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In this Letter, we show the benefit of using a lyotropic lamellar phase as a self assembled model
system to investigate the distribution of a lipophilic molecule at a hydrophilic/hydrophobic interface.
For complexing agents used for ion transfer in liquid/liquid extraction it is essential to determine
their interfacial activity. Coupling scattering and spectrometry techniques, we show that it is
possible to determine accurately the amount of this type of molecule at the interface.

INTRODUCTION

Investigation of localization, partitioning and orienta-
tion of molecules (small molecules [1], peptides [2], mem-
brane proteins [3]...) inserted into bilayers is ubiqui-
tous in membrane related phenomena, especially for bi-
ological issues. Vesicles and lyotropic lamellar phases
(Lα) are good model systems for membrane and are
usually probed by various techniques such as NMR [1],
fluorescence quenching [4], ATR-FTIR [5], X-ray scat-
tering [6], molecular dynamics [7] etc. The advantage
of Lα is the ability to confine host molecules into nu-
merous stacked bilayers at the thermodynamic equilib-
rium and among which the interactions are very sen-
sitive to weak effects [8]. Herein, we precisely char-
acterize the insertion of a lipophilic complexing agent
within a lamellar phase of surfactant using a simple
combination of polarized light microscopy, X-ray scat-
tering and µ-Raman spectroscopy experiments. This
first study will allow later to track the complexing
agent within the organic components as a function of
interacting ions diluted in the aqueous phase. The
host molecule here is N1, N3-dimethyl-N1, N3-dibutyl-2-
tetradecylmalonamide (DMDBTDMA), generally stud-
ied as extractant to separate minor actinides from high
level radioactive liquid wastes by liquidliquid extraction
processes in the nuclear industry [9]. The lamellar phase
is made with a non-ionic surfactant (to get a neutral host
system for future studies with interacting ions) taken in
the alkyl poly(ethylene oxide) series, pentaethyleneglycol
dodecyl ether (C12E5) (Fig.1). C12E5 is a well-known
surfactant which forms a fluid lamellar phase at room
temperature [10, 11]. This liquidcrystalline system was
formulated with the aim to study the interfacial behav-
ior of DMDBTDMA which is, at present, insufficiently
known to develop precise predictive models of the sol-
vent extraction process [12, 13]. The evolution of the
lamellar phase boundary within the phase diagram, as
well as the lamellar structural parameters were analyzed
and confirm the insertion of extractants into membranes.
Then, for the first time, µ-Raman experiments were per-
formed on oriented lamellar phase domains to probe the
orientation of the confined host molecules. The whole re-
sult enables to identify and quantify equilibrium between

FIG. 1: Molecular structures of C12E5 (a) and DMDBTDMA
(b).

extractants involved in the interfacial activity and those
embedded within bilayers as an oily component.

EXPERIMENTAL SECTION

C12E5 was obtained from NIKKO Ltd. (high purity
grade > 99%) and used as received. DMDBTDMA was
obtained from PANCHIM and was purified on an alumina
column to eliminate traces of surface active impurities.
LiNO3 (1 M) solution was prepared using ultrapure water
(resistivity 18.2 MΩ cm) and LiNO3 salt (reagent grade)
from Sigma. Samples were formulated adding the salted
solution to a premix of C12E5 and DMDBTDMA. Sample
were homogenised with a succession of centrifugations
and were left several days at 25 ◦C to reach equilibrium.

SAXS measurements using Mo-radiation (λ = 0.71Å)
were performed on a bench built by XENOCS. The scat-
tered beam was recorded using a large online scanner
detector (diameter: 345 mm, from MAR Research) lo-
cated at 750 mm from the sample stage. A large Q

range (2 × 10−2 to 2.5 Å
−1

) was covered thanks to an
off centre detection. The collimation is applied using a
12 : ∞ multilayer XENOCS mirror (for Mo-radiation)
coupled to two sets of FORVIS scatterless slits [14] pro-
viding a 0.8 × 0.8 mm2 X-ray beam at the sample posi-
tion. Pre-analysis of data was performed using FIT2D
software, taking into account the electronic background
of the detector (the flatfield is homogeneous) and the
empty cell subtraction. The scattered intensities are ex-
pressed versus the magnitude of scattering vector Q =
(4π/λ) sin(θ/2), where λ is the wavelength of incident
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radiation and θ the scattering angle. Experimental reso-
lution was ∆Q/Q = 0.05.

