Alday-Gaiotto-Tachikawa conjecture and Integrability

based on papers with
Alexey Litvinov, Vasiliy Alba and Grigoriy Tarnopolsky

Pure $N=2$ SUSY (Short review)

$$
L=1 / g \operatorname{Tr}\left(F^{2}+i \theta F F_{D}+\left[\Phi, \Phi^{*}\right]^{2}+|D \Phi|^{2}\right)+\text { Fermions }
$$

We can add to this theory the matter supemultipletsmultiplets q which belong to some representation of gauge group:

$$
\delta L=1 / g \operatorname{Tr}\left(|D q|^{2}+|\Phi q|^{2}+|M q|^{2}+\ldots\right.
$$

Instantons are the solution to equation

$$
F=F_{D}
$$

The action on the instantons with topological number m is $m 8 \pi^{2} / g^{2}$ Vacuum moduli space: $\left[\Phi, \Phi^{*}\right]^{2}=0$. For gauge group $S U(2)$ it can be represented as $\Phi=a \tau_{3}$. This destroys $S U(2)$ symmetry up to $U(1)$ and gives masses to vector particles (W-bosons). In the theory appear also magnetic charged particles (monopoles) which are the solution to equation

$$
F_{i j}=\epsilon_{i j k} D_{k} \Phi
$$

2D CFT (review)

- We have the complete set of local fields $\left\{\mathcal{O}_{k}(\xi)\right\}$

$$
\mathcal{O}_{i}(\xi) \mathcal{O}_{j}(0)=\sum_{k} C_{i j}^{k}(\xi) \mathcal{O}_{k}(0)
$$

- The structure constants $C_{i j}^{k}(\xi)$ are subject to associativity condition
- In CFT the set $\left\{\mathcal{O}_{k}(\xi)\right\}$ can be decomposed as

$$
\left\{\mathcal{O}_{k}(\xi)\right\}=\sum_{n}\left[\Phi_{n}\right] .
$$

- The ancestor of each family Φ_{n} is called primary field

$$
\Phi_{n}(z, \bar{z}) \longrightarrow\left(\frac{d w}{d z}\right)^{\Delta_{n}}\left(\frac{d \bar{w}}{d \bar{z}}\right)^{\bar{\Delta}_{n}} \Phi_{n}(w, \bar{w}), \quad z \rightarrow w(z), \quad \bar{z} \rightarrow \bar{w}(\bar{z})
$$

- Other representatives of $\left[\Phi_{n}\right]$ are called descendant fields

$$
\Delta_{n}^{(k)}=\Delta_{n}+k, \quad \bar{\Delta}_{n}^{(\bar{k})}=\bar{\Delta}_{n}+\bar{k},
$$

- In two dimensions the conformal group is $\mathrm{Vir} \otimes \mathrm{Vir}$

$$
\begin{aligned}
& {\left[L_{n}, L_{m}\right]=(n-m) L_{n+m}+\frac{c}{12}\left(n^{3}-n\right) \delta_{n+m, 0},} \\
& {\left[\bar{L}_{n}, \bar{L}_{m}\right]=(n-m) \bar{L}_{n+m}+\frac{c}{12}\left(n^{3}-n\right) \delta_{n+m, 0},}
\end{aligned}
$$

- And hence the conformal family is a tensor product $\left[\Phi_{n}\right]=\pi_{n} \otimes \bar{\pi}_{n}$

$$
[\Phi]=\left\{\Phi, \Phi^{(-1)}, \Phi^{(-1,-1)}, \Phi^{(-2)}, \ldots\right\} \otimes\{\ldots\}
$$

- One can show that OPE of primary fields has a form

$$
\Phi_{1} \Phi_{2}=\sum_{k} C_{12}^{k}\left(\Phi_{k}+\beta_{1} \Phi_{k}^{(-1)}+\beta_{1,1} \Phi_{k}^{(-1,-1)}+\beta_{2} \Phi_{k}^{(-2)}+\ldots\right) \otimes(\ldots)
$$

- We can introduce the notion of the conformal blocks. They represent holomorphic contributions to the multi-point correlation function

$$
\left\langle\Phi_{1}\left(z_{1}, \bar{z}_{1}\right) \ldots \Phi_{n}\left(z_{n}, \bar{z}_{n}\right)\right\rangle
$$

and can be represented as

- It is also convenient to choose $z_{1}=0, z_{n-1}=1, z_{n}=\infty$ and

$$
z_{i+1}=q_{i} q_{i+1} \ldots q_{n-3} \quad \text { for } \quad 1 \leq i \leq n-3
$$

- Then the conformal block is a power series expansion

$$
\mathcal{F}\left(q \mid \Delta_{i}, \tilde{\Delta}_{j}, c\right)=1+\sum_{\vec{k}} q_{1}^{k_{1}} q_{2}^{k_{2}} \ldots q_{n-3}^{k_{n-3}} \mathfrak{F}_{\vec{k}}\left(\Delta_{i}, \tilde{\Delta}_{j}, c\right)
$$

where the coefficients $\mathfrak{F}_{\vec{k}}\left(\Delta_{i}, \tilde{\Delta}_{j}, c\right)$ are some rational functions of Δ_{i}, $\tilde{\Delta}_{j}$ and the central charge c.

