CHAUVEAU Edouard
Fonction : AI
Organisme : CNRS
Assistant Ingénieur
BAP B (Sciences chimiques et sciences des matériaux)
edouard.chauveau

umontpellier.fr
Bureau: 221, Etg: 2, Bât: 11 - Site : Campus Triolet
Participation(s) à Projets: |
|
Domaines de Recherche: - Physique/Matière Condensée/Matière Molle
- Chimie/ou physique
- Sciences du Vivant/Alimentation et Nutrition
- Sciences de l'ingénieur/Matériaux
- Sciences du Vivant/Ingénierie des aliments
|
Dernieres productions scientifiques :

|
|
Rejuvenating the structure and rheological properties of silica nanocomposites based on natural rubber 
Auteur(s): Boonsomwong Kanyarat, Genix A.-C., Chauveau E., Fromental J.-M., Dieudonne-George P., Sirisinha Chakrit, Oberdisse J.
(Article) Publié:
Polymer, vol. 189 p.122168 (2020)
Texte intégral en Openaccess : 
Ref HAL: hal-03004917_v1
Ref Arxiv: 2011.07820
DOI: 10.1016/j.polymer.2020.122168
WoS: WOS:000513011400007
Ref. & Cit.: NASA ADS
Exporter : BibTex | endNote
Résumé: The antagonistic effect of processing and thermal annealing on both the filler structure and the polymer matrix is explored in polymer nanocomposites based on natural rubber with precipitated silica incorporated by coagulation from aqueous suspension followed by roll-milling. Their structure and linear and non-linear rheology have been studied, with a particular emphasis on the effect of high temperature thermal treatment and the number of milling passes. Small-angle X-ray scattering intensities show that the silica is organized in small, unbreakable aggregates containing ca. 50 primary nanoparticles, which are reorganized on a larger scale in filler networks percolating at the highest silica contents. As expected, the filler network structure is found to be sensitive to milling, more milling inducing rupture, as evidenced by the decreasing Payne effect. After thermal treatment, the nanocomposite structure is found to be rejuvenated, erasing the effect of the previous milling on the low-strain modulus. In parallel, the dynamics of the samples described by the rheology or the calorimetric glass-transition temperature remain unchanged, whereas the natural latex polymer network structure is modified by milling towards a more fluid-like rheology, and cannot be recovered.
|

|
|
Tailoring the viscoelasticity of polymer gels of gluten proteins through solvent quality 
Auteur(s): Costanzo S., Banc A., Louhichi A., Chauveau E., Wu Baohu, Morel Marie-Hélène, Ramos L.
(Article) Publié:
Macromolecules, vol. 53 p.9470-9479 (2020)
Texte intégral en Openaccess : 
Ref HAL: hal-03003151_v1
Ref Arxiv: 2010.10317
DOI: 10.1021/acs.macromol.0c01466
Ref. & Cit.: NASA ADS
Exporter : BibTex | endNote
Résumé: We investigate the linear viscoelasticity of polymer gels produced by the dispersion of gluten proteins in water:ethanol binary mixtures with various ethanol contents, from pure water to 60% v/v ethanol. We show that the complex viscoelasticity of the gels exhibits a time/solvent composition superposition principle, demonstrating the self-similarity of the gels produced in different binary solvents. All gels can be regarded as near critical gels with characteristic rheological parameters, elastic plateau and characteristic relaxation time, which are related one to another, as a consequence of self-similarity, and span several orders of magnitude when changing the solvent composition. Thanks to calorimetry and neutron scattering experiments, we evidencea co-solvency effect with a better solvation of the complex polymer-like chains of the gluten proteins as the amount of ethanol increases. Overall the gel viscoelasticity can be accounted for by a unique characteristic length characterizing the crosslink density of the supramolecular network, which is solvent composition-dependent. On a molecular level, these findings could be interpreted as a transition of the supramolecular interactions, mainly H-bonds, from intra- to interchains, which would be facilitated by the disruption of hydrophobic interactions by ethanol molecules. This work provides new insight for tailoring the gelation process of complex polymer gels.
|

|
|
Structural identification of percolation of nanoparticles 
Auteur(s): Musino D., Genix A.-C., Chauveau E., Bizien Thomas, Oberdisse J.
(Article) Publié:
Nanoscale, vol. 12 p.3907-3915 (2020)
Texte intégral en Openaccess :
Ref HAL: hal-02564183_v1
PMID 32003375
DOI: 10.1039/c9nr09395h
WoS: 000515391000035
Exporter : BibTex | endNote
Résumé: We propose a method relying on structural measurements by small-angle scattering to quantitatively follow aggregation of nanoparticles (NPs) in concentrated colloidal assemblies or suspensions up to percolation, regardless of complex structure factors arising due to interactions. As experimental model system, the dispersion of silica NPs in a styrene-butadiene matrix has been analyzed by small-angle X-ray scattering and transmission electron microscopy (TEM), as a function of particle concentration. A reverse Monte Carlo analysis applied to the NP scattering compared favorably with TEM. By combining it with an aggregate recognition algorithm, series of representative real space structures and aggregation number distribution functions have been determined up to high concentrations, taking into account particle polydispersity. Our analysis demonstrates that the formation of large percolating aggregates on the scale of the simulation box (of linear dimension 1/qmin, here micron-sized) can be mapped onto the macroscopic percolation characterized by rheology. Our method is thus capable of determining aggregate structure in dense NP systems with strong – possibly unknown – interactions visible in scattering. It is hoped to be useful in many other colloidal systems, beyond the case of polymer nanocomposites exemplarily studied here.
|

