Nanofluidics has a very promising future owing to its numerous applications in many domains. It remains, however, very difficult to understand the basic physico-chemical principles that control the behavior of solvents confined in nanometric channels. Here, water and ion transport in carbon nanotubes is investigated using classical force field molecular dynamics simulations. By combining one single walled carbon nanotube (uniformly charged or not) with two perforated graphene sheets, we mimic single nanopore devices similar to experimental ones. The graphitic edges delimit two reservoirs of water and ions in the simulation cell from which a voltage is imposed through the application of an external electric field. By analyzing the evolution of the electrolyte conductivity, the role of the carbon nanotube geometric parameters (radius and chirality) and of the functionalization of the carbon nanotube entrances with OH or COO− groups is investigated for different concentrations of group functions.
Influence of the Quantum Capacitance on Electrolyte Conductivity through Carbon Nanotubes
In recent experiments, unprecedentedly large values for the conductivity of electrolytes through carbon nanotubes (CNTs) have been measured, possibly owing to flow slip and a high pore surface charge density whose origin is still unknown. By accounting for the coupling between the {quantum} CNT and the {classical} electrolyte-filled pore capacitances, we study the case where a gate voltage is applied to the CNT. The computed surface charge and conductivity dependence on reservoir salt concentration and gate voltage are intimately connected to the CNT electronic density of states. This approach provides key insight into why metallic CNTs have larger conductivities than semi-conducting ones.
Chromatin structure from high resolution microscopy: scaling laws and microphase separation
Recent advances in experimental fluorescence microscopy allow high accuracy determination (resolution of 50nm) of the 3D physical location of multiple (up to ~10^2) tagged regions of the chromosome. We investigate publicly available microscopy data for two loci of the human Chr.21 obtained from multiplexed FISH methods for different cell lines and treatments. Inspired by polymer physics models, our analysis centers around distance distributions between different tags, aiming to unravel the chromatin conformational arrangements. We show that for any specific genomic site, there are (at least) two different conformational arrangements of chromatin, implying coexisting distinct topologies which we refer to as phase "alpha" and phase "beta". These two phases show different scaling behaviors: the former is consistent with a crumpled globule while the latter indicates a confined, but more extended conformation, as a looped domain. The identification of these distinct phases sheds light on the coexistence of multiple chromatin topologies and provides insights into the effects of cellular context and/or treatments on chromatin structure.
Le matériel génétique contenu dans un virus est enfermé dans une coquille protectrice de protéines, appelée capside. Il y a 50 ans, des virologues ont proposé un modèle géométrique simple (…)
V.L Lorman and S.B. Rochal
Before starting the program, please, read attentively the user’s note. The program generates the irreducible structures with icosahedral symmetry on the spherical (…)
Nous travaillons sur des problèmes qui se trouvent à l’interface de la physique de la matière molle et de la biologie. On s’intéresse tout d’abord à la motilité de type reptation des cellules (…)