2r2
− d+ 1

d− 1

〈
c2

P 2Q2R2
c

〉
c

+
4d

d− 1

〈
q2c2

P 2Q2r2R2
c

〉
c

+
2d

d− 1

〈
P ·Qc2

P 2Q2r2R2
c

〉
c

+
3− d

d− 1

1

P 2Q2R2
− d+ 2

d− 1

1

P 2Q2r2
− 4

d− 1

q2

P 2Q2R2r2

]
.

(69)
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In MS it reads for the final result:

P(hh)
3qg = −dANfm

2
Eg

2µ2

256π4

(
M

2µ

)4ε(
1

ε
+O(ε0)

)
(70)

obtained from Eqn.(69) with:

I1 ≡
∑∫
{PQ}

1

P 2Q2R2
=

µ2

64π4

(
M

2µ

)4ε(
1

ε
+ 6

)
(71)

I2 ≡
∑∫
{PQ}

1

P 2Q2r2
= − µ2

32π4

(
M

2µ

)4ε(
1

ε
+ 8− 2 ln 2

)
(72)

I3 ≡
∑∫
{PQ}

q2

P 2Q2r2R2
=

µ2

768π4

(
M

2µ

)4ε(
1

ε
(15− 12 ln 2) + 84− π2 − 48 ln 2

)
(73)

I4 ≡
∑∫
{PQ}

〈
c2

P 2Q2R2
c

〉
c

=
µ2

32π4

(
M

2µ

)4ε(
1

ε
(−1 + ln 2)− 8 +

5π2

24
+ 4 ln 2

)
(74)

I5 ≡
∑∫
{PQ}

〈
c2q2

P 2Q2R2
cr

2

〉
c

=
µ2

768π4

(
M

2µ

)4ε(
1

ε
(−1 + 4 ln 2) +O(ε0)

)
(75)

I6 ≡
∑∫
{PQ}

〈
c2 P ·Q
P 2Q2R2

cr
2

〉
c

=
µ2

128π4

(
M

2µ

)4ε(
1

ε
+ 10− 2 ln 2

)
. (76)

Following [5], it is straightforward to derive I1, I2 and I4 as long as we incorporates the mod-
ifications in the boundary integration on “s” after the change of variable from (p, q) to (s, β).
For the three other integrals, some 2-cut parts need to be reevaluated as explained previously.
We call 0-cut, 1-cut and 2-cut integrals, the integrals with 0,1 or 2 factor of n−

F respectively.
The sum can be carried, using the formula (B.39) of [5], for example:

∑∫
{PQ}

1

P 2Q2(R2
0 + r2c2)

= −
∫
p

nF (p)

p
2Re

∫
Q

1

Q2(R2
0 + r2c2

∣∣∣∣∣
P0=−ip+0+

+

∫
pq

nF (p)nF (q)

p q
Re

r2c2 − p2 − q2

∆(p+ i0+, q, r c)
.

(77)
Where integral over 4-momentum

∫
Q

are carried at T = µ = 0. More precisely, at zero temper-
ature, the integrals decomposition reads:

I1 =
∑∫
{PQ}

1

P 2Q2R2
=

∫
p q

(
θ(µ− p)θ(µ− q)

4p q

)
2p q

∆(p, q, r)
(78)

I2 =
∑∫
{PQ}

1

P 2Q2r2
= −2

∫
p

θ(µ− p)

2p

∫
Q

1

Q2r2
+

∫
p q

θ(µ− p)θ(µ− q)

4p q

1

r2
(79)

I3 =
∑∫
{PQ}

q2

P 2Q2r2R2
= −

∫
p

θ(µ− p)

2p

∫
Q

1

Q2R2

(
q2

r2
+
p2

q2

) ∣∣∣∣
P0=−ip+0+

+

∫
p q

θ(µ− p) θ(µ− q)

4p q

p2

r2
r2 − p2 − q2

∆(p, q, r)
,

(80)
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I4 =
∑∫
{PQ}

〈
c2

P 2Q2R2
c

〉
c

= −2

∫
p

θ(µ− p)