|
|
Insight into gluten structure in a mild chaotropic solvent by asymmetrical flow field-flow fractionation (AsFlFFF) and evidence of non-covalent assemblies between glutenin and ω-gliadin 
Auteur(s): Morel Marie-Hélène, Pincemaille J., Chauveau E., Louhichi A., Violleau Frédéric, Menut Paul, Ramos L., Banc A.
(Article) Publié:
Food Hydrocolloids, vol. 103 p.105676 (2020)
Texte intégral en Openaccess : 
Ref HAL: hal-02481505_v1
DOI: 10.1016/j.foodhyd.2020.105676
WoS: 000518218000032
Exporter : BibTex | endNote
Résumé: Wheat gluten, one of the most complex viscoelastic protein networks in nature, is unique to get the specific texture of bread. Due to its complex protein composition, its insolubility in most solvents and the very high molar mass of half of the proteins (glutenin, the other half being gliadin), the architecture of the network is still not well understood. In this work, we have investigated model gluten protein extracts with contrasted compositions in glutenin and gliadin solubilized in a mild chaotropic solvent: ethanol/water (50/50 v/v). The samples display a liquid-liquid phase separation with an upper critical solution temperature that depends on the protein composition. The phase diagrams are consistent with the presence of supramolecular assemblies of proteins. To confirm the presence of these assemblies and fully characterize the objects dispersed in ethanol/water, we have used an asymmetrical flow field-flow fractionation (AsFlFFF) setup coupled with differential refractive index, multi-angle light scattering and dynamic light scattering detections to probe very dilute protein suspensions. We have identified three classes of objects, with distinctive molar mass, characteristic size and conformation: protein monomers, polymeric structures, and very loose protein assemblies with molar mass larger than 2.10 6 g/mol. A molecular characterization of the species by size exclusion chromatography in a denaturing solvent shows that polymers and assemblies are mainly composed of glutenin and ω-gliadin. The high content of ω-gliadin, devoid of cysteines, indicates the importance of non-covalent interactions involved in protein assemblies and might play a major role in gluten rheology
|

|
|
Propriétés des mélanges binaires d’un nématique twist-bend (CB7CB) et de smectogènes 
Auteur(s): Aouini A. , Blanc C., Dozov I., Chauveau E., Phou T., Dieudonne-George P., Stoenescu Daniel, Nobili M.
Conference: 19eme Colloque Francophone sur les cristaux liquides (CFCL2019) (Sète, FR, 2019-09-03)
Ref HAL: hal-02301167_v1
Exporter : BibTex | endNote
Résumé: L’existence d’une phase « Nematique twist Bend » (NTB) a été prédite par I.Dozov dès 2001 [1] mais n’a été observée expérimentalement qu’en 2010 [2]. Cette phase est assez originale car elle présente optiquement des défauts de type coniques focales sans réel ordre translationnel observable en diffusion des rayons X. Généralement cette phase est présente à des températures élevées (au-dessus de 100°C) dans les corps purs. L’ajout d’un nématogène [comme le 4-Cyano-4'-pentylbiphenyl (5CB)] à un composé NTB [tels que le 1,7-bis (4-cyanobiphényl-4-yl) heptane (CB7CB)] permet de diminuer fortement la plage d’existence de la phase NTB [3] tout en modifiant continûment les propriétés thermiques et diélectriques. Dans ce travail, nous avons exploré les modifications dues à l’ajout au CB7CB de smectogènes, et en particulier du 4′-octyl-4-biphénylcarbonitrile (8CB). Le diagramme de phase de ce dernier mélange binaire présente des caractéristiques surprenantes. Malgré leur ressemblance macroscopique, les phases SmA et NTB semblent ainsi incompatibles et restent séparées par une phase nématique s’étendant à très basse température (-20 ° C) pour une fraction CB7CB de ϕ_c≈20%. Nous avons par ailleurs caractérisé les propriétés optiques, thermiques, diélectriques et d’ancrage des phases N et NTB des mélanges. Les propriétés optiques sont très différentes de celles du CB7CB sur une large gamme de composition et de forts effets pré-transitionnels sont observables à l'approche de ϕ_c≈20%. Les propriétés d’ancrage (fig1) sont également significativement modifiées par l'ajout de 8CB au CB7CB ce qui facilite l'alignement homéotrope, très difficilement obtenu pour le CB7CB.
|
Plus...