FERNANDEZ Loic
Doctorant en Contrat Doctoral (Responsable :
KNEUR J.-L.)
loic.fernandez

umontpellier.fr
Bureau: 13/01/44.1, Etg: 1, Bât: 13 - Site : Campus Triolet
Domaines de Recherche: - Physique/Physique des Hautes Energies - Phénoménologie
|
Productions scientifiques :

|
|
All order resummed leading and next-to-leading soft modes of dense QCD pressure 
Auteur(s): Fernandez L., Kneur J.-L.
(Document sans référence bibliographique) Texte intégral en Openaccess : 
Ref HAL: hal-03347966_v1
Ref Arxiv: 2109.02410
Ref INSPIRE: 1917540
Ref. & Cit.: NASA ADS
Exporter : BibTex | endNote
Résumé: The cold and dense QCD equation of state (EoS) at high baryon chemical potential $\mu_B$ involves at order $\alpha^2_S$ an all-loop summation of the soft mode $m_E\sim \alpha_S^{1/2} \mu_B$ contributions. Recently, the complete soft contributions at order $\alpha^3_S$ were calculated, using the hard thermal loop (HTL) formalism. By identifying {\em massive} renormalization group (RG) properties within HTL, we resum to all orders $\alpha_S^p, p\ge 3$ the leading and next-to-leading logarithmic soft contributions. We obtain compact analytical expressions, that show visible deviations from the state-of-the art results, and noticeably reduced residual scale dependence. Our results should help to reduce uncertainties in extending the EoS in the intermediate $\mu_B$ regime, relevant in particular for the phenomenology of neutron stars.
|

|
|
Renormalization group optimized $\lambda \phi^4$ pressure at next-to-next-to-leading order 
Auteur(s): Fernandez L., Kneur J.-L.
(Article) Publié:
Physical Review D, vol. 104 p.096012 (2021)
Texte intégral en Openaccess : 
Ref HAL: hal-03319381_v1
Ref Arxiv: 2107.13328
Ref INSPIRE: 1894553
DOI: 10.1103/PhysRevD.104.096012
Ref. & Cit.: NASA ADS
Exporter : BibTex | endNote
Résumé: We investigate the renormalization group optimized perturbation theory (RGOPT) at the next-to-next-to-leading order (NNLO) for the thermal scalar field theory. From comparing three thus available successive RGOPT orders, we illustrate the efficient resummation and very good apparent convergence properties of the method. In particular, the remnant renormalization scale dependence of thermodynamical quantities is drastically improved as compared to both standard perturbative expansions and other related resummation methods, such as the screened perturbation theory. Our present results thus constitute a useful first NNLO illustration in view of NNLO applications of this approach to the more involved thermal QCD.
|