--------------------
- Nondestructive Measurement of Nuclear Magnetization by Off-Resonant Faraday Rotation doi link

Auteur(s): Giri R., Cronenberger S., Glazov M. M., Kavokin K. V., Lemaitre A., Bloch J., Vladimirova M.(Corresp.), Scalbert D.

(Article) Publié: Physical Review Letters, vol. 111 p.087603 (2013)
Texte intégral en Openaccess : openaccess


Ref HAL: hal-00861152_v1
DOI: 10.1103/PhysRevLett.111.087603
WoS: 000323388200024
Exporter : BibTex | endNote
24 Citations
Résumé:

We report on the nondestructive measurement of nuclear magnetization in n-GaAs via cavity enhanced Faraday rotation. In contrast with the existing optical methods, this detection scheme does not require the presence of detrimental out-of-equilibrium electrons. Specific mechanisms of the Faraday rotation are identified for (i) nuclear spins situated within the localized electron orbits, these spins are characterized by fast dynamics, (ii) all other nuclear spins in the sample characterized by much slower dynamics. Our results suggest that even in degenerate semiconductors nuclear spin relaxation is limited by the presence of localized electron states and spin diffusion, rather than by Korringa mechanism.