Physical modeling of ribosomes along mRNA: estimating kinetic rates from ribosome profiling experiments

> Jean-Charles WALTER Laboratoire Charles Coulomb (L2C) CNRS & Université de Montpellier

> > SPLDS23 Pont-à-Mousson 25th of May 2023

ロ > < 聞 > < E > < E > 、 E · のへの

Genomic physics

Physics of living matter

The expression of a gene depends on translation

- \rightarrow Expression of a gene *G*: $A_G \times B_G$
- \rightarrow What are the physical interactions that determine B_G ?

The expression of a gene depends on translation

 $\rightarrow B_G \neq B_{G'}$ for two different genes G and G' \rightarrow What are the physical interactions that determine B_G ?

The totally asymmetric simple exclusion process

The totally asymmetric simple exclusion process

The totally asymmetric simple exclusion process

Experimental observables during genetic translation

Experimental observables during genetic translation

No rigourous experimental normalization

Mixing of dynamical state in the cytoplasm

How to quantify the effect of mRNA finite lifetime (transient dynamics due to the degradation & synthesis of mRNA) with ribosome profiles ?

-The model

The ballistic model with degradation

- O Low density → neglect the interactions: ballistic model with Poisson injection of particles
- ② Distribution of mRNA lifetime θ : $\Phi_{\theta}(\theta) = \omega e^{-\omega \theta}$
- Split mRNA in k-somes according to the number of ribosomes k=1, 2, 3 & 4

- The model

Timeline of the mRNA population

$$P_{k} = \frac{\tilde{\omega}}{\tilde{\alpha} + \tilde{\omega}} \left(\frac{\tilde{\alpha}}{\tilde{\alpha} + \tilde{\omega}} \right)^{k} \frac{\gamma(k+1, \tilde{\alpha} + \tilde{\omega})}{k!} + \frac{\tilde{\alpha}^{k}}{k!} e^{-(\tilde{\alpha} + \tilde{\omega})},$$

-The model

The *k*-some experimental protocole

Split mRNA in k-somes according to the number of ribosomes k=1, 2, 3 & 4

Sensitivity of the profile increases as k decreases

we define as polysomes as the whole population of mRNA (all k-somes)

Analytically solvable model

Namely the *k*-some profiles:

$$\rho_{k}(x) = \frac{\alpha^{k}}{P_{k}p(x)} \frac{e^{-(\alpha+\omega)}}{(k-1)!} + \dots$$

... + $\frac{\omega}{P_{k}p(x)} \left(\frac{\alpha}{\alpha+\omega}\right)^{k} \frac{\gamma(k,\alpha+\omega) - \gamma(k,(\alpha+\omega)\tau(x))}{(k-1)!}$

where P_k is the probability distribution of k-somes, γ is the gamma function, $\tau(x) = \mathcal{T}(x)/\mathcal{T}(L)$ and $\mathcal{T}(x) = x/L$.

Physical modeling of ribosomes along mRNA

-Results

3 regimes of mRNA degradation

Experiments (symbols) versus theory (full lines)

• Fixed $\alpha = 0.06s^{-1}$, $\omega = 1h^{-1} \rightarrow \text{intermediate degradation}$ • Fit the protein production rate $1/J = 180s \rightarrow p = 0.7s^{-1}$

Experiments versus theory (density normalized to 1)

• Fixed $\alpha = 0.06s^{-1}$, $\omega = 1h^{-1} \rightarrow \text{intermediate degradation}$

3 Fit the protein production rate $1/J = 180s \rightarrow p = 0.7s^{-1}$

Dynamical phase diagram

Intermediate degradation → prevalent biological regime

k-some optimize the fit in the intermediate regime

Fit all the parameters self-consistently

Increased information (4 decoupled profiles) in the intermediate regime,

- Conclusion & perspectives

Conclusion & perspectives

Take home message

- New k-some protocole: access to mRNA lifetime
- Improve quantitative fit of kinetic rates:
 - self-consistent normalization
 - four profiles per experiments
- Most living cells in the intermediate degradation regime

Perspectives

- Explicit fit of initiation and elongation rates
- Oategorize cell types through kinetic rates

Reference: Chevalier C., Dorignac J., Ibrahim Y., Choquet A., Alexandre D., Ripoll J., Rivals E., Geniet F., Palmeri J., Parmeggiani A. & JCW (2022) *Physical modeling of ribosomes along messenger RNA: estimating kinetic rates from* ribosome profiling experiments with a ballistic model, submitted & available on ArXiv - Thank you for your attention!

Gene Expression Modeling project (GEM)

- Thank you for your attention!

k-some Probability

The mRNA age distribution is:

$$\phi_{a}(a) = \omega e^{-\omega a}, \ a \ge 0.$$
 (1)

The probability that an mRNA of age *a* be loaded with *k* ribosomes is

$$P(k|a) = \begin{cases} \frac{(\alpha a)^k}{k!} e^{-\alpha a}, \ a \le \mathcal{T}(L), \\ \frac{(\alpha \mathcal{T}(L))^k}{k!} e^{-\alpha \mathcal{T}(L)}, \ a \ge \mathcal{T}(L). \end{cases}$$
(2)

probability P_k an mRNA be a k-some irrespective of its age:

$$P_k = \int_0^\infty P(k|a)\phi_a(a)\,da\,. \tag{3}$$

Thank you for your attention!

k-some Probability

$$P_{k} = \frac{\tilde{\omega}}{\tilde{\alpha} + \tilde{\omega}} \left(\frac{\tilde{\alpha}}{\tilde{\alpha} + \tilde{\omega}} \right)^{k} \frac{\gamma(k+1, \tilde{\alpha} + \tilde{\omega})}{k!} + \frac{\tilde{\alpha}^{k}}{k!} e^{-(\tilde{\alpha} + \tilde{\omega})}, \quad (4)$$

▲ロト▲圖ト★臣ト★臣ト 臣 のへの

- Thank you for your attention!

density of k-somes

$$\rho_{k}(\boldsymbol{x}|\boldsymbol{a}) = \begin{cases} \frac{k}{a\rho(\boldsymbol{x})} H(\boldsymbol{x}(\boldsymbol{a}) - \boldsymbol{x}), \ \boldsymbol{a} \leq \mathcal{T}(L), \\ \frac{k}{\mathcal{T}(L)\rho(\boldsymbol{x})}, \ \boldsymbol{a} \geq \mathcal{T}(L), \end{cases}$$
(5)
$$\rho_{k}(\boldsymbol{x}) = \int_{0}^{\infty} \rho_{k}(\boldsymbol{x}|\boldsymbol{a}) p(\boldsymbol{a}|\boldsymbol{k}) \, d\boldsymbol{a},$$
(6)

where p(a|k) is the age distribution among *k*-somes given by Bayes theorem, $p(a|k) = \phi_a(a)P(k|a)/P_k$.