2p
Re

∫
Q

1

Q2

〈
c2

R2
c

〉
c

∣∣∣∣
P0=−ip+0+

+

∫
p q

θ(µ− p)θ(µ− q)

4p q
Re

〈
c2(r2c2 − p2 − q2)

∆(p, q, r c)

〉
c

(81)

I5 =
∑∫
{PQ}

〈
c2 q2

P 2Q2R2
cr

2

〉
c

= −
∫

p

θ(µ− p)

2p

〈
Re

∫
Q

c2(p2 + q2)

Q2r2(R2
0 + r2c2)

∣∣∣∣
P0=−ip+0+

〉
c

+

∫
p q

θ(µ− p)θ(µ− q)

4p q

q2

r2

〈
Re

c2(r2c2 − p2 − q2)

∆(p+ i0+, q, r c)

〉
c

.

(82)
Where ∆(p, q, r) = p4 + q4 + r4 − 2(p2q2 + q2r2 + p2r2) = −4p2q2(1 − x2) and x is the angle
between p and q. For I6, we proceed first with some algebra simplifications:

I6 =
∑∫
{PQ}

〈
c2 P ·Q
P 2Q2R2

cr
2

〉
c

=
∑∫
{PQ}

〈
c2

2P 2Q2R2
c

〉
c

+
∑∫
{PQ}

〈
c2

2P 2Q2r2

〉
c

−
∑∫
{PQ}

〈
c4

2P 2Q2R2
c

〉
c

−
∑∫
{Q}

∑∫
Rµ

〈
c2

Q2R2
cr

2

〉
c

,

(83)

where Rµ means bosonic Matsubara frequencies shifted by −2iµ. This term is straightforward
to evaluate, it leads to modified Bose-Einstein distribution whose limit when T → 0, µ 6= 0 is
non-zero, but the result is a pure imaginary contribution. The first term in (83) is I4/2 while
the second is 〈c2〉cI2/2. Finally, the last term decompose into:

∑∫
{PQ}

c4

P 2Q2R2
c

=− 2

∫
p

θ(µ− p)

2p

〈
Re

∫
Q

c4

Q2(R2
0 + c2r2)

∣∣∣∣
P0=−ip

〉
c

+

∫
p q

θ(µ− p)θ(µ− q)

4p q
Re

〈
c4(r2c2 − p2 − q2)

∆(p, q, r c)

〉
c

.

(84)

All one-cut integrals and two-cut integrals are given below giving back (71)-(76).

One-cut formula ∫
Q

1

Q2r2
1

(4π)2
M2εp−2ε2

(
1

ε
+ 4− 2 ln 2

)
(85)∫

Q

q2

Q2R2r2

∣∣∣∣
P0=−ip

=
1

(4π)2
µ2εp−2ε(−1)

(
1

ε2
+

1− 2 ln 2

ε
+ 10− 2 ln 2 + 2 ln2 2− 7π2

12

)
(86)∫

Q

1

Q2R2q2
=

1

(π)2
µ2εp−2−2ε

(
1

ε
− 2− 2 ln 2

)
(87)

Re

∫
Q

1

Q2

〈
c2

R2
c

〉
c

=
1

(4π)2
M2εp−2ε

(
2(1− ln 2)

ε
+ 4

(
2− ln 2 + ln2 2

)
− π2

2

)
(88)

Re

∫
Q

1

Q2r2

〈
c2

R2
c

〉
c

=
1

(4π)2
µ2εp−2−2ε

(
−1

4

)(
1

ε
+

4

3
+

2

3
ln 2

)
(89)

Re

∫
Q

q2

Q2r2

〈
c2

R2
c

〉
c

=
1

(4π)2
µ2εp−2ε

(
13− 16 ln 2

12ε
+

29

9
− 19

18
ln 2 +

8

3
ln2 2− 4

9
π2

)
(90)
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Re

∫
Q

1

Q2

〈
c4

R2
c

〉
c

=
1

(4π)2
µ2εp−2ε

(
5− 6 ln 2

3ε
+

52

9
− 2 ln 2 + 4 ln2 2− π2

2

)
(91)

