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Hidden traces of chirality in the fluctuations of a fully
unwound cholesteric†

Guilhem Poy∗a

Confinement and hydrodynamic interactions often play an important role in the fluctuation dynam-
ics of soft matter systems, which can typically be studied using light scattering techniques. With
experimental and theoretical methodologies, I demonstrate here that chirality is an additional critical
parameter that leads to diverging decay times and correlation lengths in chiral liquid crystal cells
with a fully unwound cholesteric helix. This study combines light scattering measurements made in
a tailored microscope geometry and theoretical calculations of the decay dynamics of chiral orien-
tational fluctuations—including hydrodynamics—to establish the existence of two soft chiral modes
of fluctuations driving the destabilization of the unwound cholesteric. Despite the achirality of the
equilibrium state of unwound cholesterics, this study indicates that chirality hides itself in the orien-
tational fluctuation modes and plays a major role in their dynamics, which can be exploited to locally
measure the strength of chirality in frustrated chiral liquid crystal cells.

1 Introduction
Thermal fluctuations are a prevalent feature of soft matter sys-
tems and often unveil many details about the structure and dy-
namics of a given material using light scattering techniques1,2.
An emblematic example is the thermally-induced Brownian mo-
tion of particles in a dilute colloidal suspension. With dynamic
light scattering (DLS), light interacts with the fluctuating par-
ticles and allows the measurement of the temporal correlation
of the fluctuations, which typically decays exponentially with a
diffusive-like decay frequency proportional to the Brownian dif-
fusion coefficient and the squared scattering wavevector. Using
the Stokes-Einstein relation, these measurements give informa-
tion about the hydrodynamics radius of the particles or the vis-
cosity of the fluid.

Beyond the measurement of the hydrodynamic radius in di-
lute colloidal suspensions, light scattering is also very valuable
to study the dynamics of other soft systems such as jammed ma-
terials3,4, microgels5,6, proteins7,8, and liquid crystals9 (LCs).
In nematic LCs, the orientational fluctuations of the elongated
LC molecules are the slowest decaying modes and allow experi-
mentalists to fully characterize the elastic and viscous properties
of the LC10,11 and more subtle phenomena such as surface dis-
sipation in highly confined cylindrical pores12, critical slowing
down near the optical Freedericksz transition threshold13, and
couplings with hydrodynamic flows in confined cells14. In addi-
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tion to the simple nematic phase, DLS techniques were also used
to reveal the fascinating multiscale dynamics of more complicated
phases such as twist-bend nematics15 and confined blue phase
III16. The latter phase is intrinsically chiral and is closely related
to the chiral nematic phase, also called the cholesteric phase.
In these chiral LC phases, chirality induces twisted equilibrium
structures characterized by a wavevector q called the spontaneous
twist. These twisted structures strongly interact with both light
and orientational fluctuations, leading for example to a critical
divergence of experimentally observed decay times in cholester-
ics17 at scattering wavevectors equal to ±2q, thus showing again
the deep link between structure and dynamics in fluctuating phys-
ical systems. On a similar note, Jia et al. showed that chirality
was drastically changing the shape of the fluctuation spectrum
associated with the edge of smectic colloidal membranes18.

In the aforementioned LC studies, confinement often plays a
critical role in the dynamics of the fluctuation modes, leading to
reduced hydrodynamic fluctuations due to no-slip boundaries or
strong structural and dynamic tuning of the orientational modes
due to the interaction with the alignment layers of the sample.
Intriguingly, such effects of confinement on thermal fluctuations
were, to the best of my knowledge, never explored in cholesterics.
This is surprising, to say the least, since confined cholesterics are
an archetypal example of a frustrated system in which the equilib-
rium state of the unconfined phase—the equilibrium cholesteric
helix—cannot form due to the conflicting anchoring boundary
conditions of LC molecules near the confining surfaces. This
frustration typically leads to deep structural changes in the LC
orientational field, with a complete zoology of localized and/or

Journal Name, [year], [vol.],1–16 | 1

https://doi.org/10.1039/D2SM01646J


periodic LC patterns existing on top of a translationally invari-
ant background, such as cholesteric fingers and bubbles19, he-
liknotons20, hopfions and more complicated examples of these
so-called topological solitons21. The stability diagram of such
patterns shows several structural transitions due to a delicate bal-
ance between the twist-suppressing action of confinement and the
twist-favouring action of chirality. One may rightfully wonder if
the same balance affects the structure and dynamics of the orien-
tational fluctuations in these frustrated chiral systems since phase
transitions are often accompanied by pretransitional critical phe-
nomena.

The goal of this paper is to provide the first step toward a bet-
ter understanding of the fluctuating dynamics of chiral frustrated
systems by focusing on the simplest type of confined cholesterics,
namely unwound cholesterics obtained by confining the LC be-
tween two plates imposing a molecular alignment normal to their
surfaces. Below a critical thickness that depends on q, the most
stable state of such systems is the so-called unwound helix, corre-
sponding to a complete suppression of the cholesteric twist in the
bulk with a uniform alignment of all LC molecules normal to the
sample plates.

First, I describe a light scattering microscope setup tailored
to the study of LC fluctuation modes with very small scattering
wavevectors and use this setup to experimentally demonstrate the
existence of a soft chiral fluctuation mode whose decay frequency
becomes vanishingly small as the threshold of destabilization of
the unwound cholesterics is approached (Sec. 2). I then present
a complete theory of the decay dynamics of confined chiral fluc-
tuations in unwound cholesterics (Sec. 3) and examine in more
detail my experimental results in light of this model (Sec. 4). Fi-
nally, conclusions and extensions of this work are discussed in
Sec. 5.

2 Experimental evidence of a chiral soft fluctuation
mode

2.1 Experimental setup and methods

The samples of this study were assembled from two paral-
lel glass plates separated with UV glue lines containing cali-
brated colloidal spacers of diameter ∼ 11µm. Before assem-
bly, I systematically washed the glass plates with distilled wa-
ter, acetone and ethanol in a sonicator, and chemically treated
them to ensure homeotropic anchoring. To perform this sur-
face treatment, I prepared a solution of 90 wt% ethanol, 10 wt%
ultrapure water and 0.1 wt% DMOAP (dimethyloctadecyl[3-
(trimethoxysilyl)propyl]ammonium chloride, Sigma Aldrich), fil-
tered and deposited this solution by spin-coating at 2000 rpm dur-
ing 20 s on the glass plates, which were finally baked at 110 °C dur-
ing 1 h. All samples were filled by capillarity with cholesteric mix-
tures of the nematic 5CB (4-cyano-4’-n-pentylbiphenyl, Synthon
Chemicals) doped with a mass fraction C of the chiral molecule
R811 (R-[+]-octan-2-yl 4-[{4-(hexyloxy)benzoyl}-oxy]benzoate,
BLD Pharmatech). Before filling any sample, its thickness is
mapped with a spectrometer mounted on a microscope with an
XY translation stage, based on reference scratches made with a
diamond on the side of the sample. This way, any local obser-

vation of the same sample under a microscope can be accurately
associated with the local value of the sample thickness (typically
ranging from 10 to 12 µm) even if the plates are not perfectly par-
allel (typical tilt angle < 0.3mrad). In addition, I measured the
helical twist power (HTP) of the mixtures of 5CB and R811 with
the Cano wedge method, as detailed in the ESI†. I found that
HTP ≡ q/(2πC) = 0.1155wt%−1µm−1 at a temperature 5◦ below
the nematic/isotropic transition temperature TNI, with q = 2π/P
the spontaneous twist of the cholesteric phase and P the equilib-
rium pitch of an unconfined cholesteric helix.

Each sample is observed under crossed polarisers with a Leica
DM2500P polarized optical microscope (POM). The temperature
of the sample is regulated within 0.1 °C with an Instec STC200
temperature controller and oven, and the horizontal position of
the sample can be adjusted with an XY translation stage. To op-
timize the contrast of the thermal orientational fluctuations, the
sample stage holder imposes a small angle of θ ∼ 5◦ in the y di-
rection (at 45◦ with respect to the polarisers) as schematized in
Fig. 1a. This technical point will be further discussed in the next
subsection. The sample is illuminated with broad spectrum LED
light from a CoolLED pE-300 white lamp and observed by an sC-
MOS camera (Andor Zyla) through a x10 objective with a 0.25
numerical aperture. Typical acquisitions are done on a square
region of interest of 256 pixels (166.9 µm) at a framerate of 100
or 200 Hz, with a dynamic range of 4096 (12-bit pixel data). I
performed all acquisitions with the condenser aperture closed as
much as possible, so that one can assume that the incident light
is propagating along the axis eee′z of Fig. 1a. All error bars in this
paper are estimated as 3× the standard deviation of a given quan-
tity (calculated either from the covariance matrix of a fit or the
sample standard deviation of a noisy dataset), which corresponds
to a confidence level of ∼ 99.7% assuming Gaussian randomness.

