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legacy of LHC Run I

I so far no sign of new Physics at the TeV scale from direct searches

I Higgs couplings have started to be measured: SM-like values, within 20-30 %

I Situation will hopefully change at 13-14 TeV. Otherwise BSM hints likely from:
- small deviation from SM backgrounds [new Physics can be hidden well]
- indirect searches [Higgs couplings, precise extraction of SM parameters]

require accurate understanding of signals and backgrounds:
“precision Physics”
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Where are QCD precision and MC important?

1 : s-channel resonance
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- s-channel resonance “easy” to discover; Higgs discovery in �� and ZZ belongs to 1

- Some analysis techniques (e.g. 2 ) heavily relies on using MC event generators to
separate signal and backgrounds

- MC very often needed also in more standard analysis...
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Where are QCD precision and MC important?

3 : jet-binned x-section
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4 : high-pt excess
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- For 3 and 4 , need to control as much as possible QCD effects (i.e. rates and shapes,
and also uncertainties!).

- Similar issues when extracting a SM parameters very precisely (e.g. the W mass).

- at some level, MC event generators enter in almost all experimental analyses

precise tools ) smaller uncertainties on measured quantities
+

“small” deviations from SM accessible
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Event generators: what they are?
ideal world: high-energy collision and detection of elementary particles

real world:

I collide non-elementary particles
I we detect e, µ, �,hadrons, “missing energy”

I we want to predict final state
- realistically
- precisely
- from first principles

) full event simulation needed to:
- compare theory and data
- estimate how backgrounds affect signal region
- test/build analysis techniques

soner or later, at some point a MC is used...

g

g

t

t

t
H

[sherpa’s artistic view]

hard scattering

⇤QCD ⌧ µ ⇡ Q

. perturbation theory

parton shower

⇤QCD < µ < Q

. hierarchy of scales

. resummation of large
logarithms

hadronisation

µ ⇡ ⇤QCD

. non-perturbative model,
tuned on e+e� data all stages: QCD
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Event generators: what’s the output?

I in practice: momenta of all outgoing leptons and hadrons:

5 / 35



Plan of the talk

1. review how these tools work

2. discuss how their accuracy can be improved

3. show recent “NNLO matched to parton showers”
results (NNLOPS)
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parton showers and fixed order
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Parton showers I
- connect the hard scattering (µ ⇡ Q) with the final state hadrons (µ ⇡ ⇤QCD)
- need to simulate production of many quarks and gluons

1. start from low multiplicity at high Q2

2. quarks and gluons are color-charged ) they radiate
3. soft-collinear emissions are ennhanced:

1

(p1 + p2)2
=

1

2E1E2(1� cos ✓)

4. in soft-collinear limit, factorization properties of QCD
amplitudes

|Mn+1|2d�n+1 ! |Mn|2d�n
↵

S

2⇡

dt

t
Pq,qg(z)dz

d'

2⇡

z = k
0

/(k0 + l
0) quark energy fraction

t =
n

(k + l)2, l2T , E
2

✓
2

o

splitting hardness

Pq,qg(z) = C
F

1 + z2

1 � z
AP splitting function

probabilistic interpretation!
[notice: ↵

S

L2]
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Parton showers II

5. dominant contributions for multiparticle production
due to strongly ordered emissions

t1 > t2 > t3...

6. at any given order, we also have virtual corrections:
include them with the same approximation

I LL virtual contributions: Sudakov form factor for each internal line:

�a(ti, ti+1) = exp

2

4�
X

(bc)

Z ti

ti+1

dt0

t0

Z

↵s(t0)
2⇡

Pa,bc(z) dz

3

5

I
�a corresponds to the probability of having no resolved emission between ti and ti+1 off
a line of flavour a

resummation of collinear logarithms

[very soft/collinear emissions are suppressed - all order effect!]
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Parton showers: summary

d�
SMC

= |MB |2d�B
| {z }

d�B

n

�(tmax, t0)+�(tmax, t) dPemis(t)
| {z }

↵s
2⇡

1

t
P (z) d�r

{�(t, t0) +�(t, t0)dPemis(t
0
)

| {z }

t0<t

}

o

�(tmax, t) = exp

⇢

�
Z t

max

t
d�0

r

↵s

2⇡

1

t0
P (z0)

�

This is “LOPS”

- A parton shower changes shapes, not the overall normalization, which stays LO (unitarity)
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Do they work?

plot from [Gianotti,Mangano 0504221]

I ok when observables dominated by soft-collinear radiation [ ]

I not surprisingly, they fail when looking for hard multijet kinematics [ ]

I they are only LO+LL accurate (whereas we want (N)NLO QCD corrections) [ ]

) Not enough if interested in precision (10% or less), or in multijet regions

11 / 35



Next-to-Leading Order

↵
S

⇠ 0.1 ) to improve the accuracy, use exact perturbative expansion

d� = d�LO +
⇣↵
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2⇡
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i o

Why NLO is important?