- There exists an algebraic procedure allowing to compute $\mathfrak{F}_{\vec{k}}\left(\Delta_{i}, \tilde{\Delta}_{j}, c\right)$ which is equivalent to the computation of the matrix elements

$$
\langle i| L_{k_{1}^{\prime}} \ldots L_{k_{m}^{\prime}} \Phi_{k}(1) L_{-k_{n}} \ldots L_{-k_{1}}|j\rangle
$$

using

$$
\begin{aligned}
& L_{n}|j\rangle=0\langle j| L_{-n}=0 \quad \text { for } \quad n>0, \\
& L_{0}|j\rangle=\Delta_{j}|j\rangle\langle j| L_{0}=\Delta_{j}\langle j| \\
& {\left[L_{n}, L_{m}\right]=(n-m) L_{n+m}+\frac{c}{12}\left(n^{3}-n\right) \delta_{n+m, 0}} \\
& {\left[L_{m}, \Phi_{k}(z)\right]=\left(z^{m+1} \partial_{z}+(m+1) \Delta_{k} z^{m}\right) \Phi_{k}(z)}
\end{aligned}
$$

and

$$
\langle i| \Phi_{k}(z)|j\rangle \sim z^{\Delta_{i}-\Delta_{j}-\Delta_{k}}
$$

- Alday, Gaiotto and Tachikawa suggested to consider the function

$$
Z\left(q \mid \Delta_{i}, \tilde{\Delta}_{j}, c\right) \stackrel{\text { def }}{=} \prod_{k=1}^{n-3} \prod_{m=k}^{n-3}\left(1-q_{k} \ldots q_{m}\right)^{2 \alpha_{k+1}\left(Q-\alpha_{m+2}\right)} \mathcal{F}\left(q \mid \Delta_{i}, \tilde{\Delta}_{j}, c\right)
$$

where

$$
\Delta_{k}=\alpha_{k}\left(Q-\alpha_{k}\right), \quad c=1+6 Q^{2} .
$$

- They proposed that $Z\left(q \mid \Delta_{i}, \tilde{\Delta}_{j}, c\right)$ coincides with instanton part of the Nekrasov partition function for $\underbrace{U(2) \otimes \cdots \otimes U(2)}_{n-3} \mathcal{N}=2$ supersymmetric gauge theory with 4 fundamental and $n-4$ bifundamental hypermultiplets and $q_{m}=\exp \left(8 \pi^{2} / g_{m}^{2}+i \theta_{m}\right)$
- The function $Z\left(q \mid \Delta_{i}, \tilde{\Delta}_{j}, c\right)$ has been computed by Nekrasov

$$
Z\left(q \mid \Delta_{i}, \tilde{\Delta}_{j}, c\right)=1+\sum_{\vec{k}} q_{1}^{k_{1}} q_{2}^{k_{2}} \ldots q_{n-3}^{k_{n-3}} Z_{\vec{k}}\left(\Delta_{i}, \tilde{\Delta}_{j}, c\right)
$$

The coefficients $Z_{\vec{k}}\left(\Delta_{i}, \tilde{\Delta}_{j}, c\right)$ have explicit combinatorial expressions

$$
\begin{aligned}
& Z_{\vec{k}}\left(\Delta_{i}, \tilde{\Delta}_{j}, c\right)=\sum_{\vec{\lambda}_{1}, \ldots, \vec{\lambda}_{n-3}} Z_{\mathrm{vec}}\left(P_{1}, \vec{\lambda}_{1}\right) \ldots Z_{\mathrm{vec}}\left(P_{n-3}, \vec{\lambda}_{n-3}\right) \times \\
& \quad \times Z_{\mathrm{bif}}\left(\alpha_{2} \mid P, \varnothing ; P_{1}, \vec{\lambda}_{1}\right) Z_{\mathrm{bif}}\left(\alpha_{3} \mid P_{1}, \vec{\lambda}_{1} ; P_{2}, \vec{\lambda}_{2}\right) Z_{\mathrm{bif}}\left(\alpha_{4} \mid P_{2}, \vec{\lambda}_{2} ; P_{3}, \vec{\lambda}_{3}\right) \times \ldots \\
& \quad \cdots \times Z_{\mathrm{bif}}\left(\alpha_{n-2} \mid P_{n-4}, \vec{\lambda}_{n-4} ; P_{n-3}, \vec{\lambda}_{n-3}\right) Z_{\mathrm{bif}}\left(\alpha_{n-1} \mid P_{n-3}, \vec{\lambda}_{n-3} ; \widehat{P}, \varnothing\right) .
\end{aligned}
$$

where $\Delta_{k}=\alpha_{k}\left(Q-\alpha_{k}\right)$,

$$
\Delta_{1}=\frac{Q^{2}}{4}-P^{2}, \quad \Delta_{n}=\frac{Q^{2}}{4}-\hat{P}^{2} \quad \text { and } \quad \tilde{\Delta}_{j}=\frac{Q^{2}}{4}-P_{j}^{2}
$$

and $\vec{\lambda}=\left(\lambda_{1}, \lambda_{2}\right)$ is the pair of Young diagrams such that $\left|\vec{\lambda}_{j}\right|=k_{j}$

- The function $Z_{\text {bif }}$ is given by ($Q=b+1 / b$)

$$
\begin{aligned}
Z_{\mathrm{bif}}\left(\alpha \mid P^{\prime}, \vec{\mu} ; P, \vec{\lambda}\right)=\prod_{i, j=1}^{2} \prod_{s \in \lambda_{i}}\left(Q-E_{\lambda_{i}, \mu_{j}}\right. & \left.\left(P_{i}-P_{j}^{\prime} \mid s\right)-\alpha\right) \times \\
& \times \prod_{t \in \mu_{j}}\left(E_{\mu_{j}, \lambda_{i}}\left(P_{j}^{\prime}-P_{i} \mid t\right)-\alpha\right)
\end{aligned}
$$

where $\vec{P}=(P,-P), \vec{P}^{\prime}=\left(P^{\prime},-P^{\prime}\right)$ and

$$
E_{\lambda, \mu}(P \mid s)=P-b l_{\mu}(s)+b^{-1}\left(a_{\lambda}(s)+1\right)
$$

- We choose the English convention to draw partitions. For example the partition $\lambda=(4,3,2,1,1)$ is drawn as follows

- $Z_{\mathrm{vec}}(P, \vec{\lambda})=1 / Z_{\mathrm{bif}}(0 \mid P, \vec{\lambda} ; P, \vec{\lambda})$.

