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The Temperley-Lieb Stochastic process

Recall the definition of the Cyclic Temperley-Lieb Algebra CTLy(7):
free algebra with generators {e;};cz and the rotation R

€ =¢€ji1n R*le; = e;s  R*!
e, = Te; ee e = €
ler.e;] =0 i—jl#1 (mod N).

Graphical representation

ej = .‘)‘ (@
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Action on link patterns

We shall be interested in three kind of representations of CTLy(7)

on link patterns
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The Temperley-Lieb Stochastic process

N
1
For 7 = 1 the operator Hy = N E e
i=1

is the markov Matrix of the so called Temperley-Lieb Stochastic
process [Batchelor, de Gier & Nienhuis, Razumov, Stroganov].
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The Temperley-Lieb Stochastic process

N
1
For 7 = 1 the operator Hy = N Z €

is the markov Matrix of the so called Temperley-Lieb Stochastic
process [Batchelor, de Gier & Nienhuis, Razumov, Stroganov].
e We are interested in its Stationary Probability for the
representations LP,, and LP},

Vo) i= D Wa(m)m),  [WR) = Y Wi(n)im)

weLPo, meLPy

Hy|W) = [V)
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The Temperley-Lieb Stochastic process

Example (LPg)

IEESIIEEE
SODVOOD0 =
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The Temperley-Lieb Stochastic process

Example (LPg)

IEESIIEEE
SODVOOD0 =

By renormalizing the vectors |V,) and |W},) [Batchelor, de Gier,
Nienhuis, Razumov, Stroganov|

@ All the Wy(m) are “small” integers.
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The Temperley-Lieb Stochastic process

Example (LPg)

IEESIIEEE
SODVOOD0 =

By renormalizing the vectors |V,) and |W},) [Batchelor, de Gier,
Nienhuis, Razumov, Stroganov|

@ All the Wy(m) are “small” integers.

@ Their sum is equal to the enumeration A(n) of Alternating Sign
Matrices of size n for m € LP,,, or to the enumeration Ay (N)
of Half-Turn Symmetric Alternating Sign Matrices of size N for
m € LPy.
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The Temperley-Lieb Stochastic process

Example (LPg)

IEESIIEEE
SODVOOD0 =

By renormalizing the vectors |V,) and |W},) [Batchelor, de Gier,
Nienhuis, Razumov, Stroganov|

@ All the Wy(m) are “small” integers.

@ Their sum is equal to the enumeration A(n) of Alternating Sign
Matrices of size n for m € LP,,, or to the enumeration Ay (N)
of Half-Turn Symmetric Alternating Sign Matrices of size N for
m € LPy.

Does each component have a combinatorial interpretation?
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Integrability: inhomogenous Loop Model

R-matrix

¢ z —q ! z—1
Xi(Z)Iq_ L — e, T=—q-q "
q-q'z° q-q'z

Yang-Baxter equation

A

),\(i(z2)),\<i+1(zlz2)),\<i(zl) = Xi+1(21))A<i(2122))A<i+1 (22)
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Integrability: inhomogenous Loop Model

R-matrix

~ :qz—q*11+ z—1

Xi €;, =—q—q
(2) q—q'z  q—qlz remamd

Yang-Baxter equation

A

Xi(2)Xis1(212)Xi(z1) = Xip1(21)Xi(z12) Xis1(22)
Scattering matrices
Si(f) = Xi—z(Zi/Zi—1)X’—s(zi/zi—z) e ')A<i+1(2i/2i+2))A<i(Zi/Zf+1)

At g = e?™/3 (1 = 1), the scattering equations [Di Francesco,
Zinn-Justin]
Si(Z)|W(2)) = R7HW(2))

have a unique solution (up to normalization), polynomial in Z.
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Integrability: inhomogenous Loop Model

[P. Di Francesco, P. Zinn-Justin]
At z; = 1 the vector |W(Z)) reduces to the stationary probability of
the T-L Stochastic model