2.2 Choice of dynamic differential microscopy geometry

The main experimental technique of this paper is Dynamic Differ-
ential Microscopy (DDM), which allows the measurement of the
static and dynamic properties of all fluctuation modes with mod-
erate scattering wavevectors kkk⊥ from a single microscope movie.
Giavazzi et al.22 proposed several DDM geometries to character-
ize the material constants of LCs, but unfortunately, these geome-
tries are not optimal for the goal of this paper since we want
to target fluctuation modes with a vanishingly small scattering
wavevector, for which these previous setups lead to a poor optical
contrast in the case of homeotropic samples. To better understand
this, let us estimate the scattering cross-section of the setup in
Fig. 1a, assuming general orientations of the polariser and anal-
yser. Since the fluctuation modes are confined in the thickness
of the sample, we can expect that modes with in-sample-plane
wavevectors kkk⊥ are the dominant contribution to the scattering
cross-section23, i.e. kkk⊥ is in the xy plane of Fig. 1a. De Gennes
calculated the differential contribution S(kkk⊥) of a mode with
wavevector kkk⊥ to the total scattering cross-section (see Sec. 3.4.3
in Ref.24), but his calculation only applies to DLS setup with the
polariser (analyser) orthogonal to the incident (scattered) beam.
This is not the case of the microscope setup in Fig. 1a, since a
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Fig. 1 (a) Schematic of the polarized optical microscope (POM) setup. Light propagates along z′ (central axis of the microscope) and the microscope
polarisers are parallel to the x′y′ plane. The rotated coordinate system (x,y,z) associated with the sample has its z direction along the alignment
direction of the unperturbed director field. (b) Schematics of the two types of director fluctuation in a nematic LC, either parallel or orthogonal to
the fluctuation wavevector kkk⊥. These fluctuations are the splay-bend and twist-bend modes described later in this paper. (c) Snapshots of a typical
acquisition made in a nematic sample of 5CB. Time increases from 10 ms between each image, from left to right along the top row, and then along
the bottom row. The image contrast was enhanced to better visualize the intensity fluctuations. The definition of the polariser (P) angle ψp and
analyser (A) angle ψa is shown in the top left image, and the white square indicate a region where a bright intensity fluctuation is created and then
destroyed. The white bar represents 50 µm. (d) Raw intensity histogram of the whole acquisition in (c).

nonzero kkk⊥ is associated with an off-axis scattered field on the
analyser, the latter being always parallel to the xy plane. Fortu-
nately, De Gennes’s formula is generalized in a straightforward
manner as follows:

S(kkk⊥)
σ0

= ∑
j=1,2

[(
ppp · eee j

)
(ãaa · eeez)+(ppp · eeez)

(
ãaa · eee j

)]2 ⟨|ñ j(kkk⊥)|2⟩ (1)

In the latter formula, σ0 = [εak2/(4π)]2 is a constant defined in
terms of the anisotropy of permittivity εa and the wavevector of
light k = 2πno/λ0, with no the LC ordinary refractive index and
λ0 the wavelength in empty space. ⟨|ñ j(kkk⊥)|2⟩ corresponds to
the statistical average of the squared amplitude of the j-th fluc-
tuation eigenmode with Fourier wavevector kkk⊥. For the sake of
simplicity, we assume here that the sample is only weakly chiral,
which implies (see Sec. 3.4.2 in Ref.24) that the first (second)
eigenmode can be chosen as a director perturbation parallel (or-
thogonal) to kkk⊥ and associated with the unit vectors eee1 ≡ kkk⊥/|kkk⊥|
and eee2 ≡ eeez × eee1, as in nematics. These director perturbations are
schematized in Fig. 1b. The unit-normed vector orientation of
the polariser was defined as ppp ≡ cosψpeee′x + sinψpeee′y, with the an-
gle ψp defined in Fig. 1c. The modified orientation of the analyser
ãaa—not used in De Gennes’s original formula—was obtained using
the approach of Korger et al.25, who defined a generalized pro-
jection operator for off-axis optical fields incident on a polariser

made of anisotropic and absorbing nanoparticles. It can be cal-
culated from the unit-normed vector orientation of the analyser
aaa ≡ cosψaeee′x + sinψaeee′y (with the angle ψa defined in Fig. 1c) as
follows:

ãaa ≡ aaa+
kkk′⊥ ·aaa

k
eee′z, (2)

with kkk′⊥ ≡ kxeee′x +(ky/cosθ)eee′y. All these formulas were simplified
in the paraxial limit of small |kkk⊥|/k, which is justified since the
numerical aperture of our microscope objective is small. In De
Gennes’s original formula, aaa is used instead of the generalized
projection direction ãaa, which, in our setup, is only valid if kkk⊥ = 000
(scattered field normal to the analyser).

We can now develop eqn (1) in two limit cases. Let us con-
sider first the geometries introduced by Giavazzi et al.22. With
the notations of this paper, these geometries correspond to θ = 0
(untilted sample), and up to a global rotation around eeez, ψp = 0
and ψa =ψ, with ψ = 0 (ψ ̸= 0) in geometry "H1" (geometry "H2")
of Ref.22. With these values, eqn (1) simplifies to:

S(kkk⊥) = σ0
|kkk⊥|2

k2

{
cos2 ψ⟨|ñ1(kkk⊥)|2⟩ if kkk⊥ ∥ eeex

sin2 ψ⟨|ñ2(kkk⊥)|2⟩ if kkk⊥ ∥ eeey
(3)

This calculation reproduces the conclusion of Giavazzi et al.,
namely that in these geometries one can select one of the two fluc-
tuation eigenmodes with the scattering wavevector along the x or
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y axis as soon as ψ is different from 0 and π/2. However, the scat-
tered field intensity scales as |kkk⊥|2/k2, which means that forward-
scattering modes with kkk⊥ = 000 cannot be observed in these setups.

Let us consider now a new experimental setup by imposing θ ̸=
0 (tilted sample), ψp = π/4 and ψa = 3π/4 (crossed polarisers
symmetric with respect to eee′y). With these values and assuming
that |kkk⊥| ≪ k sin2θ , eqn (1) simplifies to:

S(kkk⊥) = σ0

[
sin(2θ)

2

]2
{
⟨|ñ2(kkk⊥)|2⟩ if kkk⊥ ∥ eeex

⟨|ñ1(kkk⊥)|2⟩ if kkk⊥ ∥ eeey
(4)

We can therefore conclude that even forward-scattering modes
(kkk⊥ = 000) can be observed with a good contrast in this setup. Fur-
thermore, an eigenmode selection similar to the one in Giavazzi’s
setups happens along the x and y directions with a switch of ñ1

and ñ2, but this selection becomes broken (i.e. a mixture of eigen-
modes contribute to scattering) when kkk⊥ has an arbitrary direc-
tion or when |kkk⊥| is comparable to k sin2θ . Assuming a mean
wavelength of 0.6 µm, a mean refractive index of 1.6, and a tilt an-
gle θ ≈ 5◦, this critical wavevector is found to be around 3 rad/µm,
which is similar to the diffraction limit kNA ≈ 4.2rad/µm and big-
ger than all wavevectors probed in the experiments presented in
the following. I remark that in strongly chiral samples, the struc-
ture of fluctuation eigenmodes is more complicated than in ne-
matics, and deviations from this ideal behaviour could happen be-
cause of cross-correlations between the directions x and y. These
possible deviations will be discussed in Sec. 4.

To summarise this discussion, Giavazzi’s setups for
homeotropic samples are well-suited to study fluctuation
modes with moderately large scattering wavevectors (up to the
diffraction limit of the microscope), whereas the setup of Fig. 1a
is better suited to the study of fluctuations with small scattering
wavevectors. In this paper, only the latter setup is used.

2.3 Experimental validation in nematics

In Fig. 1c, I show snapshots of a typical acquisition done with a
nematic sample of 5CB. The associated histogram of intensity val-
ues is shown in Fig. 1d. From this histogram, I calculate that 80 %
of the intensity fluctuations δ I deviate from the mean intensity
Imean by no more than 0.15Imean. This means that for the great
majority of intensity fluctuations, the heterodyne scattering con-
dition δ I ≪ Imean is reasonably fulfilled and the DDM technique—
which only works in the heterodyne regime22—can be applied to
characterize the fluctuation modes. One may nevertheless won-
der whether extreme fluctuations which do not fulfil the hetero-
dyne condition could bias the DDM analysis. To assert this, let us
compare measurements obtained from the setup of Fig. 1a with
other measurements in the literature.

