Accueil >
Production scientifique


Nanostructures quantiques propriétés optiques
(22) Production(s) de l'année 2023

|
|
Initiation expérimentale à la mécanique : le plan incliné de Galilée 
Auteur(s): Chenaud B. , Valvin P.
(Article) Publié:
Le Bulletin De L'union Des Professeurs De Physique Et De Chimie, vol. 117 p.767-782 (2023)
Ref HAL: hal-04884706_v1
Exporter : BibTex | endNote
Résumé: Comment faire de la mécanique ? Comment prendre des mesures, analyser le mouvement d'un objet de façon quantitative ? Comment trouver la loi horaire de ce mouvement ? Comment faire tout cela avant le lycée, avant l'apprentissage des rudiments du calcul différentiel tel que la dérivation et l'intégration ? Cet article tente de répondre à ces questions. En effet, son objet est de proposer un déroulement d'atelier afin d'initier les élèves des écoles primaires ou des collèges à la physique et plus particulièrement à la mécanique sans recourir au langage mathématique des dérivés, des primitives ou des équations différentielles. Ce travail s'est beaucoup appuyé sur diverses expériences de collègues ayant mis en place des ateliers de physique dans des classes de la maternelle au lycée en passant par l'élémentaire et le collège [1-4]. Dans ces ateliers mis en place pour des animations pour des scolaires âgés de 8 à 18 ans, il s'agissait simplement de présenter en quoi consiste la mécanique, quels sont les outils, les grandeurs physiques… dont il faut se doter pour pratiquer des expériences de mécanique et de les mettre en pratique. La première partie montrera comment nous proposons de présenter et définir la mécanique aux élèves. Nous y introduirons les notions de mesure, d'étalon, d'horloge, de repère spatial, de vitesse et d'accélération. Nous étudierons qualitativement le mouvement « la chute des corps » dans la deuxième partie. Ce mouvement sera étudié de façon semi-quantitative dans la dernière partie de cet article dans le cas de l'expérience historique de Galilée du « plan incliné », expérience qui ouvrira la voie à la physique moderne illustrant les propos du savant italien : « la nature est un livre écrit en langage mathématique ».
|

|
|
Nanoscale magnetic imaging with quantum sensors 
Auteur(s): Finco A.
Conference: Multimag (Lille, FR, 2023-03-22)
Ref HAL: hal-04843562_v1
Exporter : BibTex | endNote
Résumé: Quantum sensors harness the high sensitivity of quantum systems to external perturbations to accurately measure various physical quantities. Among the quantum systems employed for sensing purposes, the nitrogen-vacancy (NV) defect in diamond has garnered considerable attention as a magnetometer. A single NV center can be integrated in a scanning probe microscope to build a highly sensitive imaging tool which is particularly adapted to the investigation of antiferromagnets. Two approaches are possible, either the measurement of small static stray fields or the detection of magnetic noise.For canted antiferromagnetic textures, like the cycloidal state in multiferroic bismuth ferrite, the NV center can probe the stray field produced by the uncompensated moments, revealing the presence of topological defects in the magnetic order at the surface of bulk single crystals [1].Alternatively, thermally activated spin waves confined in domain walls generate a magnetic noise to which the NV center is also sensitive. This property allows the localization of the domain walls, which was demonstrated in synthetic antiferromagnets [2].Besides the NV centers, new sensors are emerging as magnetic field probes like the boron vacancies in h-BN, which offer the possibilty to integrate a sensing layer inside a van der Waals heterostructure [3].[1] Finco et al., Physical Review Letters, 128, 187201 (2022)[2] Finco et al., Nature Communications 12, 767 (2021)[3] Kumar et al., Physical Review Applied, 18, L061002 (2022)
|

