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Quantum optomechanics at room temperature: A nanomechanical endeavour? 
 
 
Optomechanics is the field investigating the reciprocal interaction between electromagnetic and 
mechanical degrees of freedom1.  
 
Recently, impressive progress has been accomplished in the field, notably with the 
demonstration of multiple systems operating in the quantum regime of the  
optomechanical interaction2–4. This in great part relies on the extreme miniaturization of the 
mechanical devices, which enables drastic decrease of the thermal noise, at the benefit of 
quantum effects5,6. 
   
So far however, the quantum regime of the optomechanical interaction has essentially been 
evidenced at liquid helium temperature or below and remains remote to ambient conditions. In 
this talk, I will present novel approaches raising the realistic perspective of operating 
optomechanical systems deep in the quantum regime and at room temperature. I will primarily 
focus on the fabrication and optomechanical characterization of a novel hybrid carbon 
nanotube-based approach7–9 which is found to a record low thermal force noise at room 
temperature, while fully preserving sensing capabilities. I will also discuss the role of non-
linearities and corresponding sensing limitations for the sensitivity of  
those devices at ambient temperature. Last, I will introduce recent results on a novel quantum 
hybrid optomechanical approach, based on the use of gram-scale rare-earth ion doped 
crystal10,11, which appears very promising as for reaching the quantum regime at room 
temperature and under very robust conditions12. 
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