Accueil >
Production scientifique


Transition vitreuse, hétérogénéité dynamique et vieillissement dans les systèmes a dynamique lente
(37) Production(s) de l'année 2023


|
|
Le verre est-il une phase de la matière ? 
Auteur(s): Guiselin B., Berthier L.
(Article) Publié:
Reflets De La Physique, vol. p.28-33 (2023)
Texte intégral en Openaccess : 
Ref HAL: hal-04796482_v1
DOI: 10.1051/refdp/202274028
Exporter : BibTex | endNote
Résumé: Quoi de plus usuel que le verre ? Nous portons des lunettes, nos conversations sont transmises par fibres optiques, nos villes sont peuplées d’immeubles aux façades de verre. L’existence du verre est tangible dans notre vie quotidienne. Et pourtant… Du point de vue microscopique, la structure du verre ressemble à celle du liquide à partir duquel il a été obtenu, mais le verre est indéniablement aussi rigide qu’un matériau cristallin sans en avoir la structure ordonnée. La définition du verre en tant que phase de la matière obtenue au travers d’une transition de phase s’accompagnant de la brisure de symétrie d’un paramètre d’ordre macroscopique reste un problème fondamental ouvert. Alors, existe-t-il une phase « verre » ?
|

|
|
Sampling efficiency of transverse forces in dense liquids 
Auteur(s): Ghimenti Federico, Berthier L., Szamel G., van Wijland Frédéric
(Article) Publié:
Physical Review Letters, vol. p. (2023)
Ref HAL: hal-04357521_v1
DOI: 10.1103/PhysRevLett.131.257101
Exporter : BibTex | endNote
Résumé: Sampling the Boltzmann distribution using forces that violate detailed balance can be faster than with the equilibrium evolution, but the acceleration depends on the nature of the nonequilibrium drive and the physical situation. Here, we study the efficiency of forces transverse to energy gradients in dense liquids through a combination of techniques: Brownian dynamics simulations, exact infinitedimensional calculation and a mode-coupling approximation. We find that the sampling speedup varies non-monotonically with temperature, and decreases as the system becomes more glassy. We characterize the interplay between the distance to equilibrium and the efficiency of transverse forces by means of odd transport coefficients.
|

|
|
Intermediate-range order governs dynamics in dense colloidal liquids 
Auteur(s): Singh Navneet, Zhang Z., Sood A.k., Kob W. , Ganapathy Rajesh
(Article) Publié:
Proceedings Of The National Academy Of Sciences Of The United States Of America, vol. 120 p.e2300923120 (2023)
|

 |
The medium-range order in silicate glass-formers: From standard two-body indicators to many-body correlations
Auteur(s): Kob W.
Conférence invité: ICG Annual Meeting 2023 (Hangzhou, CN, 2023-11-12)
|

|
|
Topology of vibrational modes predicts plastic events in glasses 
Auteur(s): Wu Zhenwei, Chen Yixiao, Wang Wei-hua, Kob W. , Xu Limei
(Article) Publié:
Nature Communications, vol. 14 p.2955 (2023)
|

|
|
TASEP Exit Times 
Auteur(s): Dorignac J., Geniet F., Pitard E.
(Article) Publié:
Physical Review E, vol. 109 p.034116 (2023)
Texte intégral en Openaccess : 
Ref HAL: hal-04279672_v1
Ref Arxiv: 2310.08477
DOI: 10.1103/PhysRevE.109.034116
Ref. & Cit.: NASA ADS
Exporter : BibTex | endNote
Résumé: We address the question of the time needed by $N$ particles, initially located on the first sites of a finite 1D lattice of size $L$, to exit that lattice when they move according to a TASEP transport model. Using analytical calculations and numerical simulations, we show that when $N \ll L$, the mean exit time of the particles is asymptotically given by $T_N(L) \sim L+\beta_N \sqrt{L}$ for large lattices. Building upon exact results obtained for 2 particles, we devise an approximate continuous space and time description of the random motion of the particles that provides an analytical recursive relation for the coefficients $\beta_N$. The results are shown to be in very good agreement with numerical results. This approach sheds some light on the exit dynamics of $N$ particles in the regime where $N$ is finite while the lattice size $L\rightarrow \infty$. This complements previous asymptotic results obtained by Johansson in \cite{Johansson2000} in the limit where both $N$ and $L$ tend to infinity while keeping the particle density $N/L$ finite.
Commentaires: 10 pages, 4 figures
|