Two-cut integrals

The two-cut integrals appearing in I1, I2 are straightforward to evaluate and with (85) it gives
back (71) and (72). The 2-cut integrals appearing in I4 can be analytically integrated over x
and c giving:

I4,2c =

∫
p q

θ(µ− p)θ(µ− q)

4p q
Re

〈
c2(c2r2 − p2 − q2)

∆(p, q, r c)

〉
c

=

(
µ2

16π4

)(
−1

8

)∫ 1

0

dp

∫ 1

0

dq

(
ln γ +

(1− γ)
√
γ

ln

(
1 +

√
γ

1−√
γ

))
,

(92)

with γ =
(
p−q
p+q

)2
. The remaining integrals gives (π

2

6
− 4 ln 2), so we end up with:

I4,2c = − µ2

768π4

(
π2 − 24 ln 2

)
. (93)

However, I3,2c and I5,2c possesses at least one degree of divergence in ε thus cannot be integrated
numerically. We will proceed with the evaluation of I3,2c, being the easiest one, and give
instructions for the evaluation of I5,2c (the latter being the most complicated one). Using,〈

q2

r2
(r2 − p2 − q2)

∆(p, q, r)

〉
x

= − 1

2ε

〈
q2

r4

〉
x

, (94)

we have

I3,2c ≡
∫
ddp ddq

(2π)2d
θ(µ− p)θ(µ− q)

4p q

(
−1

2ε

)〈
q2

r4

〉
x

=−
(

Ωd

(2π)d

)2
µ2−4ε

128ε

w(ε)

2

∫ 1

−1

dz (1− z2)−ε
∫ 1

0

dβ

∫ 1

1+
√

1−β

0

ds s1−4εβ1−2ε(1− β)−1/2 2− β

8(1− y β)2

(95)
where we proceeded to the change of variable (p, q) → (s, β) with s = p+q

2
, β = p q

s2
, y = 1−z

2
.

This change of variable leads to a non-trivial upper-bound of integration at zero temperature.
One must make the difference between the two regions of integration p < q and p > q where
(p = s+, q = s−) and (p = s−, q = s+), s± = s(1 ±

√
1− β). In Eqn.(95), it leads to the

suppression of a term ∝ (1−
√
1− β) and an overall factor of two. Now, one can proceed to the

trivial “s” integral. The “s” integration leads to a factor of (1+
√
1− β)4ε−2 which we simplify

using Mellin-Barnes transformation (see appendix C). From now on, “s” will designate the MB
variable: (

1 +
√

1− β
)4ε−2

=
1

Γ(2− 4ε)

∫
C
dsΓ(−s)Γ(2− 4ε+ s)(1− β)s/2. (96)
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Once implemented into (95), the β integral can be recognized as an Hypergeometric function
2F 1:

I3,2c =

(
Ωd

(2π)d

)2
µ2−4ε

128ε(2− 4ε)

w(ε)

2

∫ 1

−1

dz

∫
C
ds

(1− z2)−εΓ(−s)Γ(1
2
+ s

2
)Γ(2 + s− 4ε)

128 ε(−1 + 2ε)Γ(2− 4ε)

×

 Γ(2− 2ε)

Γ(5
2
+ s

2
− 2ε) 2F 1

(
2, 2− 2ε
5
2
+ s

2
− 2ε

∣∣∣∣ y)− Γ(3− 2ε)

2Γ(7
2
+ s

2
− 2ε) 2F 1

(
2, 3− 2ε
7
2
+ s

2
− 2ε

∣∣∣∣ y)

. (97)

Using the change of variable z = 1− 2t, t = y, we recognize, via (123), the integral over t as a
3F 2 at unity. Using (127), both Hypergeometric can be simplified to 2F 1 and then one can use
Gauss’s summation theorem (125) to further simplify to gamma functions:

I3,2c = −
(

Ωd

(2π)d

)2
µ2−4ε

ε

1

Γ(3
2
− 2ε)

∫
C
ds

2−5+s ((1 + s)2 − 4(2 + s)ε+ 4ε2) Γ(−s)Γ(1+s
2
)Γ(1 + s

2
− 2ε)

(−1 + s− 2ε)(1 + s− 2ε)(3 + s− 2ε)
.

