- Control Over Dipolar Exciton Fluids in GaN/(AlGa)N Nanostructures hal link

Auteur(s): Vladimirova M., Chiaruttini F., Guillet T., Brimont C., Jouault B., Lefebvre P., Chenot Sebastien, Cordier Yvon, Damilano Benjamin

Conférence invité: 13th International Conference on Nitride Semiconductors (ICNS-13) (Bellevue, US, 2019-07-09)

Ref HAL: hal-02466858_v1
Exporter : BibTex | endNote

Dipolar, or indirect excitons (IXs) offer a rich playground for both design of novel optoelectronic devices and fundamental many-body physics. Wide GaN/(AlGa)N quantum wells host a new and promising realization of such excitons. Indeed, compared to their counterparts in GaAs-based heterostructures, IXs in nitrides possess two key advantages. They have higher binding energies, and they are “naturally” indirect. This means, that they can be engineered and manipulated in as-grown heterostructures UP TO ROOM TEMPERATURES, even without application of an external electric bias. In this work we demonstrate (i) the propagation of IXs over hundreds of micrometers in the plane of GaN/(AlGa)N quantum wells, (ii) confinement and cooling of these excitons, when trapped in the electrostatic potential created by semitransparent electrodes of various shapes deposited on the sample surface (iii) the electrical control of the IX fluxes via an applied gate voltage. These results constitute a prerequisite for realization of the GaN-based excitonic devices, as well for studies of the complex phase diagram of these dipolar bosons at low temperature.