Special basis of states in Vir $\otimes \mathcal{H}$

- We consider the algebra $\mathcal{A}=\operatorname{Vir} \otimes \mathcal{H}$

$$
\begin{aligned}
& {\left[L_{n}, L_{m}\right]=(n-m) L_{n+m}+\frac{c}{12}\left(n^{3}-n\right) \delta_{n+m, 0},} \\
& {\left[a_{n}, a_{m}\right]=\frac{n}{2} \delta_{n+m, 0}, \quad\left[L_{n}, a_{m}\right]=0 .}
\end{aligned}
$$

- We will parametrize the central charge c of Virasoro algebra as

$$
c=1+6 Q^{2}, \quad \text { where } \quad Q=b+\frac{1}{b},
$$

and define the primary field V_{α} as

$$
V_{\alpha} \stackrel{\text { def }}{=} \mathcal{V}_{\alpha} \cdot V_{\alpha}^{\mathrm{L}},
$$

where V_{α}^{L} is the primary field of Virasoro algebra and \mathcal{V}_{α} :

$$
\mathcal{V}_{\alpha}=e^{2(\alpha-Q) \varphi_{-}} e^{2 \alpha \varphi_{+}},
$$

with $\varphi_{+}(z)=i \sum_{n>0} \frac{a_{n}}{n} z^{-n}$ and $\varphi_{-}(z)=i \sum_{n<0} \frac{a_{n}}{n} z^{-n}$.

Proposition: There exists unique orthogonal basis $|P\rangle_{\vec{\lambda}}$ such that

$$
\frac{\vec{\mu}\left\langle P^{\prime}\right| V_{\alpha}|P\rangle_{\vec{\lambda}}}{\left\langle P^{\prime}\right| V_{\alpha}|P\rangle}=Z_{\mathrm{bif}}\left(\alpha \mid P^{\prime}, \vec{\mu} ; P, \vec{\lambda}\right)
$$

We stress that the conjugation in the algebra \mathcal{A} is defined as

$$
\left(L_{-k_{n}} \ldots L_{-k_{1}}\right)^{+}=L_{k_{1}} \ldots L_{k_{n}}, \quad\left(a_{-n}\right)^{+}=a_{n}
$$

and the conjugation of the state $|P\rangle_{\vec{\lambda}}$ does not involve complex conjugation of its coefficients, i.e. for $|P\rangle_{\vec{\lambda}}$ given by

$$
|P\rangle_{\vec{\lambda}}=\sum_{|\vec{\mu}|=|\vec{\lambda}|} C_{\vec{\lambda}}^{\mu_{1}, \mu_{2}}(P) \hat{a}_{-\mu_{1}} \hat{L}_{-\mu_{2}}|P\rangle,
$$

we define conjugated state $\vec{\lambda}^{\langle P|}$ by

$$
\vec{\lambda}\langle P|=\sum_{|\vec{\mu}|=|\vec{\lambda}|} C_{\vec{\lambda}}^{\mu_{1}, \mu_{2}}(P)\langle P|\left(\hat{a}_{-\mu_{1}}\right)^{+}\left(\hat{L}_{-\mu_{2}}\right)^{+} .
$$

Examples:

$$
\begin{gathered}
|P\rangle_{\{1\}, \varnothing}=-\left(L_{-1}+i(Q+2 P) a_{-1}\right)|P\rangle, \\
|P\rangle_{\varnothing,\{1\}}=-\left(L_{-1}+i(Q-2 P) a_{-1}\right)|P\rangle, \\
|P\rangle_{\{2\}, \varnothing}=\left(L_{-1}^{2}-b^{-1}(Q+2 P) L_{-2}+2 i\left(Q+b^{-1}+2 P\right) L_{-1} a_{-1}-\right. \\
\left.-(Q+2 P)\left(Q+b^{-1}+2 P\right) a_{-1}^{2}-i b^{-1}(Q+2 P)\left(Q+b^{-1}+2 P\right) a_{-2}\right)|P\rangle, \\
|P\rangle_{\varnothing,\{2\}}=\left(L_{-1}^{2}-b^{-1}(Q-2 P) L_{-2}+2 i\left(Q+b^{-1}-2 P\right) L_{-1} a_{-1}-\right. \\
\left.-(Q-2 P)\left(Q+b^{-1}-2 P\right) a_{-1}^{2}-i b^{-1}(Q-2 P)\left(Q+b^{-1}-2 P\right) a_{-2}\right)|P\rangle, \\
|P\rangle_{\{1,1\}, \varnothing}=\left(L_{-1}^{2}-b(Q+2 P) L_{-2}+2 i(Q+b+2 P) L_{-1} a_{-1}-\right. \\
\left.-(Q+2 P)(Q+b+2 P) a_{-1}^{2}-i b(Q+2 P)(Q+b+2 P) a_{-2}\right)|P\rangle, \\
|P\rangle_{\varnothing,\{1,1\}}=\left(L_{-1}^{2}-b(Q-2 P) L_{-2}+2 i(Q+b-2 P) L_{-1} a_{-1}-\right. \\
\left.-(Q-2 P)(Q+b-2 P) a_{-1}^{2}-i b(Q-2 P)(Q+b-2 P) a_{-2}\right)|P\rangle, \\
|P\rangle_{\{1\},\{1\}}=\left(L_{-1}^{2}-L_{-2}+2 i Q L_{-1} a_{-1}+\left(1+4 P^{2}-Q^{2}\right) a_{-1}^{2}-i Q a_{-2}\right)|P\rangle .
\end{gathered}
$$

Integrals of Motion

One can check that the states $|P\rangle_{\vec{\lambda}}$ are the eigenstates of the following infinite system of the Integrals of Motion

$$
\begin{aligned}
& \mathbf{I}_{2}=L_{0}-\frac{c}{24}+2 \sum_{k=1}^{\infty} a_{-k} a_{k}, \\
& \mathbf{I}_{3}=\sum_{k=-\infty, k \neq 0}^{\infty} a_{-k} L_{k}+2 i Q \sum_{k=1}^{\infty} k a_{-k} a_{k}+\frac{1}{3} \sum_{i+j+k=0} a_{i} a_{j} a_{k}, \\
& \mathbf{I}_{4}=2 \sum_{k=1}^{\infty} L_{-k} L_{k}+L_{0}^{2}-\frac{c+2}{12} L_{0}+6 \sum_{k=-\infty, k \neq 0}^{\infty} \sum_{i+j=k}^{\infty} L_{-k} a_{i} a_{j}+ \\
& \quad+12\left(L_{0}-\frac{c}{24}\right) \sum_{k=1}^{\infty} a_{-k} a_{k}+6 i Q \sum_{k=-\infty, k \neq 0}^{\infty}|k| a_{-k} L_{k}+ \\
& \\
& \quad+2\left(1-5 Q^{2}\right) \sum_{k=1}^{\infty} k^{2} a_{-k} a_{k}+6 i Q \sum_{i+j+k=0}|k| a_{i} a_{j} a_{k}+\sum_{i+j+k+l=0}: a_{i} a_{j} a_{k} a_{l}:
\end{aligned}
$$