WD) = [Wa),  [WR(D)) = W)
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Integrability: inhomogenous Loop Model

[P. Di Francesco, P. Zinn-Justin]
At z; = 1 the vector |W(Z)) reduces to the stationary probability of
the T-L Stochastic model

WD) = [Wa),  [WR(D)) = W)

@ The vectors |W(Z)) satisfy an exchange equation which is the
specialization g = €2™//3 of the level-1 U,(sl») qgKZ equations.
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Integrability: inhomogenous Loop Model

[P. Di Francesco, P. Zinn-Justin]
At z; = 1 the vector |W(Z)) reduces to the stationary probability of
the T-L Stochastic model

WD) = [Wa),  [WR(D)) = W)

@ The vectors |W(Z)) satisfy an exchange equation which is the
specialization g = €2™//3 of the level-1 U,(sl») qgKZ equations.

@ This allows to derive (directly) determinantal formulae or
(through bosonisation of vertex operators) integral formulae for
certain components of |W(Z)) or of certain observables.
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Integrability: inhomogenous Loop Model

[P. Di Francesco, P. Zinn-Justin]
At z; = 1 the vector |W(Z)) reduces to the stationary probability of
the T-L Stochastic model

WD) = [Wa),  [WR(D)) = W)

@ The vectors |W(Z)) satisfy an exchange equation which is the
specialization g = €2™//3 of the level-1 U,(sl») qgKZ equations.

@ This allows to derive (directly) determinantal formulae or
(through bosonisation of vertex operators) integral formulae for
certain components of |W(Z)) or of certain observables.

@ Relation with the geometry of Orbital varieties.
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Alternating Sign Matrices. Why?

Mills, Robbins and Rumsey's extension of Dodgson (aka Lewis
Carroll) condensation algorithm ['83]

det M det My = det MJ det M} — 1 det M} det M

B Ny g
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Alternating Sign Matrices. Why?

Mills, Robbins and Rumsey's extension of Dodgson (aka Lewis
Carroll) condensation algorithm ['83]

det\M det\ My = detyM] det\M} + A det,M] det, M}

.xl - xﬂx
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Alternating Sign Matrices. Why?

Mills, Robbins and Rumsey's extension of Dodgson (aka Lewis
Carroll) condensation algorithm ['83]

det\M det\ My = detyM] det\M} + A det,M] det, M}

.xl - xmx

The result is (surprisingly) a Laurent polynomial in entries m; :

detaM = > NE(L 4 A HYNE T m
BEASM, ij

ASM = Alternating Sign Matrices
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Alternating Sign Matrices. Why?

Mills, Robbins and Rumsey's extension of Dodgson (aka Lewis
Carroll) condensation algorithm ['83]

det\M det\ My = detyM] det\M} + A det,M] det, M}

.xl - xmx

The result is (surprisingly) a Laurent polynomial in entries m; :

detaM = > NE(L 4 A HYNE T m
BEASM, ]

ASM = Alternating Sign Matrices

... The Laurent phenomenon is well known in the context of Hirota
equations and has led to the developement of Fomin-Zelevinsky
Cluster Algebras
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Alternating Sign Matrices [Mills, Robbins, Rumsey]

Square n x n matrices with entries 0,1, —1, such that

- signs +1 and —1 alternate on each row and each column;

- each row and each column sums to 1.

01 0 00O
1 -1 1 00
0 0 0 01
01 -110
0 0 1 00O

i+ 1)!
Enumeration A, = H G+ [Zeilberger '95].