I first order where rates are reliable
I shapes are, in general, better described
I possible to attach sensible theoretical

uncertainties

When NNLO is needed?
I NLO corrections large
I very high-precision needed

) Drell-Yan, Higgs, t¯t production

plot from [Anastasiou et al., ’03]
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PS vs. NLO

NLO

precision
nowadays this is the standard
limited multiplicity
(fail when resummation needed)

parton showers

realistic + flexible tools
widely used by experimental coll’s
limited precision (LO)
(fail when multiple hard jets)

can we merge them and build an NLOPS generator?
Problem:

overlapping regions!

NLO: PS:

many proposals, 2 well-established methods available to solve this problem:
MC@NLO and POWHEG [Frixione-Webber ’03, Nason ’04]
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matching NLO and PS
I POWHEG (POsitive Weight Hardest Emission Generator)
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NLOPS: POWHEG I
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NLOPS: POWHEG II

d�POW = d�n
¯B(�n)

⇢

�(�n; k
min
T

) +�(�n; kT

)

↵s

2⇡

R(�n,�r)

B(�n)
d�r

�

[+ p
T

-vetoing subsequent emissions, to avoid double-counting]

- inclusive observables: @NLO
- first hard emission: full tree level ME
- (N)LL resummation of collinear/soft logs
- extra jets in the shower approximation

This is “NLOPS”

POWHEG BOX [Alioli,Nason,Oleari,ER ’10]

I large library of SM processes, (largely) automated
I widely used by LHC collaborations and other theorists
I not really a closed chapter; some important issues are still to be addressed...

NLO+PS

LO+PS

...a couple of possible BSM applications...
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t¯t and top-mass measurement
I Improvement on measurement of the top-mass at the LHC will probably come from

combination of different strategies: total x-section, t¯t + jet, leptonic spectra, b` endpoint,...
[see e.g. TOP LHC Working Group or MITP Workshop 2014]

I Some techniques rely on looking into the kinematics of visible particles from top-decay

I Important that simulations are very accurate, and associated errors are quantified:
recently, NLO+PS with NLO in production and decay [Campbell,Ellis,Nason,ER ’14]

[left plot stolen from R. Franceschini slide @ TOP LHC WG]
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BSM example I

plot from [Giudice et al. ’13]

mt ⇡ 173± 1 GeV
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BSM example II: LHC and Dark-Matter searches

DM

DM

SM

SM

jet

DM ! missing ET

SM SM

19 / 35



BSM example II: LHC and Dark-Matter searches
I studied QCD corrections to monojet searches

[Haisch,Kahlhoefer,ER ’13]

I ATLAS and CMS cuts are such that a large fraction
of events has 2 or more jets

I for some DM-SM interactions, using VBF cuts: [Haisch,Hibbs,ER ’13, see also Cotta,Hewett et al. ’13]
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NLO+PS merging and NNLO+PS
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NNLO+PS: why and where?
NLO(+PS) not always enough: NNLO needed when

1. large NLO/LO “K-factor”
[as in Higgs Physics]

2. very high precision needed
[e.g. Drell-Yan, top pairs]

I last couple of years:
huge progress in NNLO

[Anastasiou et al., ’03]Q: can we merge NNLO and PS?

realistic event generation with state-of-the-art perturbative accuracy !
important for precision studies for several processes

I method presented here: based on POWHEG+MiNLO, used so far for
- Higgs production [Hamilton,Nason,ER,Zanderighi, 1309.0017]

- neutral & charged Drell-Yan [Karlberg,ER,Zanderighi, 1407.2940]
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towards NNLO+PS

I what do we need and what do we already have?