Let us represent Virasoro generators L_{n} in terms of bosons c_{k} by

$$
\begin{gathered}
L_{n}=\sum_{k \neq 0, n} c_{k} c_{n-k}+i(n Q-2 \mathcal{P}) c_{n}, \quad L_{0}=\frac{Q^{2}}{4}-\mathcal{P}^{2}+2 \sum_{k>0} c_{-k} c_{k}, \\
{\left[c_{n}, c_{m}\right]=\frac{n}{2} \delta_{n+m, 0}, \quad\left[\mathcal{P}, c_{n}\right]=0, \quad \mathcal{P}|P\rangle=P|P\rangle, \quad\langle P| \mathcal{P}=-P\langle P|}
\end{gathered}
$$

Proposition: The states $|P\rangle_{\lambda, \varnothing}$ and ${ }_{\lambda, \varnothing}\langle P|$ can be defined as

$$
|P\rangle_{\lambda, \varnothing}=\Omega_{\lambda}(P) \mathbf{J}_{\lambda}^{(1 / g)}(x)|P\rangle, \quad{ }_{\lambda, \varnothing}\langle P|=\Omega_{\lambda}(P)\langle P| \mathbf{J}_{\lambda}^{(1 / g)}(y),
$$

where $g=-b^{2}$,

$$
a_{-k}-c_{-k}=-i b p_{k}(x), \quad a_{k}+c_{k}=-i b p_{k}(y)
$$

with $p_{k}(x)$ being k-th power sum symmetric polynomial $p_{k}(x)=\sum_{j} x_{j}^{k}$ and $\mathbf{J}_{\lambda}^{(1 / g)}(x)$ is the Jack polynomial associated with the Young diagram λ normalized as ("integral form" normalization)

$$
\mathbf{J}_{\lambda}^{(1 / g)}(x)=|\lambda|!m_{[1, \ldots, 1]}(x)+\ldots
$$

where $m_{\left[\nu_{1}, \ldots, \nu_{n}\right]}(x)$ is the monomial symmetric polynomial.

- The factor $\Omega_{\lambda}(P)$ is defined by

$$
\Omega_{\lambda}(P)=(-b)^{|\lambda|} \prod_{(i, j) \in \lambda}\left(2 P+i b+j b^{-1}\right)
$$

index i runs vertically and j runs horizontally over the diagram λ.

- Calculation of matrix element $\frac{\mu, \varnothing}{\left\langle P^{\prime}\right| V_{\alpha}|P\rangle_{\lambda, \varnothing}}\left\langle P^{\prime}\right| V_{\alpha}|P\rangle$.

There are infinite number of points α_{n} where the screening condition is satisfied:

$$
P+P^{\prime}+\alpha+n b=0
$$

In this case our matrix element possesses free field representation. We introduce screening charge:

$$
\mathcal{S}=\int_{C} e^{2 b \phi(\xi)} d \xi, \quad \phi=i \mathcal{P} \log \xi+i \sum_{k \neq 0} \frac{c_{k}}{k} \xi^{-k}
$$

which commutes with Virasoro algebra, and introduce the screened vertex operator:

$$
V_{\alpha_{n}}^{L}(z)=\mathcal{S}^{n} e^{2 \alpha_{n} \phi(z)}
$$

where the contours of integration start at point z and go around 0 counterclockwice.

The right and left operators A_{-k}, B_{k}

$$
A_{-k}=a_{-k}-c_{-k}, \quad B_{k}=a_{k}+c_{k}
$$

commute and have a simple CR with $e^{2 b \phi(z)}$

$$
\left[\frac{i}{b} A_{-k}, e^{2 b \phi(z)}\right]=z^{-k} e^{2 b \phi(z)}, \quad\left[\frac{1}{i b} B_{k}, e^{2 b \phi(z)}\right]=z^{k} e^{2 b \phi(z)}
$$

Operators A_{-k} commute with V_{α} and $\left[\frac{1}{i b} B_{k}, V_{\alpha}(1)\right]=\frac{2 \alpha-Q}{b} V_{\alpha}(1)$.

The calculation of matrix element reduces to the calculation of the Selberg average:

$$
\frac{\mu, \varnothing\left\langle P^{\prime}\right| V_{\alpha_{n}}|P\rangle_{\lambda, \varnothing}}{\left\langle P^{\prime}\right| V_{\alpha_{n}}|P\rangle}=\Omega_{\mu}\left(P^{\prime}\right) \Omega_{\lambda}(P) \frac{\left\langle\mathbf{J}^{\left(1 / b^{2}\right)}\left[p_{k}+\rho\right] \mathbf{J}^{\left(1 / b^{2}\right)}\left[p_{-k}\right]\right\rangle_{S e l}^{(n)}}{\langle 1\rangle_{S e l}^{(n)}}
$$

where $\rho=\frac{2 \alpha-Q}{b}$ and $\left\langle\mathcal{O}_{n}\right\rangle_{\text {Sel }}^{(n)}$ denotes:

$$
\frac{1}{n!} \int_{0}^{1} . . \int_{0}^{1} \mathcal{O}\left(t_{1}, . ., t_{n}\right) \prod_{i<k}^{n}\left|t_{i}-t_{k}\right|^{-2 b^{2}} \prod_{j=1}^{n} t_{j}^{A}\left(1-t_{j}\right)^{B} d t_{j}
$$

with parameters $A=-b(Q+2 P), B=-2 b \alpha_{n}$. This integral can be calculated and gives the expected result for matrix element.