|
|
Probing magnetic chiral textures through spin waves with a quantum sensor 
Auteur(s): Finco A.
Conference: E-MRS Fall meeting 2023 (Warsaw, PL, 2023-09-18)
Ref HAL: hal-04843437_v1
Exporter : BibTex | endNote
Résumé: NV centers are defects in diamond which can be used as quantum sensors to probe magnetism at the nanoscale when integrated in an atomic force microscope. Such a measurement relies on the spin S = 1 of the NV center: the static stray field produced by a magnetic state induces a Zeeman shift on the spin sublevels, which can be detected optically. The high magnetic sensitivity of this technique allows the imaging of complex antiferromagnetic states, in BiFeO3 for example [1].In addition, NV centers are also sensitive to spin waves, as the magnetic noise originating from thermally activated spin waves accelerates its spin relaxation. In this case, the enhanced relaxation leads to a decrease of the photoluminescence emitted by the NV center [2], which allows an easy localization of spin waves interacting with magnetic textures. We applied this approach to the study of Co-based perfectly compensated synthetic antiferromagnetic layers [3], in which we were able to observe spin waves channeled inside the domain walls [4].We report here on a more detailed investigation of domain walls and skyrmions in synthetic antiferromagnetic layers, revealing that the spatial distribution of the noise and its amplitude are related to the chirality of the magnetic texture. In particular for skyrmions, the magnetic noise contrast around their boundary is linked to their internal structure. [1] A. Finco et al, Physical Review Letters 128, 187201 (2022). [2] M. Rollo et al, Physical Review B 103, 235418 (2021). [3] W. Legrand et al, Nature Materials 19, 34–42 (2020). [4] A. Finco et al, Nature Communications 12, 767 (2021).
|

|
|
Starting using PyMoDAQ: 1 year after 
Auteur(s): Finco A.
Conference: PyMoDAQ days 2023 (Paris, FR, 2023-10-16)
Ref HAL: hal-04843400_v1
Exporter : BibTex | endNote
Résumé: I present here an overview of our first year of development of PyMoDAQ plugins for our scanning NV center microscope.
|

|
|
Polytypism in hexagonal boron nitride: an optical study 
Auteur(s): Cassabois G.
Conférence invité: 14th International Conference on Nitride Semiconductors (ICNS14) (Fukuoka, JP, 2023-11-13)
|

|
|
Optoelectronic properties of boron nitride polytypes 
Auteur(s): Cassabois G.
Conférence invité: SPIE Photonics West (San Francisco, US, 2023-01-30)
|

|
|
Accurate determination of optical parameters of non transparent materials: the ε–GaSe case 
Auteur(s): Bassou A., Rajira A., Gil B., Almaggoussi A., Abounadi A.
(Article) Publié:
Optical Materials, vol. 140 p.113887 (2023)
Ref HAL: hal-04795698_v1
DOI: 10.1016/j.optmat.2023.113887
Exporter : BibTex | endNote
Résumé: This work reports on the modeling and precise determination of the optical parameters of mechanically exfoliated gallium selenide (ε-GaSe) thin films from both measured transmittance (T meas ) and reflectance (R meas ) at room temperature. Then, the absorption α(λ) and the reflection R(λ) coefficients were accurately calculated, at any wavelength. More general relations taking into account the multiple transmissions and the multiple reflections on both sides of the ε-GaSe film were considered. The fundamental optical constants that are the complex refractive index N(λ) and the complex dielectric constant ε(λ) were then accurately determined. Modeling the imaginary part of the latter parameter permits a precise determination of the positions of the resonances observed in the transmittance and reflectance spectra. The modeling was handled by considering an increasing number from three to five oscillators within the Lorentz model. The assignation of these resonances to the related critical points of the Brillouin zone at and above the band gap was investigated. The splitting on the valence band and the close indirect-direct nature of the configuration in the conduction band have been considered simultaneously. For GaSe material, the refractive index varies from 2.8 and 3.3 with strong peaks above the band gap corresponding to resonances at 3.2 eV and 3.7 eV. The analysis of the oscillator strengths and the lifetimes of the observed transitions allowed to clearly identifying the indirect nature of the fundamental band gap. Its value of 1.97 eV is largely separated from the direct band gap of about 230 meV. The transition lifetimes were found to vary between 0.6 fs and 24 fs.
|