H (inclusive) H+j (inclusive) H+2j (inclusive)
H @ NLOPS NLO LO shower
HJ @ NLOPS / NLO LO

H-HJ @ NLOPS NLO NLO LO

H @ NNLOPS NNLO NLO LO

a merged H-HJ generator is almost OK

I many of the multijet NLO+PS merging approaches work by combining 2 (or
more) NLO+PS generators, introducing a merging scale⇤

I POWHEG + MiNLO [Multiscale Improved NLO]. [Hamilton et al. ’12]

No need of merging scale: it extends the validity of a NLO+PS computation with
jets in the final state to phase-space regions where jets become unresolved

⇤ [Hoeche,Krauss, et al.,1207.5030] [Frederix,Frixione,1209.6215] [Lonnblad,Prestel,1211.7278]
[Platzer,1211.5467] [Alioli,Bauer, et al.,1211.7049] ...
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NLOPS merging & BSM

I left: LO+PS
I right: NLO+PS merging Sherpa+OpenLoops [Hoeche,Krauss et al. 1402.6293]
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POWHEG ! MiNLO ! NNLO+PS

Higgs at NNLO:

# loops: 0 1 2 # loops: 0 1 # loops: 0

(c) 2 loops missing: from exact fixed-order NNLO

W (y) =
d�(y)NNLO

d�(y)MiNLO

(b) - integrate down to qT = 0 with MiNLO
- “Improved MiNLO” allows to build a H-HJ @ NLOPS generator

(a) 1 and 2 jets: POWHEG H+1j
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MiNLO

Multiscale Improved NLO
I original goal: method to a-priori choose scales in multijet NLO computation
I how: correct weights of different NLO terms with CKKW-inspired approach (without

spoiling formal NLO accuracy)

- for each point sampled, build the “more-likely” shower history that would have
produced that kinematics (can be done by clustering kinematics with kT -algo, then,
by undoing the clustering, build “skeleton”)

- “CKKW-correct” original NLO: ↵
S

evaluated at nodal scales and Sudakov FFs

¯BNLO = ↵3
S

(µR)

h

B + ↵
S

V (µR) + ↵
S

Z

d�rR
i
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(qT )�

2
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h

B
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1� 2�

(1)
g (qT ,mh)
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S
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i
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hqT )1/3

. log�
f
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Z m2
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h
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1,f log2
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1,f log
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i

. µF = qT

Sudakov FF included on H+j
Born kinematics

I MiNLO-improved HJ yields finite results also when 1st jet is unresolved (qT ! 0)
I ¯BMiNLO ideal to extend validity of HJ-POWHEG [called “HJ-MiNLO” hereafter]
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I MiNLO-improved HJ yields finite results also when 1st jet is unresolved (qT ! 0)
I ¯BMiNLO ideal to extend validity of HJ-POWHEG [called “HJ-MiNLO” hereafter]
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MiNLO

Multiscale Improved NLO
I original goal: method to a-priori choose scales in multijet NLO computation
I how: correct weights of different NLO terms with CKKW-inspired approach (without

spoiling formal NLO accuracy)

- for each point sampled, build the “more-likely” shower history that would have
produced that kinematics (can be done by clustering kinematics with kT -algo, then,
by undoing the clustering, build “skeleton”)
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“Improved” MiNLO & NLOPS merging

I formal accuracy of HJ-MiNLO for inclusive observables carefully investigated
I HJ-MiNLO describes inclusive observables at order ↵

S

I to reach genuine NLO when fully inclusive (NLO(0)), “spurious” terms must be of relative
order ↵2

S

, i.e.

OHJ�MiNLO = OH@NLO +O(↵2+2
S

) if O is inclusive

I “Original MiNLO” contains ambiguous “O(↵2+1.5
S

)” terms

I Possible to improve HJ-MiNLO such that inclusive NLO is recovered (NLO(0)), without
spoiling NLO accuracy of H+j (NLO(1)).

I accurate control of subleading small-pT logarithms is needed
(scaling in low-pT region is ↵

S

L2 ⇠ 1, i.e. L ⇠ 1/
p
↵

S

!)