- We note that $\Omega_{\lambda}(P)$ vanishes for

$$
P=P_{m, n}=-\frac{m b+n b^{-1}}{2}, \quad \text { for } \quad(m, n) \in \lambda
$$

- At $P=P_{m, n}$ the Verma module $|P\rangle$ is degenerate, i.e. there exists a singular vector $\left|\chi_{m, n}\right\rangle$ at the level $m n$

$$
\left|\chi_{m, n}\right\rangle \stackrel{\text { def }}{=} D_{m, n}\left|P_{m, n}\right\rangle=\left(L_{-1}^{m n}+\ldots\right)\left|P_{m, n}\right\rangle
$$

such that $L_{k}\left|\chi_{m, n}\right\rangle$ for any $k>0$.

Proposition: Let us define the operator $X_{\vec{\lambda}}(P)=X_{\lambda_{1}, \lambda_{2}}(P)$ as

$$
X_{\vec{\lambda}}(P)|P\rangle \stackrel{\text { def }}{=}|P\rangle_{\vec{\lambda}},
$$

then the following relation holds

$$
X_{\lambda, \varnothing}\left(P_{m, n}\right)\left|P_{m, n}\right\rangle=(-1)^{m n} X_{\lambda_{1}, \lambda_{2}}\left(P_{m,-n}\right) D_{m, n}\left|P_{m, n}\right\rangle \quad \text { for } \quad(m, n) \in \lambda
$$

where the pair of Young diagrams $\left(\lambda_{1}, \lambda_{2}\right)$ is defined by the following
"cutting" rule

This equation can be considered as a definition of $X_{\lambda_{1}, \lambda_{2}}(P)$ at $P=$ $P_{m,-n}$.

Integrals of Motion and Classical Limit

One can check that the states $|P\rangle_{\vec{\lambda}}$ are the eigenstates of the following infinite system of the Integrals of Motion

$$
\begin{aligned}
& \mathbf{I}_{2}=L_{0}-\frac{c}{24}+2 \sum_{k=1}^{\infty} a_{-k} a_{k}, \\
& \mathbf{I}_{3}=\sum_{k=-\infty, k \neq 0}^{\infty} a_{-k} L_{k}+2 i Q \sum_{k=1}^{\infty} k a_{-k} a_{k}+\frac{1}{3} \sum_{i+j+k=0} a_{i} a_{j} a_{k}, \\
& \mathbf{I}_{4}=2 \sum_{k=1}^{\infty} L_{-k} L_{k}+L_{0}^{2}-\frac{c+2}{12} L_{0}+6 \sum_{k=-\infty, k \neq 0}^{\infty} \sum_{i+j=k} L_{-k} a_{i} a_{j}+ \\
& \quad+12\left(L_{0}-\frac{c}{24}\right) \sum_{k=1}^{\infty} a_{-k} a_{k}+6 i Q \sum_{k=-\infty, k \neq 0}^{\infty}|k| a_{-k} L_{k}+ \\
& \\
& \quad+2\left(1-5 Q^{2}\right) \sum_{k=1}^{\infty} k^{2} a_{-k} a_{k}+6 i Q \sum_{i+j+k=0}|k| a_{i} a_{j} a_{k}+\sum_{i+j+k+l=0}: a_{i} a_{j} a_{k} a_{l}:
\end{aligned}
$$

- In semiclassical limit $b \rightarrow 0$

$$
T \rightarrow-Q^{2} u, \quad \partial \varphi \rightarrow-Q v, \quad[,] \rightarrow-\frac{2 i \pi}{Q^{2}}\{,\}
$$

we find that u and v satisfy Poisson bracket algebra relations

$$
\begin{aligned}
& \{u(x), u(y)\}=(u(x)+u(y)) \delta^{\prime}(x-y)+\frac{1}{2} \delta^{\prime \prime \prime}(x-y) \\
& \{v(x), v(y)\}=\frac{1}{2} \delta^{\prime}(x-y), \quad\{u(x), v(y)\}=0
\end{aligned}
$$

One can recover classical Hamiltonian system taking $\mathcal{H}=\int G_{3}(y) d y$

$$
G_{3}=u v+v \mathrm{D} v+\frac{1}{3} v^{3}
$$

where $\mathrm{D}=\frac{d}{d x} \mathrm{H}$ and H is the operator of Hilbert transform defined by the principal value integral

$$
\mathrm{H} F(x) \stackrel{\text { def }}{=} \frac{1}{2 \pi} f_{0}^{2 \pi} F(y) \cot \frac{1}{2}(y-x) d y
$$

- So, we defined integrable system of equations

$$
\left\{\begin{array}{l}
u_{t}+v u_{x}+2 u v_{x}+\frac{1}{2} v_{x x x}=0 \\
v_{t}+\frac{u_{x}}{2}+\mathrm{H} v_{x x}+v v_{x}=0
\end{array}\right.
$$

- It possesses infinitely many conserved quantities $I_{k}=\int G_{k} d x$

$$
\begin{aligned}
G_{2} & =u+v^{2}, \\
G_{3} & =u v+v \mathrm{D} v+\frac{1}{3} v^{3}, \\
G_{4} & =u^{2}+6 u v^{2}+6 u \mathrm{D} v+5 v_{x}^{2}+6 v^{2} \mathrm{D} v+v^{4}, \\
G_{5} & =u^{2} v+\frac{1}{2} u \mathrm{D} u+2 u_{x} v_{x}+4 u v \mathrm{D} v+v^{2} \mathrm{D} u+2 u v^{3}+\frac{3}{2} v_{x} \mathrm{D} v_{x}+ \\
& \quad+3 v v_{x}^{2}+2 v(\mathrm{D} v)^{2}+\frac{4}{3} v^{3} \mathrm{D} v+\frac{1}{2} v^{2} \mathrm{D} v^{2}+\frac{1}{5} v^{5},
\end{aligned}
$$

- It is convenient to represent $u=w^{2}-w_{x}$ and define $\psi=v+i w$

$$
\psi_{t}+\frac{i}{2} \psi_{x x}^{*}+\psi \psi_{x}+H \operatorname{Re} \psi_{x x}=0
$$

Nekrasov Part. Funct. and Zamolodchikov's Rec. Rel.