(98)
We choose to close the contour on the right enclosing the poles of Γ(−s), a rising gamma, and

1
−1+s−2ε

which comes from a lowering gamma. Thus, using residue theorem, we have to sum
over all poles of Γ(−s) and subtract the spurious pole in s = 1+ 2ε which pinches the contour
in the ε→ 0 limit (see figC.4). Evaluating first the pole in s = 0, 1, 1 + 2ε we find:

s = 0 :
1

192π4ε
+

2− 24 ln 2

576π4

s = 1 : − 1

256π4ε2
+

−5 + 8 ln 2

512π4ε
+

−17 + 2π2 + 40 ln 2− 32 ln2 2

1024π2

s = 1 + 2ε : − 1

256π4ε2
+

−3 + 4 ln 2

256π4ε
+

−96 + 5π2 + 72 ln 2− 48 ln2 2

1536π4
.

(99)

Now, we can expand (98) in series of ε:

Iε3,2c = csc(πs)

(
(1 + s)

64π3(−3 + 2s+ s2)ε

+
(−1 + s(13 + 4s)(−1 + s+ s2)− (−1 + s)(1 + s)2(3 + s)H( s

2
))

32π3(−1 + s)2(1 + s)(3 + s)2

)
+ csc(πs)

−4s(2 + s)(−2 + s(2 + s)) ln(2) + 12 ln 2

32π3(−1 + s)2(1 + s)(3 + s)2
.

(100)

The pole in this expression now only comes from csc(πs) whose residue are: csc(πs) = (−1)s

π
.

Evaluating the sum from 2 to infinity can be done using mathematica. The sum over harmonic
numbers is in general not recognized but using its integral representation:

H(z) =

∫ 1

0

dx
1− xz

1− x
, (101)

it can be easily evaluated. Note that the same trick can be used for digamma functions which
also appear recurrently:

ψ(0, z) = H(z − 1)− γE. (102)
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The results for the sum from 2 to infinity then reads:
∞∑
s=2

Res(I3,2c) =
42− 144 ln 2

9216π4ε
+

−23− 552 ln 2 + 576 ln2 2

9216π4
. (103)

Grouping up the results, and reintroducing the factor µ, MS and 24ε :

I3,2c = µ2

(
M

2µ

)4ε( −1

128π4ε2
− 3 + 4 ln 2

256π4ε
+
π2 − 3(5 + 4 ln 2)

192π4

)
. (104)

Adding (104), (86) and (87) we find (80) where the divergence proportional to ε−2 cancel out
which is a non-trivial crosscheck. We found the integral I6,2c to have no divergence at all, so
the evaluation can be carried out numerically.

I6,2c ≡
∫

p q

θ(µ− p)θ(µ− q)

4p q
Re

〈
c4(r2c2 − p2 − q2)

∆(p, q, r c)

〉
c

(105)

However, using MB method, we manage to find an analytic expression in perfect agreement.
The first step is to simplify the quotient:

r2c2 − p2 − q2

∆(p+ i0+, q, r c)
= −1

2

∑
±

1

(p+ i0+ ± q)2 − r2c2
, (106)

then to integrate over c :

〈
c4

(p+ i0+ ± q)2 − r2c2

〉
c

=
3

(3− 2ε)(5− 2ε)

1

(p+ i0+ ± q)2 2F 1

( 5
2
, 1

7
2
− ε

∣∣∣∣ r2

(p+ i0+ ± q)2

)
.