Jj=0..n—1 (n +J)I

Simpler proof by Kuperberg ['96]: use equivalence with 6-vertex
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ASM <+ 6-Vertex (DWBC) <> FPL

ASMs 0 0 0 0 1 -1
_ N DS R
-V - - 7 T
odd ---- _[ __
- ] [ |
FPLs
even —[ fffffff ——
] — | [ |
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Refined FPL enumerations

Enumerations of FPLs whose boundary points have a given
connection pattern 7
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Half-Turn ASM
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The Razumov Stroganov ex-conjecture

The number A,(7) are related to stationary probability of the
Temperley-Lieb stochastic process

Theorem: R-S ex-conjecture '01 [L.C., A. Sportiello "10]

A AT
lll"(ﬂ-) - Zn An(ﬂ'), N( )
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The Razumov Stroganov ex-conjecture

The number A,(7) are related to stationary probability of the
Temperley-Lieb stochastic process

Theorem: R-S ex-conjecture '01 [L.C., A. Sportiello '10]

AT L AT
Vol =sam Y = sy

One can obtain a lot of non trivial informations on the properties of
the combinatorial objects on the right-hand side, by studying the
left-hand side.

@ New proof of the enumeration formula of alternating sign
matrices

@ Unified proof of enumeration formula of ASM with symmetries

@ Number of FPL belonging to certain classes can be counted
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Rotational invariance

e A consequence of the RS correspondence is the rotational
invariance of the enumerations A,(m) and AN ().
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Rotational invariance

e A consequence of the RS correspondence is the rotational
invariance of the enumerations A,(7) and ANT ().

e This property was proven by Wieland for A,(7) even before the
formulation of the RS conjecture. His proof extends easily to AN ().

Theorem (Wieland, '00)

The enumerations A,(m) and ANT () are invariant under cyclic
rotations

Ao(m) = Au(Rom),  ART(x) = AfT(Rom)

RIW,) = [Va), RIWy) = Vi)
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Rotational invariance

e A consequence of the RS correspondence is the rotational
invariance of the enumerations A,(7) and ANT ().

e This property was proven by Wieland for A,(7) even before the
formulation of the RS conjecture. His proof extends easily to AN ().

Theorem (Wieland, '00)

The enumerations A,(m) and ANT () are invariant under cyclic
rotations

Ao(m) = Au(Rom),  ART(x) = AfT(Rom)

RIW,) = [Va), RIWy) = Vi)

Let's see how the proof works: this will provide a crucial tool for the
proof of the RS conjecture.
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Rotational invariance: general approach

e Consider a planar
graph, which is
obtained by gluing at
the corners 2-, 3- or
4-gons. Inside a 2-gon
we can place a
puncture.

e FPL = coloring of
the edges such that a
vertex of cordination 4

7

- - S

is adjacent to 2 colored

s .
edges
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Rotational invariance: general approach

e Consider a planar
graph, which is
obtained by gluing at
the corners 2-, 3- or
4-gons. Inside a 2-gon
we can place a
puncture.

e FPL = coloring of
the edges such that a
vertex of cordination 4
is adjacent to 2 colored
edges
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Rotational invariance: general approach 2

Define the following operation, called Half-Gyration, which preserves
the FPL condition at each vertex:

oo - O
R S R
05 OH> 0o

sI;
@)
Q

! ! 1 ! !

Cantini (LPTM, Cergy-Pontoise) Refined RS correspondence March 6, 2012 18 / 31



19 /31

March 6, 2012

Dy

general approach 3

]
o
s
o

°
=
=]
a
@
]
=
=
=]
o

(7]

-4

°
Q
=

=
o

[+3

Take an FPL
(LPTM, Cergy-Pontoise)

Cantini

(D}
O
e
(4]
o
T
>
e
(4]
C
.9
=
(L)
-
O
o



19 /31

March 6, 2012

general approach 3

Refined RS correspondence
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Rotational invariance: general approach 3

The connectivities of the “boundary” points and the “topological”
location of the puncture are preserved
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Rotational invariance: Wieland's rotation
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Rotational invariance: Wieland's rotation
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Rotational invariance: Wieland's rotation
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Rotational invariance: Wieland's rotation
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Rotational invariance: Wieland's rotation
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Rotational invariance: Wieland's rotation
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Rotational invariance: Wieland's rotation
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Rotational invariance: Dihedral Domains