I recall that DDM is based on the measurement of an image
stack I(rrr⊥, t) (with rrr⊥ the pixel position and t the time) such as
the one shown in Fig. 1c and the calculation of the so-called image
structure function22:

D(kkk⊥,∆t)≡ ⟨
[
Ĩ(kkk⊥, t +∆t)− Ĩ(kkk⊥, t)

]2⟩t , (5)

with Ĩ the spatially Fourier-transformed acquisition stack, kkk⊥ the
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Fig. 2 (a) A few 2D image structure function, associated to ∆t =
5,10,15 ms from left to right, as measured in a nematic sample of 5CB
at TNI −T = 5◦C with a framerate of 100 Hz. The white bar represents a
wavevector shift of 0.5 rad/µm, and the horizontal (resp., vertical) dashed
line represents the kx-axis (resp., ky-axis) along which 1D temporal pro-
files of the image structure function are extracted. (b) 1D temporal
profiles of the image structure function of (a) plotted against the time
delay for a few transverse wavevectors. Experimental data correspond to
markers, and the plain lines are the associated fit curves calculated with
eqn (6). (c) Fundamental decay time τ0 ≡ τ(kkk⊥ = 000) as a function of
temperature.

Fourier wavevector, and ⟨. . .⟩t an ergodic average. I underline that
the Fourier wavevector of the measured images is not parallel to
the in-sample-plane xy associated with the scattering wavevec-
tors, and in all rigour should be defined as the modified wavevec-
tor kkk′⊥ of the previous subsection, which is parallel to the x′y′

plane. However, since the tilt angle of the sample is around 5◦,
the difference between ky and k′y ≡ ky/cosθ is less than 0.15 % and
can therefore be safely ignored.

In the regime of validity of DDM, the image structure function
can typically be fitted with the following one-decay-time law22:

D(kkk⊥,∆t) = A(kkk⊥)
(

1− exp
[
− ∆t

τ(kkk⊥)

])
+B(kkk⊥) (6)

In the latter formula, τ(kkk⊥) is the decay time of the slowest fluc-
tuation mode with transverse wavevector kkk⊥, B(kkk⊥) is a non-
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thermal noise contribution, and A(kkk⊥) ≡ M(kkk⊥)S(kkk⊥) is propor-
tional to the scattering cross-section S(kkk⊥) derived in the previous
section. Following the formalism of Digital Fourier Microscopy
introduced by Giavazzi et al.26, the scattering cross-section S(kkk⊥)
will be identified with the static structure factor of the LC layer
since both quantities are proportional to the correlation function
of the fluctuating field (particle density in Giavazzi’s case, direc-
tor fluctuation in our case). Finally, M(kkk⊥) can be interpreted as a
setup-dependent factor related to the microscope, which may in-
clude a variety of effects such as spatial or temporal incoherence
and finite sample thickness27.

I underline that confined fluctuation modes are character-
ized by both the transverse wavevector kkk⊥ and the longitudinal
wavevector kz, which must be discretised since the sample thick-
ness is finite23. However, as demonstrated experimentally and
theoretically in a previous study with nematic samples14, only the
fundamental wavevector kz = kh ≡ π/h significantly contributes
to the image structure function since higher-order modes decay
much faster. We will reach a similar conclusion for my cholesteric
samples, which is why no kz-dependence was introduced for the
DDM quantities above.

For all studied samples, I systematically measured the image
structure function after properly focusing the sample in the mi-
croscope, which can be done visually by minimizing the out-of-
focus blur of the patterns visible in Fig. 1c. Since the numerical
aperture of the objective and the sample tilt are small, this fo-
cusing can be achieved over the whole region of interest. The
ergodic average in the definition of D is always done over 40000
images. A few 2D image structure function at fixed time delay ∆t
are shown in Fig. 2a, as measured in a nematic sample of 5CB
with thickness h ≈ 11.6µm. A few 1D temporal profiles of the im-
age structure function of (a) with the associated fit using eqn (6)
are shown in Fig. 2b. To reduce statistical noise, these 1D profiles
were averaged over a 3x3 region centred on each wavevector. As
visible, the experimental data is well-fitted by the one-decay-time
law, which further justifies our choice to ignore the dependence
of DDM quantities on kz. However, I note that the 3x3 aver-
aging may bias the fitted relaxation time since τ typically varies
quadratically in kkk⊥. For this reason, a different and non-biased
averaging method was used to extract the relaxation time τ(kkk⊥)
from all the measured DDM stacks in this paper.

In principle, the bow-tie-shape azimuthal averaging method of
Ref.22 is well-suited to the task. Indeed, the latter method is
non-biased since the average is done over a limited azimuthal
range where the DDM signal is almost constant, but the calcula-
tion of uncertainties is unfortunately not detailed in Ref.22. For
this reason, I used a slightly different approach based on surface
fitting instead of azimuthal averaging. The first step of this new
approach is to fit the raw DDM data with eqn (6) for every dis-
cretized wavevector kkk⊥, without any averaging of the DDM signal.
The resultant fitted decay times will be denoted as τnoisy(kkk⊥) since
they were obtained from noisy DDM signals. The second step is
to locally fit τnoisy(kkk⊥) with a quadratic polynomial surface inside
a 5-pixel-wide square region centred on any target wavevector
kkk⊥0, and deduce the value of τ(kkk⊥0) from the centre value of the
fitted surface. Finally, the uncertainty of τ(kkk⊥0) can be estimated

Table 1 Elastic constants (in pN) and viscosities (in mPa.s) of 5CB at
TNI −T = 5◦C measured by Cui and Kelly11.

K1 K2 K3 γ1 ηa ηb ηc ηbc
4.81 2.80 6.26 56 33.2 17.7 73.8 45.8

as 3
√

C, with C the diagonal entry of the surface fit covariance
matrix associated with τ(kkk⊥0).

On Fig. 2c, the fundamental decay time τ0 ≡ τ(kkk⊥ = 000) is plot-
ted against TNI − T , with T the temperature and TNI the ne-
matic/isotropic transition temperature, which is systematically
measured for each sample and is typically around 35.5 °C. To
validate these measurements, let us estimate their theoretical val-
ues using the values of the material constants of 5CB measured
by Cui and Kelly11 with a dynamical light scattering setup. For
this study, the relevant material constants are the Frank elastic
constants K1, K2 and K3 respectively associated with splay, twist
and bend deformations, as well as the rotational viscosity γ1, the
Miesowicz viscosities ηa, ηb, and ηc, and an additional viscosity
ηbc that will be used later in this paper but is unimportant for now.
The definition of these viscosities in terms of the Leslie viscosities
α j ( j = 1 . . .6) will be given in Sec. 3.1.

Čopič et al. theoretically calculated the decay time of the fun-
damental fluctuation mode in a homeotropic nematic sample at
kkk⊥ = 000 and found14:

τ0 =
γ1(1−µ)

K3φ 2
τ

(
2
h

)2
, (7)

where the parameter φτ can be found as the solution of:

cosφτ = µ sincφτ . (8)

In these equations, µ is a parameter which sets the strength of
the coupling between hydrodynamics and director relaxation and
is defined as:

µ ≡ α2
2

γ1ηc
=

(ηb −ηc − γ1)
2

4γ1ηc
, (9)

where the last equality can be deduced from the viscosity defini-
tions in Sec. 3.1. Table 1 includes the value of the material con-
stants at T −TNI = 5◦C, and the values at other temperatures can
be obtained from Ref.11. Using those, I plotted eqn (7) against the
temperature as a plain line in Fig. 2c without adjusting any pa-
rameter. One can observe an excellent agreement with our DDM
measurements with an average deviation less than 3.6 %, which
demonstrates the validity of the novel DDM geometry presented
here.

Interestingly, one may notice that the decay time τ0 is almost
independent of the temperature in 5CB, which is due to the very
similar temperature dependence of γ1 and K3 and an almost T -
independent µ parameter. Furthermore, the originality of Čopič
formula in eqn (7) is to introduce a correction term due to the in-
teraction between the sample boundaries and the hydrodynamic
flow created by the relaxing fluctuation mode. When this inter-
action is neglected, one obtains the same formula with φτ = π/2
(which is a solution of eqn (8) only if µ = 0, which is not true
in general), leading to an inferior agreement with the experiment
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as demonstrated by the plotted dash line in Fig. 2c. This further
demonstrates the delicate coupling between hydrodynamics, con-
finement and thermal fluctuations in light scattering experiments
with liquid crystals.