(107)
In the case (p + q + i0+), the 0+ is not needed, but it is required for the case (p − q). Then
we proceed to the change of variable (s, β) which send the argument of the Hypergeometric
to 1 − y β. Using then (124) we can reproduce the same steps as for I3,2c. Unfortunately, all
the Hypergeometric functions do not disappear this time and we are left with remaining 3F 2.
However, using (128) we can recast these Hypergeometric in a much more convenient form. For
example:

3F 2

(5
2
, 1, 1− ε

1 + ε, 3−s
2

∣∣∣∣ 1) =
Γ(3

2
− s

2
)Γ(−2− s

2
+ 2ε)

Γ(−1− s
2
)Γ(1

2
− s

2
+ 2ε) 3F 2

( 5
2
, ε, 2ε

1 + ε, 1
2
− s

2
+ 2ε

∣∣∣∣ 1). (108)

The ratio test for these Hypergeometric reads respectively: S(1) = 4ε− 4− s and S(2) = 2 + s,
thus, we factorized a part of the divergence (in the variable s) in the gamma function that mul-
tiplies the Hypergeometric, but the remaining 3F 2 still has a divergence. The trick is that this
new Hypergeometric possesses two arguments of order O(ε), then the associated pochhammer
contributes as Γ(ε)−1Γ(2ε)−1. Except for the case k = 0 in the series representation of the
hypergeometric. Then, only the term k = 0 (which is equal to one) contributes to the order
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O(ε0). So we can rewrite the Hypergeometric as:

3F 2

(5
2
, 1, 1− ε

1 + ε, 3−s
2

∣∣∣∣ 1) =
Γ(3

2
− s

2
)Γ(−2− s

2
+ 2ε)

Γ(−1− s
2
)Γ(1

2
− s

2
+ 2ε)

×
(
1 +O(ε2)

)
. (109)

As the global coefficient of this Hypergeometric is not of order O(ε−2) the first order in ε is
enough for our current order of interest in ε. This trick will also be used for I5,2c as explained
below. Equipped with these transformations, it is pretty much similar to I3,2c and so we end
up with the results (separating the case (p+ q) from (p− q) using the upper index ±):

I+6,2c =µ
2

(
6− π2 + 4 ln 2

384π4

)
I−6,2c =µ

2

(
−4 + π2

768π4

)
I6,2c = I+6,2c + I−6,2c =µ

2

(
8− π2 + 8 ln 2

768π4

)
.

(110)

Attempting to solve I5,2c now, require first to simplify the quotient

I5,2c ≡
∫

p q

θ(µ− p)θ(µ− q)

4p q

q2

r2
Re

〈
c2(r2c2 − p2 − q2)

∆(p, q, r c)

〉
c

, (111)

first by rewriting q2 = r2+q2−p2−2p·q
2

= 1
2
− p·q

r2
, where we dropped the q2 − p2 integral as it is

purely imaginary. Then we use the identities〈
c2

p · q
r2

(r2c2 − p2 − q2)

∆(p, q, r c)

〉
c,x

=− p2 + q2

p2 − q2
〈c2〉c −

1

2

∑
±

1

(p± q)2

〈
c4 p · q

(p± q)2 − r2c2

〉
c,x〈

c2(r2c2 − p2 − q2)

∆(p, q, r c)

〉
c,x

=− c2

2

∑
±

1

(p+ iε± q)2 − r2c2
,

(112)

to get, using 〈c2〉 = 1
3−2ε

:

I5,2c =

(
Ωd

(2π)d

)2 ∫ µ

0

dp

∫ µ

0

dq
1

4p q
(p q)1−2ε

(
− c2

4

〈∑
±

1

(p+ iε± q)2 − r2c2

〉
c,x

+
p2 + q2

(p− q + iε)2
1

3− 2ε

〈p · q
r2

〉
x

+
1

2

∑
±

1

(p+ iε± q)2

〈
c4 p · q

(p± q)2 − r2c2

〉
c,x

)
.

(113)
In this equation, the second term (Ipq5,2c) and the case (p − q) of the last term (Ic

4,−
5,2c ) are

divergent whereas all others (Ic
4,+

5,2c ,Ic
2,±

5,2c ) are finite and can be evaluated numerically or using
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HYPERGEOMETRIC FUNCTIONS

MB transformation. They read:

Ic
2,+

5,2c = µ2

(
12 ln 2− π2

768π4

)
Ic

2,−
5,2c =

µ2

1536π2

Ic
4,+

5,2c = µ2

(
π2 − 6(−5 + 2 ln2 2 + 8 ln 2)

4608π4

)
.