Effectively as if we merged NLO(0) and NLO(1) samples, without merging different
samples (no merging scale used: there is just one sample).
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“Improved” MiNLO & NLOPS merging: details

I Resummation formula
d�

dq2T dy
= �0

d

dq2T

n

[Cga ⌦ fa](xA, qT )⇥ [Cgb ⌦ fb](xB , qT )⇥ expS(qT , Q)

o

+Rf

S(qT , Q) = �2

Z Q2

q2
T

dq2

q2
↵

S

(q2)

2⇡

h

Af log

Q2

q2
+Bf

i

I If C(1)
ij included and Rf is LO(1), then upon integration we get NLO(0)

I Take derivative, then compare with MiNLO :

⇠ �0
1

q2T
[↵

S

, ↵2
S

,↵3
S

,↵4
S

,↵
S

L,↵2
S

L,↵3
S

L,↵4
S

L] expS(qT , Q) +Rf L = log(Q2/q2T )

I highlighted terms are needed to reach NLO(0):
Z Q2

dq2T
q2T

Lm↵
S

n
(qT ) expS ⇠ �

↵
S

(Q2
)

�n�(m+1)/2

(scaling in low-pT region is ↵
S

L2 ⇠ 1!)

I if I don’t include B2 in MiNLO �g , I miss a term (1/q2T ) ↵2
S

B2 expS

I upon integration, violate NLO(0) by a term of relative O(↵3/2
S

)
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Higgs at NNLO+PS: details

I HJ-MiNLO+POWHEG generator gives H-HJ @ NLOPS

H (inclusive) H+j (inclusive) H+2j (inclusive)
H-HJ @ NLOPS NLO NLO LO
H @ NNLOPS NNLO NLO LO

I reweighting (differential on �B) of “MiNLO-generated” events:

W (�B) =

⇣
d�

d�B

⌘

NNLO⇣
d�

d�B

⌘

HJ�MiNLO⇤

=

↵2
S

c0 + c1↵
3
S

+ c2↵
4
S

↵2
S

c0 + c1↵3
S

+ d2↵4
S

' 1 +

c2 � d2
c0

↵2
S

+O(↵3
S

)

I by construction NNLO accuracy on fully inclusive observables (�tot, yH ;m``, ...) [ ]

I to reach NNLOPS accuracy, need to be sure that the reweighting doesn’t spoil the
NLO accuracy of HJ-MiNLO in 1-jet region [ ]

I notice: formally works because no spurious O(↵2+1.5
S

) terms in H-HJ @ NLOPS
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H@NNLOPS (fully incl.)

I NNLO with µ = mH/2, HJ-MiNLO “core scale” mH [NNLO from HNNLO, Catani,Grazzini]

I
(7Mi ⇥ 3NN) pts scale var. in NNLOPS, 7pts in NNLO
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Notice: band is 10% (at NLO would be ⇠ 20-30%) [ ]

[Until and including O(↵4

S

), PS effects don’t affect yH (first 2 emissions controlled properly at O(↵4

S

) by MiNLO+POWHEG)]
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H@NNLOPS (pHT )
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I HqT: NNLL+NNLO, µR = µF = mH/2 [7pts], Qres ⌘ mH/2 [HqT, Bozzi et al.]

uncertainty bands of HqT contain NNLOPS at low-/moderate pT

I very good agreement with HqT resummation
[“⇠ expected”, since Qres ⌘ mH/2, and � = 1/2]
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H@NNLOPS (pj1T )
Separation of H ! WW from t¯t bkg: x-sec binned in Njet

0-jet bin , jet-veto accurate predictions needed !
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I JetVHeto: NNLL resum, µR = µF = mH/2 [7pts], Qres ⌘ mH/2, (a)-scheme only
[JetVHeto, Banfi et al.]

I nice agreement, differences never more than 5-6 %
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Drell-Yan @NNLOPS
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....measure W mass very precisely....
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consistency of SM

mW = 80385± 15 MeV
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Conclusions and Outlook

I Especially in absence of very clear singals of new-physics, accurate tools are needed for
LHC phenomenology

I In the last decade, impressive amount of progress: new ideas, and automated tools

) briefly reviewed how Event Generators work, and how they can be upgraded to NLO

) shown results of merging NLOPS for different jet-multiplicities without merging scale

) shown first working examples of NNLOPS

What next?

I NLOPS merging for higher multiplicity

I NNLOPS for more complicated processes (color-singlet in principle doable, in practice a
more analytic-based approach might be needed)

I Real phenomenology in experimental analyses

Thank you for your attention!
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