2.4 Critical behaviour in unwound cholesterics

Let us now consider measurements with cholesteric samples.
Since different samples may be associated with slightly different
thicknesses, one needs to be very careful when comparing mea-
surements between different samples. In short, we must properly
scale measured quantities to be able to compare them between
different samples. To find the relevant scaling, let us apply di-
mensional analysis to our system considering only the fundamen-
tal relaxation time τ0. Inspired by the model of Čopič et al.14, we
know that τ0 will depend on γ1, µ, K3 and h. But in a cholesteric,
it must also depend on the spontaneous twist q and the twist elas-
tic constant K2, since deformations of the equilibrium unwound
state are twisted in a chiral sample. We then have a relation be-
tween 7 parameters with 3 physical dimensions (time, length and
mass). According to the Buckingham π theorem, we can reduce
this relation to another one between 4 dimensionless parameters.
This relation can be conveniently expressed in terms of a univer-
sal function f :

τ0

τh
= f

(
q
qc

,µ,
K2

K3

)
, (10)

with τh ≡ γ1(1 − µ)/(K3k2
h), qc ≡ (K3/K2)kh and kh ≡ π/h. I

emphasize that qc corresponds to the (positive) critical sponta-
neous twist at which a right-handed unwound cholesteric desta-
bilizes19*. In addition, Eq. 10 must be invariant under the mir-
ror symmetry because the decay time should be the same in a
left-handed and right-handed cholesteric. This means that f is
an even function of q/qc, since q—a pseudo-scalar—is the only
quantity that changes sign under the mirror transformation.

In the experiments, the spontaneous twist q is varied by chang-
ing the mass fraction C of R811, which are linked together
through the definition of the helical twist power HTP = q/(2πC).
Since the mass fractions of R811 are rather small, one can as-
sume that the HTP, elastic constants and viscosities are all inde-
pendent of C. One can therefore define a critical mass fraction
Cc ≡ qc/(2π HTP) such that q/qc = C/Cc, and conclude that the
relation between τ/τh and C/Cc should be described by a univer-
sal even function in our experiments.

To test this, I prepared 12 samples with mass fractions of R811
between 0 and 0.719 wt% and thicknesses between 10 and 12 µm
and measured for each sample the image structure function and
decay frequencies using the procedure described above. Some
samples with inhomogeneous thickness allowed multiple mea-
surements in different parts of the sample, thanks to the careful
thickness cartography established before filling any sample as ex-
plained above. All measurements were done at T − TNI = 5◦C.
Each measurement is associated with a unique thickness value
that allows the calculation of τh and Cc using their definitions

* Conversely, a left-handed unwound cholesteric destabilizes when q =−qc.

and the material constant values in Table 1. When the rescaled
mass fraction of chiral molecules C/Cc is above 0.8, the density
of localized and metastable topological solitons perturbing the
homeotropic unwound state (such as cholesteric fingers and bub-
bles19) becomes too high. These localized director perturbations
prevent the DDM technique to be applied since they break the
translational invariance. In principle, this range of mass fractions
could be slightly extended up to a higher mass fraction C′

c < Cc

(with C′
c > 0.8Cc) at which the line tension of cholesteric fingers

becomes zero19. Indeed, below C′
c, isolated cholesteric fingers

with positive line tensions trapped between dust particles could
be erased by using ITO-covered glass plates and applying an elec-
tric field. However, between C′

c and Cc, cholesteric fingers have a
negative line tension and will therefore grow again in the absence
of an electric field, thereby preventing their elimination. Since it
is sufficient for our goal, I focus here on samples without ITO
electrodes and with C < 0.8Cc, for which one can always find a
homeotropic region with a typical extent of 200 µm.

Fig. 3a shows a few 1D temporal profiles of the image structure
function at kkk⊥ = 000 for different rescaled mass fraction of R811
C/Cc. From this plot, we deduce that the fundamental relaxation
time τ0 ≡ τ(kkk⊥ = 000) seem to increase with C/Cc. To better quan-
tify this variation, Fig. 3b shows the fundamental rescaled decay
frequency τh/τ0 as a function of C/Cc. As visible, all experimental
data collapse on the same master curve, in full agreement with
the dimensional analysis above. Furthermore, one observes that
the decay frequency is greatly reduced as C increases, and seems
to even go to 0 as C approaches the critical mass fraction Cc. This
critical behaviour should come as no surprise for the reader since
phase transitions are generally associated with a critical slowing
down of a few fluctuation modes—the so-called soft modes of the
transition. In our case, the transition is not a phase transition in
the thermodynamic sense but rather a structural transition cor-
responding to the elastic destabilization of the unwound state at
C = Cc. More quantitatively, the experimental data of Fig. 3b is
well-fitted with the following even function (shown with a plain
line in Fig. 3b):

τh

τ0
=

1− (C/Cc)
2

T0 −T1 (C/Cc)
2 , (11)

with T0 = 3.52± 0.12 and T1 = 0.40± 0.3 two coefficients which
only depends on µ and K2/K3 according to the dimensional anal-
ysis above. The numerator in eqn (11) is directly associated with
the vanishing of the fundamental decay frequency at C =Cc and is
compatible with the experimentally-observed horizontal slope at
C = 0, whereas the denominator corresponds to correction terms
associated with the coupling between hydrodynamics and direc-
tor relaxation. This law will be justified in more detail in Sec. 3
and discussed in Sec. 4. Here, I will only emphasize that the criti-
cal behaviour is mainly determined by the numerator of eqn (11),
which has no adjustable parameter. We can therefore conclude
that our measurement of the HTP with Cano wedge samples
(which sets the amplitude of the critical mass fraction Cc) is fully
compatible with the critical slowing down of the fluctuations ob-
served with DDM.

In addition to the fundamental fluctuation mode at kkk⊥ = 000,
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Fig. 3 (a) 1D temporal profiles of the image structure function at kkk⊥ = 000, plotted against the time delay for three different rescaled mass fractions of
chiral molecules C/Cc. (b) Rescaled fundamental decay frequency τh/τ0 as a function of C/Cc. (c) Dispersion curve of decay frequencies as a function
of the rescaled wavevector kx/kh (left) and ky/kh (right) for three different C/Cc. The legend in (a) also applies to (c). For all plots, markers correspond
to experimental data and plain lines correspond to fit data. All experimental data associated with (a,c) (resp., (b)) were obtained with a framerate
of 200 Hz (resp., 100 Hz). The fit lines in (a) (resp., (b)) were calculated with eqn (6) (resp., eqn (11)). The fit lines in (c) were obtained from the
theoretical model introduced in Sec. 3 and discussed in Sec. 4.

the DDM approach also gives the decay frequencies when kkk⊥ ̸=
000. Fig. 3c shows a few dispersion curves (τh/τ plotted against
|kkk⊥|/kh) when the wavevector kkk⊥ is along x or y, restricting the
analysis to wavevectors of amplitude less than 0.6 rad/µm and
taking into account the selection rule of fluctuation eigenmodes
described in Sec. 2.2. In this figure, one may observe that the
modes selected when kkk⊥ is along y decay faster than the ones
with kkk⊥ along x, which indicates that there exist two branches of
fluctuations modes with different dissipations. This experimental
result will be discussed in more depth in Sec. 3 and 4, where we
will explain how these dispersion curves can be reasonably fitted
(plain lines in Fig. 3c) with a full model of fluctuation modes in
unwound cholesterics. In addition, an attentive reader will no-
tice that the decay frequencies decrease with the mass fraction C
of R811 whatever the value of the wavevector kkk⊥, showing that
chirality affects the dynamics of all fluctuation modes, not simply
the fundamental one. However, I emphasize that only the mode
at kkk⊥ = 000 is associated with a critical divergence of the decay time,
and therefore only this fundamental mode can be considered as
the soft mode driving the destabilization of the unwound state.

Up until now, we have focused on the dynamical properties of
the fluctuation modes, i.e. their decay frequencies. Let us now ex-
amine their static properties by trying to estimate the static struc-
ture factor S(kkk⊥) from the image structure function. As explained
before, the coefficient A(kkk⊥) in eqn (6) is equal to M(kkk⊥)S(kkk⊥),

with M a function depending on the optical details of the micro-
scope setup. The function M was characterized in depth by Gi-
avazzi et al. for a depolarized DDM setup optimized for the study
of colloidal suspensions, taking into account finite-size effects and
partial temporal and spatial coherence of the illumination setup.
Their calculation showed that for large wavevectors, the func-
tion M is not constant and one cannot estimate directly the static
structure factor from A(kkk⊥) (at least not without using the the-
oretical expression of M(kkk⊥)); conversely, for small wavevectors,
the Taylor expansion of M(kkk⊥) up to order 1 is independent of
kkk⊥ (no linear dependence in kkk⊥) and M can be considered as a
non-essential multiplicative factor. Generalizing these results to
the polarized DDM setup used here is outside the scope of this
paper, so let us instead focus on the regime of small wavevectors,
in which we can reasonably assume that the function M is also
constant.