The invariance under rotation of the FPL enumerations is valid on
more general planar domains that we call Dihedral Domains:

- the bulk of the dual graph must be bipartite,

- they have only faces with less than 5 edges

- when joined two consecutives external edges they form a face with
less than 4 edges.
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Rotational invariance: Dihedral Domains

The invariance under rotation of the FPL enumerations is valid on
more general planar domains that we call Dihedral Domains:

- the bulk of the dual graph must be bipartite,

- they have only faces with less than 5 edges

- when joined two consecutives external edges they form a face with
less than 4 edges.

Example
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Generalized Razumov-Stroganov correspondence

The Razumov-Stroganov correspondence remains valid on these more
general domains!

Define again Ap(7) as the number of FPL on the domain D, form
the vector
W5t = Ap(n)r)

it satisfies [L.C., A. Sportiello, '10]

2n

S (e - DVEY =0

i=1

In particular we have proportionality of the enumerations
corresponding to the same link pattern on different domains

Ap(m) = KpAn(m) V7
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Comments

@ The proof is valid on all the Dihedral Domains.
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Comments

@ The proof is valid on all the Dihedral Domains.

@ The proportionality factor Kp is equal to the number of FPL
corresponding to “Rainbow” Link Patterns: @ @ @
and has often an alternative combinatorial interpretation as the
number of dimer covering of regions of the hexagonal lattice.
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Comments

@ The proof is valid on all the Dihedral Domains.

@ The proportionality factor Kp is equal to the number of FPL
corresponding to “Rainbow” Link Patterns: @ @ @
and has often an alternative combinatorial interpretation as the
number of dimer covering of regions of the hexagonal lattice.

@ Alternative way to compute the total enumerations for FPL on
several different classes of domains known from Kuperberg and
new ones: for example Quarter Turn Symmatric ASMs of size 4n.
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Spectral parameters on the FPL side?
Where is hidden the integrable structure of the FPL enumerations? I
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Spectral parameters on the FPL side?
Where is hidden the integrable structure of the FPL enumerations? \

@ Parametrize the Boltzmann weights of the 6-vertex model in
terms of spectral parameters: partition function (IK determinant)
matches > W (7, Z) but doesn’t work component-wise!
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Spectral parameters on the FPL side?
Where is hidden the integrable structure of the FPL enumerations? \

@ Parametrize the Boltzmann weights of the 6-vertex model in
terms of spectral parameters: partition function (IK determinant)
matches > W (7, Z) but doesn’t work component-wise!

@ On the other side Di Francesco noticed that
V(m; t) :=V(m, 2z = Z:;‘l_llt, 1) are polynomials in t with
positive integer coefficients.

vy (t) = {1}
Wo(t) = {1,t}
Vi(t) = {1+t,1, ¢ t(1+1¢),t?}
W,(t) ={2+3t+2t3,1+2t, 1+t + 3,2+t
Lt(2+t), t, t(1 + 2t), t(2 + 3t + 2t?),
t(1+t+ %), %, 22+ t), £2(1 + 2¢), £}
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Spectral parameters on the FPL side?

Do these coefficients have a combinatorial meaning?
Di Francesco tried to compare them with enumerations of FPLs
weighted by the position h(¢) of the straight tile on the last row

[m JL J

1 ]

IREmES; gets a weight t"(9)=1 with h(¢) = 3
DA A
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Spectral parameters on the FPL side?

Do these coefficients have a combinatorial meaning?
Di Francesco tried to compare them with enumerations of FPLs
weighted by the position h(¢) of the straight tile on the last row

[ ) -

IERNEE| gets a weight t"(9)=1 with h(¢) = 3

PNE@|
)

=
123456

The weighted enumerations can be gathered in a vector
An(mit) = > PO Py ZA m t)|m).
¢|N(¢)=n
Unfortunately this doesn't match with |W,(t))

(WEPE(1)) # [Wa(t)) 111!
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Spectral parameters on the FPL side?