Microscopic observations were performed on a ZEISS
Axio Imager A1m microscope equipped with crossed po-
larisers. In order to establish the phase diagrams, tem-
perature scan was realised with a stage temperature
LINKAM controller.

Raman spectra were recorded at room temperature on
a LabRAM Aramis confocal µ-spectrometer from Horiba
Jobin Yvon, using a 532 nm laser. An Olympus BX41
microscope equipped with a 50× objective was used to
focus the laser beam on oriented domains preliminary
located by polarized light microscopy. We carried out
a preliminary study of the anisotropy of the Raman ten-
sors characteristic of our samples collecting polarized Ra-
man spectra of the isotropic components of the sample:
the 1 M LiNO3 solution and the preliminary mixture
of DMDBTDMA and C12E5 (80/20). Bands associated
with isotropic Raman tensors display the same intensity
in parallel (VV) and crossed (VH) polarizations contrary
to anisotropic ones. We have observed that elongation
vibrations (µ) of CH2 (2900 cm−1), OH (around 3400
cm−1), C=O (1647 cm−1), and CO (810 and 840 cm−1)
are characterized by anisotropic Raman tensors when at
1300 cm−1, a vibration mode associated to an isotropic
Raman tensor is observed. This vibration mode was later
used to normalize the intensity of all our spectra after
their baseline correction with the spectrometer associ-
ated software.

For microscopic observations and acquisition of Raman
spectra, flat capillaries (thickness 50 µm or 200 µm) were
filled with the samples and sealed on glass slides with a
UV curing adhesive (Norland Optical Adhesive 81).

RESULTS AND DISCUSSION

Scattering experiment

Mixtures of C12E5/DMDBTDMA (up to 70/30 M)
were hydrated with a 1 M brine, to be in the ionic
strength range applied in extraction systems [15]. In
this work, LiNO3 salt was chosen, being a commonly
used anion, and Li+ being a non complexant cation
for the extractant. The monophasic lamellar domain
for various mixtures was determined as function of
C12E5/DMDBTDMA weight fraction (φ) and tempera-
ture, using polarized light microscopy. In Fig. 2a, the
80/20 system is compared with the one of the 100/0 also
hydrated with 1 M LiNO3, which is similar to the pure
C12E5/water system. It appears that the addition of
DMDBTDMA shifts the lamellar domain to lower mem-
brane fractions and lower temperatures. It is consistent
with a modification of the spontaneous curvature of the
aggregates towards water. It can be explained with the
packing parameter (P) concept [16]. P, which character-

FIG. 2: Comparison between C12E5/DMDBTDMA (80/20)
and (100/0) lamellar phases. (a) Identification of the lamel-
lar phase domains of the C12E5/DMDBTDMA 80/20 (black
lines) and 100/0 (grey lines) systems. (b) X-ray scatter-
ing spectra of the 80/20 (full line) and the 100/0 (dashed
line) lamellar phases at C12E5/DMDBTDMA weight fraction
Φ = 70% (inset: decomposition of the wide angle scattering
part).

izes the geometry of amphiphilic molecules, is related to
the shape of the aggregates formed in water: P = 1 for
zero curvature objects like bilayers, P < 1 or >1 for di-
rect or reverse aggregates respectively. P value of C12E5

is very sensitive to the hydration of polar heads and is
modulated with temperature and concentration [10]. On
the other hand, DMDBTDMA which is not soluble in wa-
ter, and display a small polar head, is characterized by P
> 1. Increasing the amount of extractant molecules, bi-
layers aggregates are formed at higher water content than
for the reference, which is consistent with the localization
of DMDBTDMA within the bilayers.