One-point conformal block $\mathcal{F}_{\alpha}^{(\Delta)}(q)$ is defined as the contribution to the trace of the conformal family with conformal dimension $\Delta=\frac{Q^{2}}{4}+P^{2}$

$$
\mathcal{F}_{\alpha}^{(\Delta)}(q) \stackrel{\text { def }}{=} \operatorname{Tr}_{\Delta}\left(q^{L_{0}-\frac{c}{24}} V_{\alpha}(0)\right)=1+\frac{2 \Delta+\Delta^{2}(\alpha)-\Delta(\alpha)}{2 \Delta} q+\ldots
$$

It was proposed by Alday, Gaiotto and Tachikawa that

$$
\mathcal{F}_{\alpha}^{(\Delta)}(q)=\left(\frac{q^{\frac{1}{24}}}{\eta(\tau)}\right)^{2 \Delta(\alpha)-1} Z\left(\varepsilon_{1}, \varepsilon_{2}, m, a\right)
$$

where $Z\left(\varepsilon_{1}, \varepsilon_{2}, m, a\right)$ is the instanton part of the Nekrasov partition function in $\mathcal{N}=2^{*} U(2)$ SYM with

$$
P=\frac{a}{\hbar}, \quad \alpha=\frac{m}{\hbar}, \quad \varepsilon_{1}=\hbar b, \quad \varepsilon_{2}=\frac{\hbar}{b},
$$

where a is VEV of scalar field, m is the mass of the adjoint hypermultiplet and ε_{k} are the parameters of the Ω background. Parameter q is given by

$$
q=e^{2 i \pi \tau}, \quad \text { where } \quad \tau=\frac{4 i \pi}{g^{2}}+\frac{\theta}{2 \pi} .
$$

Nekrasov partition function

$$
Z\left(\varepsilon_{1}, \varepsilon_{2}, m, a\right)=1+\sum_{k=1}^{\infty} q^{k} \mathfrak{Z}_{k},
$$

can be represented as a sum over partitions. Let $\vec{\nu}=\left(\nu_{1}, \nu_{2}\right)$ be the pair of Young diagrams with the total numbers of cells equal to N. Then

$$
\mathfrak{Z}_{N}=\sum_{\vec{\nu}} \prod_{i, j=1}^{2} \prod_{s \in \nu_{i}} \frac{\left(E_{i j}(s)-\alpha\right)\left(Q-E_{i j}(s)-\alpha\right)}{E_{i j}(s)\left(Q-E_{i j}(s)\right)}
$$

where

$$
E_{i j}(s)=2 P \epsilon_{i j}-b l_{\nu_{j}}(s)+b^{-1}\left(a_{\nu_{i}}(s)+1\right)
$$

$a_{\nu}(s)$ and $l_{\nu}(s)$ are respectively the horizontal and vertical distance from the square s to the edge of the diagram ν.

- AGT relation for $N=2^{*}$ theory can proved using Al. Zamolodchikov's recursive formula
- The coefficient \mathfrak{Z}_{N} can be represented as the contour integral

$$
\begin{aligned}
\mathfrak{Z}_{N}= & \frac{1}{N!}\left(\frac{Q(b-\alpha)\left(b^{-1}-\alpha\right)}{2 \pi \mathrm{i} \alpha(Q-\alpha)}\right)^{N} \oint_{\mathcal{C}_{1}} \ldots \oint_{\mathcal{C}_{N}} \prod_{k=1}^{N} \frac{\mathcal{P}\left(x_{k}+\alpha\right) \mathcal{P}\left(x_{k}+Q-\alpha\right)}{\mathcal{P}\left(x_{k}\right) \mathcal{P}\left(x_{k}+Q\right)} \times \\
& \times \prod_{i<j} \frac{x_{i j}^{2}\left(x_{i j}^{2}-Q^{2}\right)\left(x_{i j}^{2}-(b-\alpha)^{2}\right)\left(x_{i j}^{2}-\left(b^{-1}-\alpha\right)^{2}\right)}{\left(x_{i j}^{2}-b^{2}\right)\left(x_{i j}^{2}-b^{-2}\right)\left(x_{i j}^{2}-\alpha^{2}\right)\left(x_{i j}^{2}-(Q-\alpha)^{2}\right)} d x_{1} \ldots d x_{N}
\end{aligned}
$$

where $\mathcal{P}(x)=\left(x-P_{1}\right)\left(x-P_{2}\right)$ with $P=\left(P_{1}-P_{2}\right) / 2$. The contour \mathcal{C}_{k} surrounds poles $x_{k}=P_{1}, x_{k}=P_{2}, x_{k}=x_{j}+b$ and $x_{k}=x_{j}+b^{-1}$.

- A singularity in $\mathfrak{Z}_{N}=\mathfrak{Z}_{N}(\alpha, \Delta)\left(\Delta=Q^{2} / 4+P^{2}\right)$ can happen when two poles of the integrand pinch the contour. One can show that

$$
\left.\operatorname{Res} \mathfrak{Z}_{N}(\alpha, \Delta)\right|_{\Delta=\Delta_{m, n}}=R_{m, n}(\alpha) \mathfrak{Z}_{N-m n}\left(\alpha, \Delta_{m,-n}\right)
$$

where $R_{m, n}(\alpha)$ is exactly the same as prescribed by Alyosha Zamolodchikov's recursion formula.

- So, the singular part of the Nekrasov partition function coincides with the singular part of the one-point conformal block.
- The non-singular part which can be obtained in the limit $\Delta \rightarrow \infty$. It can be found using well known "hook-length" formula

$$
\left(\frac{q^{\frac{1}{24}}}{\eta(\tau)}\right)^{1-\lambda}=1+\sum_{k=1}^{\infty} \xi_{k}(\lambda) q^{k}
$$

with

$$
\xi_{N}(\lambda)=\sum_{\nu} \prod_{s \in \nu}\left(1-\frac{\lambda}{\left(1+l_{\nu}(s)+a_{\nu}(s)\right)^{2}}\right) .
$$

the sum goes over all ν 's with the total number of cells equal to N.