According to a calculation by Zel’dovich and Tabiryan23, the
fundamental fluctuation mode of a confined nematic sample is
associated with a Lorentzian contribution to the static structure
factor. Assuming that this statement stays true in a cholesteric
and that higher-order modes do not significantly contribute to
the structure factor, we can take S(kkk⊥) under the following form
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Fig. 4 (a,b) Rescaled static structure factor as a function of the rescaled
wavevector when kkk⊥ is parallel to x (a) or y (b), for three different mass
fractions of R811. The legend in (a) also applies to (b). (c) Rescaled
correlation lengths plotted against the rescaled mass fraction of chiral
molecules. In (a,b,c), markers (plain lines) correspond to experimental
data obtained with a framerate of 100 Hz (theoretical fits using eqn (12)
for a–b and eqn (13) for c).

for our setup:

S(kkk⊥) =


Sx

[(
h
ξx

)2
+
(

kx
kh

)2
]−1

if kkk⊥ ∥ eeex

Sy

[(
h
ξy

)2
+
(

ky
kh

)2
]−1

if kkk⊥ ∥ eeey

(12)

with Sα a constant and ξα the correlation length along the di-
rection α = x or y, using again the fact that different types of
fluctuation modes are selected along the x and y directions. Since
we assumed that M is a constant for small wavevectors, the func-
tion A(kkk⊥) can also be fitted by the same law with a coefficient
Aα instead of Sα , and data from different samples can be com-

pared by plotting A/Aα = S/Sα against kα/kh (α = x,y), as shown
in Fig. 4a–b. From this graph, one can conclude that eqn (12) fits
very well the experimental data when |kkk⊥| is less than 0.6 rad/µm,
which is approximately 8 times smaller than the diffraction limit
of our microscope objective. For wavevectors of higher amplitude,
I found out that the measured A(kkk⊥) decay exponentially instead
of algebraically, which could likely be explained by an accurate
modelling of the microscope function M(kkk⊥).

From the theoretical fits of the static structure factor for each
sample, one obtains the rescaled correlation lengths ξx/h and ξy/h
as a function of the rescaled mass fraction of R811 C/Cc, as plot-
ted in Fig. 4c. Similar to the critical divergence of the decay time,
one may observe that the correlation lengths also seem to diverge
when C → Cc. More quantitatively, the experimental curves in
Fig. 4c are well-fitted with the following law (α = x or y):

ξα
h

=
Gα[

1− (C/Cc)2
]ν , (13)

with ν ≈ 0.4. I underline that the shape of M(kkk⊥) could bias the
estimation of the correlation lengths from our experimental data.
However, this bias should be the same whatever the mass fraction
of chiral molecules and will therefore not change the observed
critical behaviour.

Summarizing the experimental results of this section, I showed
that criticality can be found in the dynamic and static properties
of the fluctuation modes, with a divergence of the decay times
and correlation lengths when C →Cc. To better characterize these
critical behaviours, the next two sections will introduce and dis-
cuss a complete model of the decay dynamic of fluctuation modes
in unwound cholesteric.

3 Theoretical model of confined chiral fluctuations

3.1 Relaxation dynamics

The main goal of this section is to theoretically calculate the
relaxation times and director/velocity profiles associated with
the fluctuation modes of an unwound cholesteric sample with
homeotropic alignment. All calculations are done in the refer-
ential of the sample (eeex,eeey,eeez) as defined in Fig. 1a, with the z-
coordinate varying from −h/2 to h/2. The director field is written
as nnn =

√
1−|nnn⊥|2eeez + nnn⊥, with nnn⊥ ⊥ eeez the fluctuating part. The

hydrodynamic velocity vvv is also decomposed into its transverse
part vvv⊥ and longitudinal part vzeeez. By linearising the equations of
nematodynamics19 around the equilibrium state nnn = eeez and vvv = 000,
the linearised torque equation is found to be:

γ1∂tnnn⊥+α2∂zvvv⊥+α3∇∇∇⊥vz =
(

K2∆⊥+K3∂ 2
z

)
nnn⊥

+(K1 −K2)∇∇∇⊥∇∇∇ ·nnn⊥−2K2qeeez ×∂znnn⊥.

(14)

The coupling with hydrodynamics is taken into account with the
Leslie viscosities α2 and α3, γ1 ≡ α3−α2 is the rotational viscosity,
q is the spontaneous twist of the cholesteric and K1,2,3 are the
splay, twist and bend elastic constants. The velocity field vvv can
be calculated from the linearised momentum equation (i.e. the
Stokes equation) ρ∂tvvv = ∇∇∇ ·σσσ and incompressibility condition ∇∇∇ ·
vvv = 0, with ρ the fluid density and σσσ the stress tensor.
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By linearising the general expression of the stress tensor of a
nematic/cholesteric LC19, I find that the Stokes equation can be
rewritten as follows:

ρ∂tvvv⊥+∇∇∇⊥P = α2∂z∂tnnn⊥+
[
ηa∆⊥+ηc∂ 2

z

]
vvv⊥, (15)

ρ∂tvz +∂zP = α3∇∇∇ ·∂tnnn⊥+
[
ηb∆⊥+(2ηbc −ηa)∂ 2

z

]
vz, (16)

where ηa ≡ α4/2, ηb ≡ (α3+α4+α6)/2 and ηc ≡ (α5+α4−α2)/2
are the usual Miesowicz viscosities defined as functions of the
Leslie viscosities α1−6 and ηbc = (α1 + ηb + ηc)/2 is an addi-
tional viscosity relevant to the relaxation of splay-bend modes14.
These equations are given in an especially compact form thanks
to the Parodi relation19 α2 + α3 = α6 − α5, the incompressibil-
ity identity ∂zvz = −∇∇∇ · vvv⊥ and a redefinition of the pressure
P → P− (α2 +α5)∂zvz/2—which is allowed since pressure is a La-
grange multiplier in the limit of perfect incompressibility. They
can be checked to agree with other (usually longer) forms given
in the literature14,28. I assume that there is no hydrodynamic slip
on the confining boundaries (i.e. zero-Dirichlet boundary condi-
tions for vvv). Using the incompressibility condition, these bound-
ary conditions (BCs) also imply ∂zvz = 0 on the confining plates
(i.e. zero-Neumann BCs for vz). I also recall that thermodynamic
stability imposes the following inequalities for the viscosities19:

γ1 > 0, ηa > 0, ηb >
α2

3
γ1

, ηc >
α2

2
γ1

, ηbc >
α2 +α5

2
(17)

The next step is to eliminate the pressure from eqn (15,16)
and neglect the inertia terms since the associated relaxation time
τi ≡ ρl2/ηa (with l a typical length comprised between the thick-
ness h and the region-of-interest width L) can be estimated to be
smaller than 3 µs, which is much smaller than all relaxation times
considered in this paper. I then find an analytical solution for the
velocity components, expressed in terms of the time-derivative of
the director field:

eeez ·∇∇∇× vvv⊥ =−
[
H TB

]−1

D
C TB∂t (eeez ·∇∇∇×nnn⊥) , (18)

vz =−
[
H SB

]−1

D,N
C SB∂t (∇∇∇ ·nnn⊥) , (19)

with the following differential operator definitions:

H TB = ηa∆⊥+ηc∂ 2
z , H SB = ηb∆2

⊥+2ηbc∂ 2
z ∆⊥+ηc∂ 4

z , (20)

C TB = α2∂z, C SB = α3∆⊥−α2∂ 2
z . (21)

Eqn (18,19) rely on a compact notation for the inverse of any
differential operator D , where calculating v = [D ]−1

D u (resp.,
v = [D ]−1

D,N u) means solving the differential equation Dv = u
with zero-Dirichlet boundary conditions (resp., zero-Dirichlet and
zero-Neumann boundary conditions). This notation is partic-
ularly convenient and clear when numerically discretising the
problem on a mesh since in this case any differential operator
(resp., function) is transformed into a sparse matrix (resp., vec-
tor). In this discrete setting, calculating v = [D ]−1 u is equivalent
to calculating the matrix-vector product with the matrix inverse

[D ]−1, which can be easily done (again with appropriate BCs)
using conventional tools of linear algebra.