The lamellar phases were characterized by X-ray scat-
tering. Spectra (Fig. 2b) display the first and second or-
der Bragg peaks at q0 and 2q0, characteristic of the lamel-
lar phase. Moreover, a wide peak observed at large Q-
vector is analyzed using two GAUSSIAN signals roughly

ha
l-0

05
46

70
3,

 v
er

si
on

 1
 - 

15
 D

ec
 2

01
0



3

FIG. 3: (a) Dilution laws of C12E5/DMDBTDMA 80/20 and
100/0 systems fitted according to Eq. (1). The range of
ΦHC is fixed by the stability phase boundaries and shows
that the lamellar phase containing the extractant molecule
can be slightly more diluted. (b) Evolution of the lamellar
periodicity (full dots) and the characteristic distance of the
bilayer liquid order (empty crosses) versus the molar percent-
age of DMDBTDMA into the bilayers of a lamellar phase at
Φ = 70%.

centered at qw = 19.8 nm−1 and qb = 14.4 nm−1 (see in-
set of Fig. 2b). Both contributions can be assigned to the
correlation distances characteristic of the liquid order in
the aqueous phase [17], and within the bilayers [18, 19],
respectively. The former is constant whatever the dilu-
tion. Defining d the periodicity of the lamellar phase ob-
tained with the position of Bragg peaks d = 2Π/q0, ΦHC
the volume fraction of DMDBTDMA and alkyl chains of
C12E5 into the sample, and δHC the hydrocarbon thick-
ness of bilayers, Fig. 3a displays the evolution of lamellar
periodicities as a function of the inverse of ΦHC . As poly-
oxyethylene groups were considered to be in the aqueous
region of the phase [20], we fitted our data using the fol-
lowing dilution law:

d = δHCΦHC (1)

For calculations we used the following density values:

dC12 = 0.803 [21], dC12E5 = 0.963 (from supplier) and
dDMDBTDMA = 0.906 (measured). We can observe that
the variation of lamellar periodicity d is not perfectly lin-
ear for the pure C12E5 as a function of 1/ΦHC . This was
previously observed [22] and was attributed to a change
in the bilayer thickness with dilution [23]. This can have
different origins (evolution of polyoxyethylene heads con-
formation [24], interpenetration of alkyl chains [22], de-
fects [25], ). For the C12E5 /DMDBTDMA 80/20 system,
the evolution of d appears more linear than for the 100/0
system. It attests to a more classical behavior of the dilu-
tion law characterizing a lamellar phase with a constant
thickness of the bilayers and weak bilayer undulations.
Slopes of the linear fits in Fig. 3 indicate the average hy-
drocarbon bilayer thicknesses: δHC = 14.0 Å for C12E5

(100/0), and δHC = 18.8 Å for C12E5 /DMDBTDMA
80/20. The polar head area of C12E5 deduced from the
geometrical relationship AC12E5 = 2.VHC/δHC is 50.1

Å
2
/molecule, which is consistent with the data from the

literature [26]. On Fig. 3b, the increase in the lamellar
periodicity and in the averaged distance within the bilay-
ers (∆ = 2Π/qb) with the extractant molar fraction are
displayed for Φ = 70 %. Both evolutions confirm the in-
sertion of DMDBTDMA into the bilayers. The ∆ values
range from that of pure surfactant (∆S = 4.35Å) towards
that of pure extractant (∆E = 4.58Å) in their liquid
state, respectively. Preliminary cryo-microscopic obser-
vations and temperature variation [27, 28] studies con-
firming also that no topological defects have to be taken
into account along a dilution of our lamellar phase, the
lamellar periodicity values were directly converted into
hydrocarbon bilayer thicknesses using the dilution law
(see Equation.2). Assuming a constant polar area per
molecule at the hydrophilic/hydrophobic interface and
an ideal mixing of both amphiphilic species the bilayer
thickness can be expressed as a function of the reparti-
tion of extractant molecules between the interface and
the aliphatic part of the bilayer:

δHC =
V

A
= 2

(1− x)VC12
+ xVDMDBTDMA

(1− x)AC12E5 + xκADMDBTDMA
(2)

with Vi molecular volumes determined from density

values, Ai polar head areas (AC12E5 = 50Å
2
/molecule,

ADMDBTDMA = 100Å
2
/molecule [13, 29]), x the molar

fraction of DMDBTDMA among the organic components
and K the fraction of DMDBTDMA participating to the
interfacial area. Two extreme cases are plotted on Fig.
4:
(i) K = 0, the extractant molecules are considered as
buried within the bilayer and a significant increase in the
bilayer thickness is expected.
(ii) K = 1, all extractant molecules participate to the in-
terfacial area and a weak increase in the bilayer thickness
should be observed.
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FIG. 4: (a) Evolution of the hydrocarbon bilayer thickness
δHC versus the molar percentage of DMDBTDMA within
the bilayers: the dotted and dashed lines display the models
considering extractant molecules buried in the bilayer and at
the interface of the bilayer, respectively. The experimental
data (large dots), are fitted using Eq. 2. (b) Scheme of the
equilibrium model proposed to adjust our data.

A good adjustment of our data requires K = 0.44 and

AC12E5 = 48Å
2
/molecule. It validates our equilibrium

model and indicates that 44% of extractant molecules
are localized at interfaces whatever the ratio within the
lamellar phase.

µ-Raman experiments

In order to reinforce the model described in Eq. 2, we
performed polarized µ-Raman experiments on oriented
domains of lamellar phases to qualitatively characterize
the orientation of molecules. Planar and homeotrope
oriented domains were localized by polarized light mi-
croscopy (see Fig. 5a) and their Raman spectra were
obtained using the naturally polarized laser beam of the
spectrometer (see Fig. 5). We simultaneously analyzed
the stretching vibrations of OH groups between 3100
and 3700 cm−1, the stretching modes of CH2 and CH3

around 2900 cm−1, the characteristic bands of oxyethy-
lene groups at 810 and 840 cm−1 [30], and the carbonyl
stretching vibration at 1647 cm−1 [31]. Considering that
the Raman signal is maximum for Raman tensors ori-
ented parallel to the polarization of the incident laser
beam [32], we measured different intensities as a func-
tion of the orientation of the lamellar phase. We found
out that the orientation of OH and oxyethylenes bonds is
preferentially in the direction perpendicular to the bilay-
ers whereas the CH2 and CH3 tensors are oriented in the
plane of the membrane. These orientations are consistent
with the normal orientation of the surfactant molecules
within the bilayers as expected. However, the carbonyl

band from the polar head of the extractant molecules
has the same intensity whatever the orientation of the
system. It indicates that the orientation distribution of
the carbonyls bonds is isotropic into the system. This
is in accordance with the model of equilibrium for which
half part of extractant molecules behave as oil, without
preferential orientation within the bilayers.

CONCLUSION

In summary, we identified and characterized a mixed
lamellar phase which allows us to investigate interfacial
properties of extractant molecules (weak amphiphiles by
definition that can play the role of co-surfactants). Re-
sults indicate that the insertion of DMDBTDMA in a
C12E5 bilayer induces a decrease in the spontaneous cur-
vature of the interface, by establishing equilibrium of ex-
tractant molecules within the bilayer: roughly, half of
the extractant is buried within the organic part in the
membrane, whereas the other half is adsorbed at the
bilayer/water interface. As we demonstrate that this
type of lyotropic lamellar phase is a good support sys-
tem for tracking a complexing extractant molecule at
a liquid/liquid interface, further works are currently in
progress to study the effect of ion complexation reaction
on the interfacial properties. Moreover, we think that
the approach developed in this Letter is not only inter-
esting in the extraction field but in a more general way to
study partitioning of hydrophobic molecules (cholesterol,
drugs, . . .) inserted into bilayers.
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domains. (b) Raman spectra of the C12E5/DMDBTDMA 80/20 oriented lamellar phase for configurations A (grey line) et B
(black line).
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