- Comparing asymptotics of the conformal block and Nekrasov partition function one finds the coefficient of proportionality in AGT formula.
- Seiberg-Witten prepotential can be obtained in the semiclassical limit $\hbar \rightarrow 0$

$$
Z\left(\varepsilon_{1}, \varepsilon_{2}, m, \vec{a}\right) \rightarrow \exp \left(\frac{1}{\hbar^{2}} \mathcal{F}(m, \vec{a} \mid q)+O(1)\right)
$$

- To derive this limit from the Liouville point of view we consider twopoint function with one degenerate field

$$
\Psi(z) \sim\left\langle V_{-\frac{b}{2}}(z) V_{\alpha}(0)\right\rangle
$$

This function satisfies Scrödinger equation

$$
\left(-\partial_{z}^{2}+\frac{b^{2} m^{2}}{\hbar^{2}} \wp(z)\right) \Psi(z)=\frac{2 i b^{2}}{\pi} \partial_{\tau} \Psi(z) .
$$

- We look for the solution in the form

$$
\Psi(z)=\exp \left(\frac{1}{\hbar^{2}} \mathcal{F}(q)+\frac{b}{\hbar} \mathcal{W}(z \mid q)+\ldots\right)
$$

with prescribed monodromy $e^{2 i \pi a}$ around A-cycle.

- WKB approximation gives

$$
\mathcal{W}(z \mid q)=\int \sqrt{E(q)+m^{2} \wp(z)} d z, \quad E(q)=4 q \partial_{q} \mathcal{F}(q)
$$

- With $E(q)$ given in parametric form

$$
\oint_{A} \sqrt{E(q)+m^{2} \wp(z)} d z=2 i \pi a,
$$

the prepotential $\mathbb{F}(m, \vec{a} \mid q)$ can be calculated as follows

$$
\mathbb{F}(m, \vec{a} \mid q)=\left(a^{2}+\frac{m^{2}}{12}\right) \log (q)-4 m^{2} \log (\eta(\tau))+\mathcal{F}(q),
$$

- The integral over B-cycle defines a_{D}

$$
\oint_{B} \sqrt{E(q)+m^{2} \wp(z)} d z=2 i \pi a_{D},
$$

which is the derivative of the total prepotential (including classical and perturbative part) with respect to a.

Conformal Toda Theory (review)

$\operatorname{sl}(n)$ CTT is described by the density of Lagrangian:

$$
\frac{1}{2 \pi} \partial \phi \bar{\partial} \phi+\kappa \sum_{i=1}^{n-1} e^{e_{i} \cdot \phi}
$$

where $\phi=\left(\phi_{1}, . ., \phi_{n-1}\right)$ and e_{i} are the simple roots of $s l(n), \partial=\partial_{z}$ CTT possesses W - symmetry, generated by currents $\mathrm{W}_{k}(z)$. Let h_{i} are the weights of the first fundamental representation with h.w. $\omega_{1}: h_{k}=$ $\omega_{1}-\sum_{1}^{k-1} e_{i}$. We define the Miura transformation: $\phi \rightarrow \mathrm{W}$

$$
\prod_{i=0}^{n}\left(Q \partial+h_{n-i} \cdot \partial \phi\right)=\sum_{k=0}^{n} \mathbb{W}_{n-k}(z)(Q \partial)^{k}
$$

which establishes the representation for currents $\mathrm{W}_{k}(z) . \mathrm{W}_{0}=1, \mathrm{~W}_{2}=$ $T(z)$. The primary fields of W-algebra are the exponential Toda fields $V_{\alpha}(z)$:

$$
V_{\alpha}=e^{\alpha \cdot \phi}
$$

$$
\mathrm{W}_{k}(z) V_{\alpha}\left(z^{\prime}\right)=\frac{w_{k}(\alpha)}{\left(z-z^{\prime}\right)^{k}} V_{\alpha}\left(z^{\prime}\right)+O\left(\left(z-z^{\prime}\right)^{-k+1}\right)
$$

The Weyl invariant functions $w_{k}(\alpha)$ determine h.w. representation. We introduce Weyl vector ρ-half of the sum of positive roots and define vector $P=\alpha-Q \rho$. Let parameters $x_{i}=h_{i} \cdot P$,then $w_{2}=\Delta$ and w_{3} are:

$$
\Delta=\frac{1}{2}\left((Q \rho)^{2}-\sum_{1}^{n} x_{i}^{2}\right), \quad w_{3}=\frac{1}{3} \sum_{1}^{n} x_{i}^{3}
$$

W-symmetry together with three point functions of primary fields do not fix in general conformal blocks. However, they fix completely the blocks:

$$
\left\langle V_{\alpha_{1}}\left(z_{1}\right) V_{a_{2} \omega_{1}}\left(z_{2}\right) V_{a_{2} \omega_{1}}\left(z_{3}\right) \ldots V_{a_{k-1}} \omega_{1}\left(z_{k-1}\right) V_{\alpha_{k}}\left(z_{k}\right)\right\rangle
$$

According to the AGT-Wyllard conjecture this block coincides with instanton contribution of $k-3 S U(n)$ gauge theories coupled with n fundamental n anti-fundamental and $k-4$ bifundamental matter super multiplets.