(114)

The integral Ipq5,2c can be readily evaluated following the same steps as for I3,2c using first:

〈p · q
r2

〉
x
=

1

8
β

2F 1

(
1− ε, 1

3− 2ε

∣∣∣∣ 1)− 2F 1

(
2− ε, 1

3− 2ε

∣∣∣∣ 1)
 . (115)

We find after all integration:

Ipq5,2c = −µ2

(
M

2µ

)4ε(
1

384π4ε2
+

11

1152π4ε
+

422− 21π2

6912π4

)
. (116)

The very last contribution, Ic
4,−

5,2c , remains uncertain at the moment. While we obtained with
certainty the order O(ε−2) and O(ε−1), the finite coefficient gives unnatural number that has
not been fully crosschecked yet. At the moment, we have:

Ic
4,−

5,2c = µ2

(
M

2µ

)4ε(
1

384π4ε2
+

17− 6 ln 2

1152π4ε
+O(ε0)

)
. (117)

Finally,

I5,2c = µ2

(
M

2µ

)4ε(
1− ln 2

192π4ε
+O(ε0)

)
. (118)

Notice again, the non-trivial check that O(ε−2) disappears.

C.3 Mellin-Barnes transformation, contour integration
and Hypergeometric functions

Mellin-Barnes transformation is a generalization of the binomial theorem, it allows to sepa-
rate terms of the forms (x+ y)ν into ysxν−s much more easier to handle with dimensional
regularization. Concretely,

(x+ y)ν =
1

Γ(−ν)
1

2πi

∫
C
ds

ys

x−ν+s
Γ(−s)Γ(−ν + s). (119)

See for example [7] for a complete overview of the Mellin transform and generalized Hyperge-
ometric functions. We will call lowering gammas, the gamma functions with pole going from
zero to minus infinity in the left complex plane, such as Γ(s), in opposition to rising gammas,
such as Γ(−s), whose poles go from zero to infinity in the right complex plane. The contour
of integration C has to be chosen such that it separates the poles of rising and lowering gam-
mas, see C.4. The coefficient of the all-order expansion is encoded in the pole of the gamma
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Γ(−s)
Γ(−s+ α), α ∈ C, Re(α) > 0

Γ(s− β), β ∈ C, Re(β) > 0

Γ(s+ γ), γ ∈ R, Re(γ) > 0

C

?

4

? ? ? ? ? ? ?

4444444

Figure C.4: General contour of integration for a Mellin-Barnes transformation

functions that we need to carefully integrate. To choose on which side one should close the
contour entirely depends on the convergence properties of the integrand. In the trivial example
in Eqn.(119), if x ≤ y, one has to close the contour on the left, while for x ≥ y it needs to closed
on the right. However, as the MB integral will be the last one to be carried out, the integrand
will become far more complicated and we will have to study the convergence properties of the
Hypergeometric and gamma functions that will appear. More information on Hypergeometric
functions can be found below. On the example drown above, it was asserted that all poles
from the different gamma functions could be well separated at all time so that the definition of
the contour is unambiguous. But it could happen that the first pole of a rising and a lowering
gamma are only separated by ε, the dimensional regularization parameter. Concretely, the
situation drown on fig. C.4 for the two series of gammas Γ(−s) and Γ(s− β) with β → 1 + 2ε.
As long as ε 6= 0, the contour, even though being wiggly, can be defined, but it is no longer the
case in the limit ε → 0. In this case, the pole of the lowering gamma is pinching the contour
on the first two poles of the rising gamma. The commutativity of the Mellin-Barnes integral
and the limit is lost. One must then identify these spurious poles, that cross the contour, and
integrate them before the limit is taken or before the expansion in ε. Finally, upon choosing
the side of the complex plane in which one will close the contour, one has to subtract the
contribution of these spurious poles. In this example, if we close the contour to the right, it
would means taking the residue of the first two poles of Γ(−1 + s+ 2ε) and subtracting them
to the contribution of the poles of Γ(−s).