In Eqn (18,19), the director field is naturally split into two inde-
pendent contributions associated with splay-bend (SB) deforma-
tions (∇∇∇ ·nnn⊥ ̸= 0) or twist-bend (TB) deformations (eeez ·∇∇∇×nnn⊥ ̸=
0). This split is similar to the Helmholtz decomposition of hy-
drodynamics since these contributions are respectively associated
with curl-free and divergence-free vector fields. From a physical
point of view, eqn (18) (resp., (19)) shows that the relaxation of
a twist-bend (resp., splay-bend) director deformation will induce
a hydrodynamic flow in the plane (resp., out of the plane) of the
sample. The shapes of these flows for fundamental splay-bend or
twist-bend deformations are schematized in Fig. 5. These hydro-
dynamic flows will in turn modify the torque equation (14) and
lower the effective dissipation by helping the director to relax to-
wards equilibrium, leading to the so-called backflow effect of LCs.
To better see this, eqn (18,19) can be used to fully eliminate the
velocity from the torque equation (14):

[ΓΓΓ∂t +L]

(
∇∇∇ ·nnn⊥

eeez ·∇∇∇×nnn⊥

)
= 0, (22)

In the latter equation, ΓΓΓ is a differential operator representing
the effective rotational dissipation and L is a differential operator
governing the elastic response of the LC:

ΓΓΓ ≡
(

ΓSB 0
0 ΓTB

)
, L ≡

(
−K1∆⊥−K3∂ 2

z −2K2q∂z

2K2q∂z −K2∆⊥−K3∂ 2
z

)
,

(23)

ΓSB ≡ γ1 −C SB
[
H SB

]−1

D,N
C SB, (24)

ΓTB ≡ γ1 −C TB
[
H TB

]−1

D
C TB. (25)

Eqn (22) is the general differential equation governing the re-
laxation of a weakly deformed director field with backflow. To the
best of my knowledge, backflow effects were never derived under
this specific general form and instead are usually characterized
by fully solving the coupled torque and hydrodynamic equation
for a specific system and defining at the end of the calculation
an effective rotational viscosity γ⋆1 lower than γ1

14,19,28,29. The
formalism adopted here has many advantages. First, it explicitly
shows that SB and TB modes have generally different dissipation
due to the backflow contributions, which must be smaller than γ1

since the operators after the minus signs in eqn (24,25) are self-
adjoint positive operators†. Second, it can be applied for any ge-
ometry with weakly deformed directors, beyond the homeotropic
sample studied here, on condition that appropriate BCs are used
for the considered geometry. For example, a planar sample would
correspond to confining plates normal to the x or y directions in-
stead of z, with the director still aligned along z. Third, it takes
into account the spontaneous twist of a cholesteric, which couples
together SB and TB modes because of the symmetry breaking.

† The positive-definiteness of these operators can be deduced from a Fourier decom-
position and the thermodynamic inequalities of eqn 17.
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Fourth, for an unconfined nematic sample (q = 0), one immedi-
ately finds that the dissipation operators in eqn (24,25) calculated
in Fourier space exactly corresponds to the effective rotational
dissipation of bulk SB and TB modes (see for example eqn (1)
in Ref.14). Finally, and as already noted above, eqn (22) can be
easily numerically discretised using a combination of sparse ma-
trices, and allows to immediately obtain a director field solution
without having to explicitly calculate the hydrodynamic velocity.

3.2 Eigenmodes of thermal fluctuations

3.2.1 Eigenvalue system

Let us now switch to the calculation of the fluctuation modes
induced by thermal noise. Following the approach of Čopič et
al.14, I calculate those from the eigenvalues and eigenmodes
of eqn (22), assuming exponentially-decaying modes. But be-
fore this, let us make an important point concerning the ampli-
tude of fluctuation modes, which must be calculated from the
thermodynamic equipartition theorem following the methodol-
ogy of Zel’dovich et al.23. In this calculation, the amplitude of
any eigenmode of the elasticity operator L with eigenvalue Λ is
found to be proportional to kBT/Λ. The problem here is that
the dynamically-decaying eigenmode profiles of eqn (22) are not
the same as the eigenmode profiles of L due to the inclusion of
confined backflow—a dissipative phenomenon not related to the
equilibrium equipartition theorem. In short, it is not really clear
at first sight how the eigenmode amplitudes in the former equa-
tion should be linked to the eigenmode amplitudes calculated
from equipartition.

This problem can be solved by observing that the backflow as-
sociated with a relaxing director eigenmode of eqn (22) needs a
finite time to reach a stationary regime, which is set by the hydro-
dynamic relaxation time τi associated with inertia in eqn (15,16).

To better illustrate this, let us consider a fluid initially at rest and
a random thermal event which generates at t = 0 an initial direc-
tor field equal to one of the eigenmodes of L. At time scales t < τi,
the velocity field grows from 0 and starts perturbing this initially
pure eigenmode, while at times t ≫ τi, the director field is decom-
posed into a sum of eigenmodes of eqn (22) which exponentially
decay with time. In short, eqn (22) is only valid at times longer
than the relaxation time of the hydrodynamic velocity and can-
not make the link between the short-time regime (equipartition
theorem) and long-time regime (eigenmode relaxation with back-
flow). In principle, only the original eqn (14,15,16) allows the
numerical calculation of this complicated eigenmode transforma-
tion process, which should be done starting from a null velocity
and an eigenmode profile of L calculated from the equipartition
theorem for the director. However, the hydrodynamic relaxation
time τi cannot be probed in my experiments since it is too small,
so let us ignore this difficult calculation of the mode amplitudes
and focus instead on the relaxation time and profiles of the fluc-
tuation modes in the long-time regime.

Since the LC layers in the experiments are ∼ 2000 wider than
they are thick, let us assume that the fluctuation modes are con-
fined only in the z-direction and search eigenmodes using Fourier
modes in the plane of the sample:

nnn⊥(rrr⊥,z, t) = ñnn⊥(kkk⊥,z)exp [ikkk⊥ · rrr⊥− t/τ] , (26)

with τ the decay time and kkk⊥ the in-sample-plane wavevector
of the eigenmode. Using eqn (22), I find that the eigenmode pro-
file ñnn⊥(kkk⊥,z)≡ ñSB(kkk⊥,z)eeek+ ñTB(kkk⊥,z)eeez×eeek (with eeek = kkk⊥/|kkk⊥|)
and eigenvalue f ≡ 1/τ must be calculated from the following
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generalized eigenvalue problem:

[
L̃− f Γ̃ΓΓ

](ñSB

ñTB

)
= 000, (27)

where L̃ (resp., Γ̃ΓΓ) is obtained from the in-sample-plane Fourier
transform of L (resp., ΓΓΓ), i.e. making the substitution −∆⊥ →
|kkk⊥|2.

3.2.2 Dispersion relation for small transverse wavevectors

Let us first focus on the small wavevector limit |kkk⊥| → 0. Under
this limit, the actions of the dissipation operators have relatively
simple analytic expressions which are given in the ESI†, and I
find that eqn (27) can be transformed into a simpler eigenvalue
problem by introducing the rescaled coordinate Z ≡ 2z/h and the
modified eigenmode profiles mSB(Z) and mTB(Z) as follows:

ñSB(000,z) = mSB(Z)−µ
[
⟨mSB(Z)⟩+3Z⟨Z′mSB(Z′)⟩

]
(28)

ñTB(000,z) = mTB(Z)−µ
[
⟨mTB(Z)⟩+ 6φq(1−µ)

φ 2
τ

⟨Z′mSB(Z′)⟩
]
(29)

with φq ≡ (qh/2)(K2/K3), φτ ≡ (h/2)
√

γ⋆1 f/K3, γ⋆1 ≡ γ1(1−µ) and
µ ≡ α2

2/(γ1ηc). The latter equations use the average operator
⟨u(Z′)⟩ ≡ ∫ 1

−1 u(Z′) dZ′
2 defined for any function u. The modified

eigenmode profiles must be the solution to the following eigen-
mode problem, as demonstrated in the ESI†:(

∂ 2
Z +φ 2

τ 2φq∂Z

−2φq∂Z ∂ 2
Z +φ 2

τ

)(
mSB(Z)
mTB(Z)

)
= 000, (30)

I note that the variable µ was already introduced in Sec. 2 as the
main backflow parameter, and was also used in previous publica-
tions14. This parameter must be in the half-open range [0,1[ ac-
cording to the strict thermodynamic inequalities in eqn (17). The
variable φ 2

τ can be interpreted as a convenient renormalized de-
cay frequency which simplifies the dispersion equations obtained
in the following. This variable is directly proportional to the
rescaled decay frequency introduced in the experimental Sec. 2
with dimensional analysis through the relation φ 2

τ = (π/2)2(τh/τ).
Similarly, φq = (π/2)(q/qc) = (π/2)(C/Cc) can also be interpreted
as the rescaled mass fraction of chiral molecules. These new vari-
ables are much more convenient because they typically appear
as the arguments of cosine and sine functions, where the natural
unit is the radian—hence the π/2 factors. The “average” terms
in eqn (28,29) are a direct consequence of the boundary condi-
tions induced by confinement in the z-direction. They describe
the same effect as the one first revealed by Čopič et al.14, but I
stress that the formalism presented here is more general since it
includes the coupling with chirality (term proportional to φq in
eqn (29)).

Looking at eqn (30,28,29), one immediately observes that the
SB and TB components must have opposite parity, i.e. either ñSB

is even and ñTB is odd (“even-odd” case in the following), or con-
versely ñSB is odd and ñTB is even (“odd-even” case in the fol-
lowing) with respect to Z. The dispersion relation of the rescaled

eigenvalue φ 2
τ for each case can be found with a three-step cal-

culation: search solutions of eqn (30) as sums of cosine and sine
functions, write a linear system of equations associated with the
zero-Dirichlet BCs for ñSB and ñTB, and impose that the determi-
nant of this system is zero to get non-trivial eigenmodes. The full
calculation can be found in the ESI†, and leads to the following
general form for the dispersion relation of both cases:

R1(φs)R2(φs) =
3µφ 2

q

φ 2
τ

Rq(φs), (31)

with φs ≡
√

φ 2
q +φ 2

τ . The functions R1 and R2 are defined as fol-
lows:

R1(φs)≡ cosφs −µ sincφs, (32)

R2(φs)≡

sincφs (even-odd mode),(
1− 3µ

φ 2
s

)
sincφs +

3µ
φ 2

s
cosφs (odd-even mode).

