Beyond the WIMP paradigm of dark matter

Based on JHEP 1108(2011)060 and JCAP 02(2012)006

> Carlos E. Yaguna Münster University 2012

Dark matter constitutes a significant fraction of the energy-density of the Universe

The evidence in favor of DM is overwhelming

Rotation curves The Bullet Cluster Large Scale Structure

The DM density is obtained from CMB data

 $0.097 < \Omega h^2 < 0.122$

The existence of dark matter is a clear indication of physics beyond the Standard Model

DM candidates should be neutral and stable

Neutrinos cannot explain the dark matter

The SM contains no dark matter candidates

Neutrinos?

 $\Omega_
u \ll \Omega_{dm}$ u's are not cold

New Physics !

The WIMP framework can naturally account for the dark matter

Assumptions:

A new neutral and stable particle

with a mass in the GeV-TeV range

and weak-strength interactions

Conclusion:

It's a good dm candidate $\Omega h^2 \sim 0.1$

For WIMPs the relic density is the result of a freeze-out

 $\propto 1/\langle \sigma v
angle$

In most models, the dark matter candidate is a WIMP

The χ^0 in the MSSM is the typical example

 $R\text{-}parity
ightarrow stability \ M_\chi \sim M_{SUSY}$

Also in UED or in scalar models

There are few notable exceptions

Inert higgs, singlet, MDM,...

Axion, gravitino

WIMPs can be probed at colliders and in dark matter experiments

I will discuss two alternative scenarios that are as simple and predictive as the WIMP one

1. FIMPs or Freeze-in

The singlet scalar model JHEP 1108(2011)060

2. The intermediate framework

JCAP 02(2012)006

A real scalar singlet is a perfectly viable dark matter candidate

Add a gauge singlet and impose a Z_2 symmetry

 ${\cal S}$ interacts with the SM fields via the higgs

The model contains only two parameters: λ, m_S

$$egin{aligned} \mathscr{L} = \mathscr{L}_{SM} + rac{1}{2} \partial_\mu S \partial^\mu S - rac{1}{2} m_0^2 S^2 \ -\lambda S^2 H^\dagger H - rac{1}{4} \lambda_S S^4 \end{aligned}$$

easy to analyze

The right relic density can be obtained within the WIMP regime

In this model, there has to exist additional solutions to the dark matter constraint

These new solutions correspond to the freeze-in production of FIMP dark matter

Hall, Jedamzik, March-Russell and West JHEP 1003 (2010) 080

In the FIMP regime of the singlet model, Y increases with T until $T_{freeze-in}$

The singlet relic density depends on m_S and on λ

There is a new a viable region of the singlet model that corresponds to FIMP dark matter

The detection of dark matter in this new viable region is hopeless

Since $\lambda \sim 10^{-11}$, all signals are suppressed

by $\sim 10^{-20}$ w.r.t WIMPs

They lie well below the experimental sensitivity

even the futuristic ones

Is there a way to make dark matter detectable within a FIMP-like setup?

I will discuss two alternative scenarios that are as simple and predictive as the WIMP one

1. FIMPs or Freeze-in

The singlet scalar model JHEP 1108(2011)060

2. The intermediate framework

JCAP 02(2012)006

The essential feature of FIMPs is that they do not reach thermal equilibrium

There are at least two ways to achieve that:

1. Very small coupling

Standard FIMP scenario

2. A small value of T_{RH}/M_{dm}

 T_{RH} : the reheating temperature of the Universe

Intermediate scenario

T_{RH} marks the transition from inflation to the radiation dominated Universe

It's a Standard Cosmological parameter

Its value is unknown: $T_{RH}\gtrsim 5\,\,{
m MeV}$

Usually it is assumed to be very large

In the intermediate framework the initial conditions are different

$$rac{dY}{dT} = k \langle \sigma v
angle Y_{eq}^2(T)$$

Annihilation term is irrelevant

With $Y(T_{RH})=0$ and $T_{RH}\ll m_S$

Thermal production only

 $\Omega h^2 \propto \langle \sigma v
angle rac{m_S}{T_{RH}} e^{-2m/T_{RH}}$

Strong dependence on T_{RH}

The relic density increases with the reheating temperature

There are new regions that are also consistent with the dark matter constraint

 λ is not necessarily small

They depend on T_{RH}/M

Dark matter could be detected

Super-heavy dark matter is viable in the intermediate regime

The intermediate regime is strongly connected to the FIMP regime

The intermediate scenario suggests a connection between dark matter and inflation

There certainly are interesting alternatives to the WIMP paradigm of dark matter

They are simple and predictive

1. The singlet scalar as FIMP dark matter

They do not introduce exotic physics

The WIMP solution is not unique

2. The intermediate scenario

