Optique des états collectifs et des spins (OECS)
Responsable : Christelle Brimont
Membres actuels
ARISTEGUI Rémi (Doctorant)
BRETAGNON Thierry (Enseignant Chercheur)
BRIMONT Christelle (Enseignante Chercheuse)
CRONENBERGER Steeve (Enseignant Chercheur)
DEVELAY Valentin (Doctorant)
DOYENNETTE Laetitia (Enseignante Chercheuse)
GRIBAKIN Boris (Doctorant)
GUILLET Thierry (Enseignant Chercheur)
LEFEBVRE Pierre (Chercheur)
SCALBERT Denis (Chercheur)
VLADIMIROVA Maria (Chercheuse)
Domaines de Recherche
L’équipe "Optique des états collectifs et des spins (OECS)" développe son activité autour de 3 thèmes de recherche, en s’appuyant sur les plateformes expérimentales de l’axe PEPS.
Nos projets financés incluent :
Thèses en cours
- Rémi Aristégui (2021-2024) : Dipolar excitons hosted by nitride-based heterostructures for emerging quantum states
- Boris Gribakin (2021-2024), thèse en co-tutelle avec St-Petersburg University : Spin diffusion of electrons and excitons in semiconductors studied by spin noise and pump-probe spectroscopy
- Valentin Develay (2022-2025) : Waveguide polariton lasers
Thèses récentes
- Hassen Souissi (2020-2023) : Quantum fluids of light for integrated photonics : waveguide polariton devices
Nous rejoindre
Plusieurs possibilités de stages, thèses et post-doctorats sont offertes au sein des équipes, parmi lesquelles :
Dernières publications
|
|
Mode-locked waveguide polariton laser
Auteur(s): Souissi H., Gromovyi M., Septembre I., Develay V., Brimont C., Doyennette L., Cambril E., Bouchoule S., Alloing B., Frayssinet E., Zúñiga-Pérez J., Ackemann T., Malpuech G., Solnyshkov D., Guillet T.
(Article) Publié:
Optica, vol. 11 p.962 (2024)
Texte intégral en Openaccess :
Ref HAL: hal-04776451_v1
Ref Arxiv: 2310.18661
DOI: 10.1364/OPTICA.524753
Ref. & Cit.: NASA ADS
Exporter : BibTex | endNote
Résumé: So far, exciton-polariton (polariton) lasers were mostly single-mode lasers based on microcavities. Despite the large repulsive polariton-polariton interaction, a pulsed mode-locked polariton laser was never, to our knowledge, reported. Here, we use a 60-µm-long GaN-based waveguide surrounded by distributed Bragg reflectors forming a multi-mode horizontal cavity. We demonstrate experimentally and theoretically a polariton mode-locked micro-laser operating in the blue-UV, at room temperature, with a 300 GHz repetition rate and 100-fs-long pulses. The mode-locking is demonstrated by the compensation (linearization) of the mode dispersion by the self-phase modulation induced by the polariton-polariton interaction. It is also supported by the observation in experiment and theory of the typical envelope frequency profile of a bright soliton.
|
|
|
Genuine and faux single G centers in carbon-implanted silicon
Auteur(s): Durand A., Baron Y., Cache F., Herzig Tobias, Khoury Mario, Pezzagna Sébastien, Meijer Jan, Hartmann Jean-Michel, Reboh Shay, Abbarchi Marco, Robert-Philip I., Gérard Jean-Michel, Jacques V., Cassabois G., Dréau A.
(Article) Publié:
Physical Review B, vol. 110 p.L020102 (2024)
Texte intégral en Openaccess :
Ref HAL: hal-04699426_v1
Ref Arxiv: 2402.07705
DOI: 10.1103/PhysRevB.110.L020102
Ref. & Cit.: NASA ADS
Exporter : BibTex | endNote
Résumé: Among the wide variety of single fluorescent defects investigated in silicon, numerous studies have focused on color centers with a zero-phonon line around 1.28 μm and identified to a common carbon complex in silicon, namely the G center. However, inconsistent estimates regarding their quantum efficiency cast doubt on the correct identification of these individual emitters. Through a comparative analysis of their single-photon emission properties, we demonstrate that these single color centers are split in two distinct families of point defects. A first family consists of the genuine single G centers with a well-identified microscopic structure and whose photoluminescence has been investigated on ensemble measurements since the 1960s. The remaining defects belong to another color center, which we will refer to as the G* center, whose atomic configuration has yet to be determined. These results provide a safeguard against future defect misidentifications, which is crucial for further development of quantum technologies relying on G or G* center quantum properties.
|
|
|
Soliton formation in an exciton-polariton condensate at a bound state in the continuum
Auteur(s): Septembre I., Foudjo I., Develay V., Guillet T., Bouchoule S., Zúñiga-Pérez J., Solnyshkov D., Malpuech G.
(Article) Publié:
Physical Review B, vol. 109 p.205302 (2024)
Texte intégral en Openaccess :
Ref HAL: hal-04587561_v1
Ref Arxiv: 2401.06589
DOI: 10.1103/PhysRevB.109.205302
Ref. & Cit.: NASA ADS
Exporter : BibTex | endNote
Résumé: Bound states in the continuum (BICs) are of special interest in photonics due to their theoretically infinite radiative lifetime. In this work, we take a specific example (a structure composed of GaN and a TiO2 photonic crystal slab), showcasing how the interactions affect BICs. The photonic BIC hosted by the photonic crystal slab couples with the excitons of GaN to form a polaritonic BIC with a negative mass. This allows condensation to be reached with a low threshold in a structure suitable for electrical injection, paving the way for room-temperature polariton microdevices. We study in detail how the repulsive interaction between exciton-polaritons affects the condensate distribution in reciprocal space and, consequently, the condensate's overlap with the BIC resonance and, therefore, the condensate lifetime. We study an intrinsic contribution related to the formation of a bright soliton and the extrinsic contribution related to the interaction with an excitonic reservoir induced by spatially focused nonresonant pumping. We then study the peculiar dynamics of the condensation process in a BIC state for interacting particles using Boltzmann equations and hybrid Boltzmann–Gross-Pitaevskii equations. We find optimal conditions allowing one to benefit from the long lifetime of the BIC for polariton condensation in a real structure.
|