(33)

In an achiral sample, φq = 0 and the dispersion relation is simply
given by R1(φτ )R2(φτ ) = 0, which can be checked to agree with
the one derived with a different method by Čopič et al.14—who
focused on the even-odd mode branch. In a cholesteric sample,
chirality couples together the different mode branches through
the function Rq, whose definition is longer than for R1,2 and is
therefore given in the ESI†.

By numerically solving eqn (31) to find the eigenvalue φτ and
deducing the associated director profiles, I found that the eigen-
modes can be uniquely identified by the index α of their dominant
component (α = 0 if maxz

[
ñSB]> maxz

[
ñSB], else α = 1) and the

number m of inflexion points in the profile of their dominant com-
ponent. In the following, the associated eigenvalues and profiles
of eigenmode components will respectively be denoted by φ (α,m)

τ ,
n(SB,α,m) and n(TB,α,m) (dropping the tilde for simplicity). Fig. 6
shows the director profiles of the first fluctuation eigenmodes.
Most importantly, one can directly check that when φq = π/2, i.e.
when the sample is at the threshold of destabilization of the un-
wound phase with C = Cc, the first two eigenvalues solution of
eqn (31) are given by φ (0,0)

τ = φ (1,0)
τ = 0, with φ (0,0)

τ (resp., φ (1,0)
τ )

associated with an even-odd (resp., odd-even) mode profile. This
demonstrates the theoretical existence of two soft modes with di-
verging decay times (or equivalently vanishing decay frequencies)
at the onset of destabilisation of the sample. Using a Taylor series
expansion of eqn (31) in 1−(C/Cc)

2, I found that the rescaled de-

cay frequencies τh/τ(α,0) =
[
2φ (α,0)/π

]2
of these two soft modes

have the following approximate expressions:

τh

τ(α,0)
=

(1−µ)
[
1− (C/Cc)

2
]

1− µ
2

[
fα (µ)+gα (µ)(C/Cc)

2
] (34)

The functions fα and gα (with α = 0,1) obtained from the Taylor
series are given in the ESI†. By construction, they are associated
with a very good asymptotic behaviour near C = Cc, but the ac-
curacy is not so good near C = 0. To get a better fit function for
the experiments, one can instead define these functions as first-
order polynomials in the backflow parameter µ. By fitting with
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Fig. 6 Director profiles of the first fluctuation eigenmodes calculated in the limit |kkk⊥| → 0 with the material constants of Table 1 and C/Cc = 0.6.
Modes with dominant SB (TB) components are shown on top (bottom) and are ordered with the number m of inflexion points as explained in the
main text.

eqn (34) the numerically calculated eigenvalues over the range
µ ∈ [0,1[ with C = 0, I find the following expression for the func-
tions fα :

f0(µ) = f1(µ) = 0.3799−0.0247µ, (35)

and by including the range C ∈ [0,Cc] into the fit, I find the fol-
lowing expressions for the functions gα :

g0(µ) = 0.6581−0.0342µ, (36)

g1(µ) = 0.3212+0.0074µ. (37)

The relative error between eqn (34) and the numerically calcu-
lated eigenvalues was found to be less than 0.08 % on average and
implies that this fitting function is therefore well-suited for quan-
titative analysis of the experiments. I remark that the rescaled
decay frequencies τh/τ(0,0) and τh/τ(1,0) have very similar values
(within less than 10 %) and cannot be distinguished in the ex-
periments due to the noise (at least with the setup used for this
paper).

Before examining the case of eigenmodes with arbitrary kkk⊥, let
us discuss an important point related to symmetries. An atten-
tive reader surely must be surprised by now that the eigenmode
profiles calculated in this section do not appear to agree with the
rotational invariance around the z-axis when kkk⊥ = 000. Indeed, a
null transverse wavevector implies that the SB and TB axes kkk⊥
and eeez × kkk⊥ become arbitrary and should lead to rotationally in-
variant equations for the components of the director field. This is
indeed the case of eqn (30) but not the case of eqn (28,29). The
reason for this discrepancy is that the dissipation operators ΓΓΓSB

and ΓΓΓTB do not have the same limit when |kkk⊥| → 0. As a mat-
ter of fact, this already quite peculiar observation is accompanied

by an even stranger divergence of the pressure under the same
limit, as demonstrated in the ESI†. Such a divergence is unac-
ceptable and hints that the incompressibility condition ceases to
be valid at large wavelengths, for which large quantities of fluid
are moved around by the thermal fluctuations. Taking into ac-
count the compressibility of the fluid (however weak it may be)
leads to a crossover between incompressible dynamics at large
wavevectors and compressible dynamics at small (but nonzero)
wavevectors, and also gives the right rotational invariance of the
modes when kkk⊥ = 000. A rigorous demonstration of this result is
not trivial and outside the scope of this paper, and will therefore
be published in a separate paper.

However, I emphasize that this cross-over between compress-
ible and incompressible dynamics is a mathematical subtlety that
is likely inaccessible in most experiments. Indeed, to examine
the effect of compressibility on a given fluctuation mode with
relaxation time τ, let us use a simple isothermal state equa-
tion30 κT ∂tP = (∂tρ)/ρ with ρ the density and κT the isother-
mal compressibility (of the order of 0.6 µm2/mN in the isotropic
phase of a common liquid crystal31). From the continuity equa-
tion (∂tρ)/ρ = −∇∇∇ · vvv and the compressible Stokes equation, one
deduces that the flow becomes compressible when the trans-
verse wavelength of the fluctuation mode is comparable to λc ≡
h
√

τ/(ηaκT ). Taking τ ≈ 0.1s (experimental order of magnitude
for the fundamental mode, see Fig. 2c) and ηa ≈ 33.2mPas (see
Table 1), I estimate that λc ≈ 7105h, which by far is much larger
than the sample lateral extent (∼ 2cm) for typical thicknesses h
of 1–100 µm. In experiments with finite-size samples, truly trans-
lationally invariant mode cannot exist and one can only observe
modes with finite wavevector. Even the zero-frequency “funda-
mental” mode measured by DDM must include contributions from
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Fig. 7 Eigenvalues of the first fluctuations modes as a function of the
rescaled transverse wavevector amplitude |kkk⊥|/kh, calculated with the
material constants of Table 1. The top (bottom) graph corresponds to
achiral (chiral) modes calculated with C = 0 (C/Cc = 0.6). The legend
applies to both graphs. Green points correspond to crossings (i.e. de-
generacies of eigenmodes) present in both achiral and chiral systems.
Conversely, red points correspond to crossings which are only present in
achiral systems.

wavevectors of amplitudes between 0 and π/L (with L ≈ 167µm
the size of the observation windows in my experiments) since the
DDM technique is based on a discretised and finite observation
window. Thus, the fluctuation modes probed in the experiments
of Sec. 2 are always measured for (effective) transverse wavevec-
tors much bigger than the cross-over frequency π/λc, for which
one can consider that the incompressibility condition is excellent.

3.2.3 Numerical calculation of modes with arbitrary trans-
verse wavevector

For completeness, I also solved the eigenvalue problem in
eqn (27) for general transverse wavevector kkk⊥. Although the dis-
persion relaxation can in principle be calculated with the same
method as in the previous subsection, it is much more compli-
cated. For this reason, I decided to use a numerical resolution
based on a finite difference discretisation of eqn (27) accurate at
order 2 in the mesh spacing. The actions of the matrix inverses
in the dissipation operators are calculated with a standard Con-
jugate Gradient iterative solver until a relative accuracy of 10−10

is reached. The generalized eigenvalue problem is solved with
a tolerance of 10−8 with the python library scipy32, which in-
terfaces the Implicitly Restarted Lanczos Method of the ARPACK
library33. All results presented here were obtained by using the

material constants of Table 1 and 151 discretisation points for the
z-direction.