Integrals of Motion and Matrix Elements

$$
\begin{gathered}
\mathbf{I}_{1}^{(n)}=L_{0}+\sum a_{-k} a_{k} \\
\mathbf{I}_{3}^{(n)}=i \frac{n^{3 / 2}}{2} Q \sum_{k=1}^{\infty} a_{-k} a_{k}+2 \sum_{k=-\infty}^{\infty} a_{-k} L_{k}+\frac{1}{3} \sum_{i+j+k=0} a_{i} a_{j} a_{k}+n^{1 / 2} W_{3}^{(0)}
\end{gathered}
$$

**

The eigenvectors $\psi_{\vec{\nu}, P}$ of $\mathbf{I}_{3}^{(n)}$ are parametrized by n partitions $\vec{\nu}=$ ($\nu_{1}, . ., \nu_{n}$), and corresponding eigenvalues are:

$$
\mathcal{I}_{3}=\sum_{i=1}^{n} q_{i}^{(3)}\left(x_{i}, \nu_{i}\right)
$$

where $q^{(3)}(x, \nu)=i\left(-2|\nu| x+\frac{1}{b} \sum_{l} \nu_{l}\left(\nu_{l}+2(l-1) b^{2}\right)\right)$.
The similar property of decomposition is valid for eigenvalues \mathcal{I}_{k} of all integrals $\mathbf{I}_{k}^{(n)}$

The matrix elements of vertex operator

$$
\mathcal{V}_{a}(z)=e^{\sqrt{n} a \varphi_{+}} e^{-\sqrt{n}(Q-a) \varphi_{-}} V_{a \omega_{1}}(z)
$$

in the basis of these vectors $F_{\nu^{\prime}}^{\nu}\left(a, P, P^{\prime}\right)=\frac{\left\langle\Psi_{\vec{\nu}, P}\right| \mathcal{V}_{a}(1)\left|\Psi_{\overrightarrow{\nu^{\prime}}, P^{\prime}}\right\rangle}{\left\langle\Psi_{\overrightarrow{0}, P}\right| \mathcal{V}_{a}(1)\left|\Psi_{\overrightarrow{0}, P^{\prime}}\right\rangle}$ are equal

$$
\begin{aligned}
F_{\vec{\nu}^{\prime}}^{\vec{~}}\left(a, P, P^{\prime}\right)= & \prod_{i, j=1}^{n} \prod_{s \in \nu_{i}^{\prime}}\left(Q-E_{\nu_{i, ~}^{\prime}{ }_{j}}\left(x_{j}-x_{i}^{\prime} \mid s\right)-a\right) \\
& \prod_{t \in \nu_{j}}\left(E_{\nu_{j}, \nu_{i}^{\prime}}\left(x_{i}^{\prime}-x_{j} \mid t\right)-a\right)
\end{aligned}
$$

This expression coincides with $Z_{b i f}$ derived by Nekrasov in instanton calculations.

The norms $N_{\vec{\nu}}(P)$ of the vectors $\psi_{\vec{\nu}, P}$ are equal to $F_{\vec{\nu}}^{\vec{\nu}}(0, P, P)$:

$$
\begin{aligned}
N_{\vec{\nu}}(P)= & \prod_{i, j=1}^{n} \prod_{s \in \nu_{i}}\left(Q-E_{\nu_{i}, \nu_{j}}\left(x_{j}-x_{i} \mid s\right)\right) \\
& \prod_{t \in \nu_{j}}\left(E_{\nu_{j}, \nu_{i}}\left(x_{i}-x_{j} \mid t\right)\right)
\end{aligned}
$$

and coincides with $Z_{\text {vec }}^{-1}$

Classical Integrable System

It is convenient to introduce the fields

$$
\phi_{j}=\frac{1}{\sqrt{n}}\left(\varphi+h_{j} \cdot \phi\right)
$$

which in the classical limit have the canonical Poisson brackets:

$$
\left\{\phi_{i}(x), \phi_{j}(y)\right\}=\delta_{i, j} \delta^{\prime}(x-y)
$$

In terms of these fields two first classical densities of integrals have a form:

$$
\begin{aligned}
G_{2}^{(n)} & =\sum_{k=1}^{n} \phi_{k}^{2} \\
G_{3}^{(n)} & =\frac{1}{2 i} \widehat{\phi} \mathrm{D} \widehat{\phi}+\sum_{j>k}^{n} \phi_{j} \partial \phi_{k}-\frac{1}{3} \sum_{k=1}^{n} \phi_{k}^{3}
\end{aligned}
$$

where $\hat{\phi}=\sum_{j=1}^{n} \phi_{j}$, and D is derivative of Hilbert transform on the circle.

$$
\mathrm{H} F(x) \stackrel{\text { def }}{=} \frac{1}{2 \pi} f_{0}^{2 \pi} F(y) \cot \frac{1}{2}(y-x) d y
$$

Let

$$
\sigma[i]=1 \quad \text { if } \quad i>0, \quad 0 \quad \text { if } \quad i=0, \quad-1 \quad \text { if } \quad i<0
$$

Then equations of motion with Hamiltonian $I_{3}^{(n)}$ can be written as:

$$
\frac{1}{i} \partial_{t} \phi_{j}+\frac{1}{i} \mathrm{D} \widehat{\phi}+\sum_{k=1}^{n} \sigma[j-k] \partial_{x}^{2} \phi_{k}-2 \phi_{j} \partial_{x} \phi_{j}=0
$$

These equations admit the "reality" conditions $\phi_{k}^{*}=-\phi_{n+1-k}$
In the limit $n \rightarrow \infty$ we can define the variable $y=\frac{j}{n}$, denote $\phi_{j}=n \chi_{\frac{j}{n}}$ and introduce the function $u(x, y, t)=\chi_{y}(x, n t)$ which satisfies the equations:

$$
\begin{gathered}
\frac{1}{i} \partial_{t} \partial_{y} u+2 \partial_{x}^{2} u-\partial_{x} \partial_{y} u^{2}=0 \\
\frac{1}{i} \partial_{t} u(x, 0, t)+\int_{0}^{1}\left(\frac{1}{i} \mathrm{D} u(x, y, t)_{x}-u(x, y, t)_{x x}\right) d y-\partial_{x} u^{2}(x, 0, t)=0
\end{gathered}
$$

These equations have a stationary solution (soliton)

$$
u(x, y)=(1 / 2-y) \cot (x / 2+\operatorname{sign}(y-1 / 2) \operatorname{in})
$$

This solution is large n limit of of smooth in j solution of system of equations for ϕ_{j}

$$
\phi_{j}=\left(\frac{n+1}{2}-j\right) \cot \left(x / 2+\operatorname{sign}\left(j-\frac{n+1}{2}\right) i \eta\right)
$$

