--------------------
- Low-frequency vibrational modes of stable glasses doi link

Auteur(s): Wang Lijin, Ninarello A. S., Guan Pengfei, Berthier L., Szamel G., Flenner Elijah

(Article) Publié: Nature Communications, vol. 10 p.26 (2019)
Texte intégral en Openaccess : arxiv


Ref HAL: hal-01993807_v1
Ref Arxiv: 1804.08765
DOI: 10.1038/s41467-018-07978-1
WoS: 000454756900003
Ref. & Cit.: NASA ADS
Exporter : BibTex | endNote
41 Citations
Résumé:

We numerically study the evolution of the vibrational density of states $D(\omega)$ of zero-temperature glasses when their kinetic stability is varied over an extremely broad range, ranging from poorly annealed glasses obtained by instantaneous quenches from above the onset temperature, to ultrastable glasses obtained by quenching systems thermalised below the experimental glass temperature. The low-frequency part of the density of states splits between extended and quasi-localized modes. Extended modes exhibit a boson peak crossing over to Debye behaviour ($D(\omega) \sim \omega^2$) at low-frequency, with a strong correlation between the two regimes. Quasi-localized modes instead obey $D(\omega) \sim \omega^4$, irrespective of the glass stability. However, the prefactor of this quartic law becomes smaller in more stable glasses, and the corresponding modes become more localized and sparser. Our work is the first numerical observation of quasi-localized modes in a regime relevant to experiments, and it establishes a direct connection between glass stability and soft vibrational motion in amorphous solids.



Commentaires: 8 pages, 6 figures.Nat. Commun. 10, 26 (2019), https://rdcu.be/bfkWJ