Do these coefficients have a combinatorial meaning?
Di Francesco tried to compare them with enumerations of FPLs

weighted by the position h(¢) of the straight tile on the last row

[ -
\EREE . -
HEmEE gets a weight t"(¥)=1 with h(¢) =3
A CA

& (s i

123456

The equality holds only after symmetrization under rotation

Conjecture [Di Francesco '04]

2n

Sym[WIPH(t)) = Sym|W,(t)) with Sym =Y R’

i=1

March 6, 2012
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Spectral parameters on the FPL side?

Do these coefficients have a combinatorial meaning?
Di Francesco tried to compare them with enumerations of FPLs

weighted by the position h(¢) of the straight tile on the last row

[ -
\EREE . -
HEmEE gets a weight t"(¥)=1 with h(¢) =3
A CA

& (s i

123456

The equality holds only after symmetrization under rotation

Conjecture [Di Francesco '04]

2n

Sym|WEPL(t)) = Ko(£)Sym|W,(r)) with Sym=Y R’

i=1

but it works also on any Dihedral Domain D!!!.

March 6, 2012 25 /31
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Spectral parameters on the FPL side?

The strategy in the RS proof consisted in proving combinatorially
that [WE) satisfies Y. (e; — 1)|WEH) = 0...
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Spectral parameters on the FPL side?

The strategy in the RS proof consisted in proving combinatorially
that [WE) satisfies Y. (e; — 1)|WEH) = 0...

The fact that Di Francesco's conjecture holds in any dihedral domain

D with different proportionality factor suggests that its proof should
be in the same spirit.
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Spectral parameters on the FPL side?

The strategy in the RS proof consisted in proving combinatorially
that [WE) satisfies Y. (e; — 1)|WEH) = 0...

The fact that Di Francesco's conjecture holds in any dihedral domain

D with different proportionality factor suggests that its proof should
be in the same spirit.

...But Sym |[WEPL(t)) and Sym |W,(t)) do not satisfy any simple
linear equation that fixes them univocally!
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Spectral parameters on the FPL side?

The strategy in the RS proof consisted in proving combinatorially
that [WE) satisfies Y. (e; — 1)|WEH) = 0...

The fact that Di Francesco's conjecture holds in any dihedral domain
D with different proportionality factor suggests that its proof should
be in the same spirit.

...But Sym |[WEPL(t)) and Sym |W,(t)) do not satisfy any simple
linear equation that fixes them univocally!

Best possible hope:
e Maybe Di Francesco's way to associate a weight or even of
associating a /ink pattern to an FPL is only “almost right”.
e There is a new way 7(¢) of associating link patterns to FPL such
that 5

(W5 (1)) o [Wa(t))

with no need of symmetrization.
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The improved refinement

Here is the rule:

If the refinement position is odd, just start the counting of the
external points from the refinement position

13 12 11 10 9

110 1 10

19 2 19 2
19 20 Y1 2 3 2041 2041
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The improved refinement

Here is the rule:

If the refinement position is even: swap the colorations of the edges
and then start the counting of the external points from the
refinement position:

15 14 13 12 11

10
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The improved refinement

Here is the rule:
If the refinement position is even: swap the colorations of the edges
and then start the counting of the external points from the

refinement position:
15 14 13 12 11 14 13 12 11 10

16 9
10 15

17 8
9 16

18 7
8 17

19 6
7 18

20 5
6 19

1 2 3 4 5 20 Y1 2 3 4 P a2
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The scattering equation

It is not difficult to show that |V ,(t)) is determined (up to
normalization) by the scattering equation

(Xi(t) = R)|Wa(t)) =0,  with

Xi(t)=t+(1—t)e

Theorem [L.C., A. Sportiello "12]

