Optique des états collectifs et des spins (OECS)
Responsable : Christelle Brimont
Domaines de Recherche
L’équipe "Optique des états collectifs et des spins (OECS)" développe son activité autour de 3 thèmes de recherche, en s’appuyant sur les plateformes expérimentales de l’axe PEPS.
Nos projets financés incluent :
Thèses en cours
- Hassen Souissi (2020-2023) : Quantum fluids of light for integrated photonics : waveguide polariton devices
- Rémi Aristégui (2021-2024) : Dipolar excitons hosted by nitride-based heterostructures for emerging quantum states
- Boris Gribakin (2021-2024), thèse en co-tutelle avec St-Petersburg University : Spin diffusion of electrons and excitons in semiconductors studied by spin noise and pump-probe spectroscopy
Nous rejoindre
Plusieurs possibilités de stages, thèses et post-doctorats sont offertes au sein des équipes, parmi lesquelles :
Dernières publications
|
|
Simultaneous measurements of nuclear spin heat capacity, temperature and relaxation in GaAs microstructures 
Auteur(s): Vladimirova M., Cronenberger S., Colombier A, Scalbert D., Litvyak V, Kavokin K, Lemaître A.
(Article) Publié:
Physical Review B, vol. 105 p.155305 (2022)
Texte intégral en Openaccess :
Ref HAL: hal-03711870_v1
DOI: 10.1103/PhysRevB.105.155305
Exporter : BibTex | endNote
Résumé: Heat capacity of the nuclear spin system (NSS) in GaAs-based microstructures has been shown to be much greater than expected from dipolar coupling between nuclei, thus limiting the efficiency of NSS cooling by adiabatic demagnetization. It was suggested that quadrupole interaction induced by some small residual strain could provide this additional reservoir for the heat storage. We check and validate this hypothesis by combining nuclear spin relaxation measurements with adiabatic remagnetization and nuclear magnetic resonance experiments, using electron spin noise spectroscopy as a unique tool for detection of nuclear magnetization. Our results confirm and quantify the role of the quadrupole splitting in the heat storage within NSS and provide additional insight into fundamental, but still actively debated relation between a mechanical strain and the resulting electric field gradients in GaAs.
|