C.3.1 Hypergeometric Functions

The generalized Hypergeometric function Fp q (z) is an analytic function of one variable with
p+ q parameter. Its most common representation is the generalized Hypergeometric series

Fp q (z) ≡ pF q

(
α1, α2, . . . , αp
β1, . . . , βq

∣∣∣∣ z) =
∞∑
n=0

(α1)n (α2)n . . . (αp)n
(β1)n . . . (βq)n

zn

n!
, (120)
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where (a)b is the Pochhammer’s symbol:

(a)b =
Γ(a+ b)

Γ(b)
. (121)

Obviously, if an upward parameter is equal to a downard parameter, they cancel out. The series
is defined on the disk |z| < 1 and by analytic continuation elsewhere. On the circle |z| = 1, it
converges if p ≤ q, diverges for p ≥ q + 2, and the convergence for p = q + 1 is dictated by the
ratio test

S =

q∑
i=1

βi −
p∑
i=1

αi. (122)

The series converges only for Re(S) > 0. Hypergeometric functions of order (p, q) can be related
to an higher order (p+ 1, q + 1) one by integration:

p+1F q+1

(
α1, α2, . . . , αp, ν

β1, . . . , βq, µ+ ν

∣∣∣∣ z) =

∫ 1

0

dt tν−1 (1− t)µ−1
pF q

(
α1, . . . , αp
β1, . . . , βq

∣∣∣∣ t z). (123)

Hypergeometric at z = x can be related to other Hypergeometric at z = 1− x:

2F 1

(
α1, α2

β1

∣∣∣∣x) =
Γ(β1)Γ(β1 − α1 − α2)

Γ(β1 − α1)Γ(β1 − α2)
2F 1

(
α1, α2

α1 + α2 + 1− β2

∣∣∣∣ 1− x

)

+
Γ(β1)Γ(α1 + α2 − β1)

Γ(α1)Γα2)
(1− x)β1−α1−α2

2F 1

(
β1 − α1, β1 − α2

1 + β1 − α1 − α2

∣∣∣∣ 1− x

)
(124)

The particular Hypergeometric function F2 1 (z), the Gauss series, can be cast in analytical
functions for some specific values of the parameter and/or the argument. The one of interest
for us is Gauss’s summation theorem

2F 1

(
a, b

c

∣∣∣∣ 1) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
, (125)

which is used extensively in our calculations. Such relation also exist for Hypergeometric F3 2

at unity but it involves Clebsch-Gordan coefficients which are unpractical for summation. We
are not aware of such relations for higher order Hypergeometric functions. The MB framework
requires to perform summation of Hypergeometric function of the form:

∞∑
s=0

(
∏

i Γ(αi + s)) pF q

(
a1, a2, ..., ap

b1, ..., bp−1, c+s

∣∣∣∣ 1)∏
i Γ(βi + s)

, (126)

which, to the best of our knowledge, is impossible to perform. Thus motivating the introduction
of the following transformation formula on Hypergeometric to cast them into a summable form.
The first one relates Hypergeometric (p, q) at unity to a (p−1, q−1), also at unity, for contiguous
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parameters:

pF q

(
α1, . . . , αf−1, c+ 1, αf , . . . , αj
β1, . . . , βk−1, c, βk, . . . , βl

∣∣∣∣ 1) = p−1F q−1

(
α1, . . . , αf−1, αf , . . . , αj
β1, . . . , βk−1, βk, . . . , βn

∣∣∣∣ 1)

+

j∏
i=1

αi

c
n∏
p=1

βp

p−1F q−1

(
α1 + 1, . . . , αf−1 + 1, αf + 1, . . . , αj + 1

β1 + 1, . . . , βk−1 + 1, βk + 1, . . . , βn + 1

∣∣∣∣ 1).
(127)

The two following relations allow one to transform (3, 2) Hypergeometric function into another
(3, 2) with different parameters:

3F 2

(
α1, α2, α3

β1, β2

∣∣∣∣ 1) =
Γ(β2)Γ(S)

Γ(β2 − α1)Γ(β1 + β2 − α2 − α3)
3F 2

(
α1, β1 − α2, β1 − α3

β1, β1 + β2 − α2 − α3

∣∣∣∣ 1)

3F 2

(
α1, α2, α3

β1, β2

∣∣∣∣ 1) =
Γ(β1)Γ(β2)Γ(S)

Γ(α1)Γ(β1 + β2 − α1 − α2)Γ(β1 + β2 − α1 − α3)
×

× 3F 2

(
β1 − α1, β2 − α1, S

β1 + β2 − α1 − α2, β1 + β2 − α1 − α3

∣∣∣∣ 1)
,

(128)
where S is the test ratio variable defined in Eq.(122). These transformations are allowed only
for Re(S) > 0, otherwise the Hypergeometric may not be well-defined. For Re(S) = −1
or Re(S) = 0, it is possible to extract the singularity to define the Hypergeometric. In the
calculation pursued in appendix B.2.2, contour integration over these kind of Hypergeometric
functions appeared. The Mellin-Barnes variable appears into the parameters αi, βj and thus
the ratio test variable S depends on s. In this manner, it allows one to factorise the divergence
of the Hypergeometric into poles of gamma functions such as Γ(S) that can be easily integrated.

D.4 Thermal integral appearing in λφ4 model

K2(
m

T
) = − 32

T 4

∫ ∞

0

dp p
n(Ep)

Ep

∫ p

0

dq q
n(Eq)

Eq

∫ p+q

p−q
dk k

∑
σ=−1,+1

f2(Eσ, k) (129)

K3(
m

T
) =

96

T 4

∫ ∞

0

dp p
n(Ep)

Ep

∫ p

0

dq q
n(Eq)

Eq

∫ q

0

dr r
n(Er)

Er

×
∑

σ,τ=−1,+1

{f3(Eστ , p+ q + r)− f3(Eστ , p+ q − r)− f3(Eστ , p− q + r) + f3(Eστ , p− q − r)},

(130)
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where

f2(E, k) =

(
E2 −M2

k

E2 − k2

) 1
2

ln
(E2 − k2)

1
2 + (E2 −M2

k )
1
2

(E2 − k2)
1
2 − (E2 −M2

k )
1
2

, k2 < E2 − 4m2

= 2

(
M2

k − E2

E2 − k2

) 1
2

arctan

(
E2 − k2

M2
k − E2

) 1
2

, E2 − 4m2 < k2 < E2

=

(
M2

k − E2

k2 − E2

) 1
2

ln
(M2

k − E2)
1
2 + (k2 − E2)

1
2

(M2
k − E2)

1
2 − (k2 − E2)

1
2

, E2 < k2

(131)

f3(E, p) = p ln
m2 − E2 + p2

m2
+ 2(m2 − E2)

1
2 arctan

p

(m2 − E2)
1
2

, E2 < m2

= p ln

∣∣E2 −m2 − p2
∣∣

m2
+
(
E2 −m2

) 1
2 ln

(E2 −m2)
1
2 + p∣∣(E2 −m2)
1
2 − p

∣∣ , E2 > m2

(132)

and
M2

k = 4m2 + k2

Eσ(p, q) =
√
p2 +m2 + σ

√
q2 +m2

Eστ (p, q, r) =
√
p2 +m2 + σ

√
q2 +m2 + τ

√
r2 +m2 .

(133)

In the limit x ≡ m/T → 0 these can be expressed analytically as:

K2(x) '
(4π)4

72

(
lnx+

1

2
+
ζ ′(−1)

ζ(−1)

)
− 372.65x (lnx+ 1.4658) , (134)

K3(x) '
(4π)4

48

(
− 7

15
+
ζ ′(−1)

ζ(−1)
− ζ ′(−3)

ζ(−3)

)
+ 1600.0x (lnx+ 1.3045) . (135)

In the numerics we rather use the exact expressions Eqs.(129), (130).
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