The vector [WEPL(t)) defined by means of the previous rules satisfies

(%a(2) — RV (1)) =0
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normalization) by the scattering equation

A

(X1(t) — R)|W,(t)) =0, with

Xi(t)=t+(1—-t)e
Theorem [L.C., A. Sportiello "12]

The vector [WEPL(t)) defined by means of the previous rules satisfies

(%a(2) — RV (1)) =0

While this theorem is stronger than the Razumov Stroganov original
conjecture, its proof is much simpler!!!!
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The scattering equation

It is not difficult to show that |V ,(t)) is determined (up to
normalization) by the scattering equation

A

(X1(t) — R)|W,(t)) =0, with

Xi(t)=t+(1—-t)e
Theorem [L.C., A. Sportiello "12]

The vector [WEPL(t)) defined by means of the previous rules satisfies

(%a(2) — RV (1)) =0

While this theorem is stronger than the Razumov Stroganov original
conjecture, its proof is much simpler!!!!

The really non-trivial “work” was in finding the right way to associate
a link pattern to an FPL!
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The idea of the proof

Apply the two projectors e; and (1 — ey), to the Scattering equation
(1—e)(t1 - R)V(t)p") =0,  (er— Ren)WE™ (1)) =0
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Apply the two projectors e; and (1 — ey), to the Scattering equation
(1—e)(t1 - R)V(t)p") =0,  (er— Ren)WE™ (1)) =0

e For the left equation we have just to check that if 7 ¢ Ime;, then
tW(m, t) = V(R 7, t). Just a Half-Gyration provides the bijection
between FPLs associated to 77 and R~ 7.

Cantini (LPTM, Cergy-Pontoise) Refined RS correspondence March 6, 2012 29 /31



The idea of the proof

Apply the two projectors e; and (1 — ey), to the Scattering equation
(1—e)(t1 - R)V(t)p") =0,  (er— Ren)WE™ (1)) =0

e For the left equation we have just to check that if 7 ¢ Ime;, then
tW(m, t) = V(R 7, t). Just a Half-Gyration provides the bijection
between FPLs associated to 7 and R~!x.

e For the right equation we notice that, while we don’t know how to
“act” with all the TL generators on a FPL we know how to act with
e and ey

N 1

which, combined with two Half-Gyrations, provide the bijection we
want.
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Back to Di Francesco's conjecture

Corollary: Di Francesco's conjecture [L.C., A. Sportiello '12]

Sym|WE™ (t)) = Sym| VL™ (1))
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splitting the FPL into orbits of the action of Wieland rotation,
because all the element of an orbit contributes to the same
symmetrized link pattern.
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e Study the behavior of the trajectory, h(¢) of the refinement
position along these orbits.
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Corollary: Di Francesco's conjecture [L.C., A. Sportiello '12]

Sym|WE™ (t)) = Sym| VL™ (1))

e The idea behind the proof is to implement the symmetrization by
splitting the FPL into orbits of the action of Wieland rotation,
because all the element of an orbit contributes to the same
symmetrized link pattern.

e Study the behavior of the trajectory, h(¢) of the refinement
position along these orbits.
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Conclusions & Open problems

At first, we wanted to generalize the proof of the RS conjecture to
the refined version by Di Francesco, with one spectral parameter
turned on.
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Conclusions & Open problems

At first, we wanted to generalize the proof of the RS conjecture to
the refined version by Di Francesco, with one spectral parameter
turned on.

At last, we did it, by introducing a new way of associating link
patterns to FPL

This leads to a stronger statement, and to a new perspective on the
Razumov Stroganov correspondence

Will this help in the determination of correspondences with more
spectral parameters turned on?

More ambitious: what about the Razumov Stroganov conjectures
without cyclic invariance?
Hint for the proof could be to find the class of domains on which
these conjectures hold.
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