Fig. 7 shows the first eigenvalues as a function of the renor-
malized wavevector amplitude |kkk⊥|/kh (with kh ≡ π/h) for achiral
and chiral samples. This figure uses the same ordering convention
as in the previous subsection and traces by continuity each mode
branch from the eigenvalues calculated in the limit |kkk⊥| → 0 (i.e.
the eigenvalues of the previous subsection). A peculiar feature of
this graph is that some crossings of achiral eigenvalues branches
(highlighted with red points in the top graph of Fig. 7) are re-
moved as soon as chirality is introduced in the system (contrary
to the green crossings in Fig. 7, which are present both in achi-
ral and chiral cases). The removal of these degeneracies is called
an avoided crossing in the condensed matter community, and is
similar to the opening of bandgaps in the optical band structure
of photonic crystals when the permittivity contrast increases34,
and other related phenomena in condensed matter and quantum
mechanics35. These avoided crossings always happen between
two neighbouring branches φ (0,m) and φ 1,m±1, i.e. neighbouring
branches with the same symmetry properties (they are both asso-
ciated with even-odd or odd-even mode profiles). Interestingly,
when looking at the mode profiles around avoided crossings, one
observes that the number of inflexion points for one of the di-
rector components changes by 2, as illustrated in Fig. 8 for the
lowest order branches. These mode transformations and avoided
crossings are solely due to the symmetry breaking introduced by
chirality, which couples together the two components of the di-
rector field. They are therefore fundamentally different from the
ones already mentioned by Čopič et al.14, which are rather due to
the hydrodynamic boundary conditions in planar achiral samples.

4 Discussion
We can now discuss further the experimental results of Sec. 2
in light of the theoretical results of Sec. 3. Let us focus first on
the measurement of the fundamental decay frequency. Since the
DDM technique is based on spatially discretised intensity signals,
this “fundamental” mode does not correspond exactly to kkk⊥ = 000
but to a weighted average of all modes with wavevector ampli-
tudes typically smaller than 2π/L with L ≈ 167µm the lateral size
of the experimentally observed region of interest‡. In particular,
this means that the great majority of these modes are in the in-
compressible regime described at the end of Sec. 3.2.2, since L
is much smaller than the critical wavelength λc associated with
compressible effects.

On the other hand, L is also much bigger than the thickness h
of the sample. We can therefore deduce from the theoretical re-
sults of Sec. 3 that the decay frequencies of these long-wavelength
modes are all approximately described by eqn (34) with α = 0
or 1 depending on the (random) orientation of their wavevector
with respect to the y-axis of the sample. One may therefore as-
sume that our measurement of the fundamental decay frequency

‡ This can be checked by calculating the zero-frequency coefficient of the discretised
Fourier transform for a signal with arbitrary frequency k, and finding a weight of the
form sinc(kL/2)N when the number of discretisation points N is high.
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corresponds to an average of the decay frequencies τh/τ(0,0) and
τh/τ(1,0), which are too similar to be separated by a double-decay-
time fit in my experiments as discussed in Sec. 3.2.2. This average
is well-described by the experimental fit function in eqn (11) on
condition to define the coefficients T0 and T1 as follows:

T0 =
1− µ f0(µ)

2
1−µ

=
1− µ f1(µ)

2
1−µ

=
1−0.1900µ +0.0171µ2

1−µ
(38)

T1 =
µ(g0(µ)+g1(µ)

4(1−µ)
=

0.2448µ −0.0067µ2

1−µ
(39)

To check the validity of these formulas, one can use the material
constant values of Table 1 to calculate µ ≈ 0.759, from which we
deduce T theory

0 ≈ 3.59 and T theory
1 ≈ 0.75. This value of T0 agrees

within 2 % with the fitted value of Sec. 2.4, but the predicted
value of T1 is quite far from the fitted value of 0.4. However, I
emphasize that the fit gives a terrible accuracy of ∼ 75% for the
parameter T1, which indicates that this parameter is much more
sensitive to the experimental noise than the other parameters.
Another way of checking the validity of these formulas is to fit
again the experimental data in Fig. 3b, this time setting T0 and T1

to their predicted values T theory
0 and T theory

1 but allowing the HTP
of the mixture to be a free parameter of the fit through the critical
mass fraction of R811 Cc. With this procedure, I estimate HTP =

0.1173 ± 0.002wt%−1µm−1, which agrees within 1.6 % with the
experimentally measured value of the HTP using a Cano wedge
sample (see the beginning of Sec. 2).

In addition to the fundamental decay frequency, one may also
try to compare the experimental dispersion curves plotted in
Fig. 3c with the theoretical model. For this, we need first to clarify
the selection rule presented in Sec. 2.2 which for simplicity was

demonstrated in the case of nematic or weakly chiral samples. In
Sec. 3, I showed that the director profiles of the chiral fluctuation
modes were not defined in a single plane, but were associated
with twisted director perturbations along both eee1 = kkk⊥/|kkk⊥| and
eee2 = eeez × eee2. This means that in principle, the selection rule of
Sec. 2.2 is not perfect in chiral samples, and there should exist
an additional contribution δS(kkk⊥) to the scattering cross-section,
which should typically be proportional to the squared sponta-
neous wavevector and select the opposite eigenmodes than in
eqn (4) along the x and y axes. If δS becomes non-negligible,
it should therefore be associated with a second decay time in the
DDM signal, since we showed that the rescaled decay frequencies

τh/τ(1,0) ≡
[
2φ (1,0)/π

]2
and τh/τ(0,0) ≡

[
2φ (0,0)/π

]2
are different.

Using the numerical package pyReSpect36, I extracted the contin-
uous spectrum of decay times from the DDM signals in my most
chiral samples and found that in the range of studied wavevec-
tors, there is only a single peak in this spectrum with its maxi-
mum matching the decay time fitted with the simple one-decay-
time law. We can therefore neglect the cross-contribution δS in
our setup, and assume that the selection rule of Sec. 2.2 is still
valid in cholesterics, at least within the accuracy of the setup of
Fig. 1a.

Accordingly, the dispersion curves in the left (resp., right) plot
Fig. 3c should be calculated from the quantity τh/τ(1,0) (resp.,
τh/τ(0,0)) of our theoretical model. The shape of these dispersion
curves is mainly determined by the elastic constant ratios K1/K3

and K2/K3. I already showed that the measurements of the fun-
damental decay frequencies were compatible with the theory of
Sec. 3 when the values of µ, τh and K2/K3 were calculated from
the material constants in Table 1, so we can safely assume that
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the values of K2, K3 and the viscosities in Table 1 are accurate. I
therefore numerically calculated the dispersion curves (plain lines
in Fig. 3c) keeping only K1/K3 as a free parameter. The best fit be-
tween experiments and theory was obtained when K1/K3 ≈ 0.74,
which is only ∼ 4% smaller than the value estimated from Table 1.
We may therefore conclude that the theoretical model of Sec. 3
provides a reliable model of the critical relaxation of fluctuation
modes in confined cholesterics.

5 Conclusion
To summarise, the dynamic and static properties of fluctuation
modes in unwound cholesteric samples were experimentally char-
acterized with the DDM technique and compared to a theoreti-
cal model allowing the calculation of the decay frequencies of all
confined fluctuation modes. The most important result of this pa-
per is the combined experimental and theoretical evidence of two
soft modes of fluctuations driving the destabilization transition
of the unwound state, with associated divergences of both decay
times and correlation lengths. The critical behaviours character-
ized here are very similar to the ones observed in usual thermody-
namic phase transitions37, except here the transition is of struc-
tural type and is driven by an intricate balance between chirality
and confinement. At a fundamental level, the unwound director
field of a confined cholesteric sample corresponds to a very high
level of frustration of the cholesteric phase, which has removed
any traces of chirality from its equilibrium state. Despite this, the
experiments presented here demonstrate that chirality is hidden
in the orientational fluctuations of the LC around the equilibrium
state and still plays a major role in the dynamics of this system by
modulating the decay times of fluctuation modes.

One of the most intriguing consequences of this work is the
possibility of measuring the rescaled spontaneous twist q/qc of a
cholesteric in unwound samples instead of Cano wedge samples,
simply by measuring the decay time of the fundamental fluctua-
tion mode and using eqn (11) with C/Cc = q/qc. Such a measure-
ment is of course less direct than the Cano wedge technique since
it necessitates the knowledge of the backflow parameter µ and of
the typical decay time τh (both of which can be directly measured
in a nematic sample), but has the major advantage of being an in-
situ measurement. This may prove advantageous to characterize
the strength of chirality in frustrated cholesteric samples embed-
ding isolated topological solitons such as cholesteric bubbles (also
called torons) or fingers for light flow manipulation38,39, thus al-
lowing supporting simulations of these structures to be run with
adequate parameters for comparison with experiments.

Another straightforward extension of this work would be to
analyse the same chirality-driven critical behaviours in more
complicated frustrated states of the cholesteric phase, such as
the translationally-invariant configuration (TIC) or the periodic
cholesteric finger pattern19. For example, one could use a chiral
LC mixture with a negative dielectric anisotropy and tune the dy-
namics of the fluctuation modes using an electric field to drive the
second-order transition between unwound cholesteric and TIC,
assuming a sample thickness below the triple point40. The ad-
vantage of such a system is that below the triple point, fingers
are always unstable and therefore cannot break the translational

invariance of the sample—contrary to the highly chiral samples
of this study.
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